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a b s t r a c t

We present a numerical approach to calculate non-equilibrium eigenstates of a periodically time-
modulated quantum system. The approach is based on the use of a chain of single-step propagating
operators. Each operator is time-specific and constructed by combining the Magnus expansion of the
time-dependent system Hamiltonian with the Chebyshev expansion of an operator exponent. The
construction of the unitary Floquet operator,which evolves a system state over the fullmodulation period,
is performed by propagating the identity matrix over the period. The independence of the evolution
of basis vectors makes the propagation stage suitable for realization on a parallel cluster. Once the
propagation stage is completed, a routine diagonalization of the Floquet matrix is performed. Finally, an
additional propagation round, now involving the eigenvectors as the initial states, allows to resolve the
time-dependence of the Floquet states and calculate their characteristics. We demonstrate the accuracy
and scalability of the algorithm by applying it to calculate the Floquet states of two quantum models,
namely (i) a synthesized random-matrix Hamiltonian and (ii) a many-body Bose–Hubbard dimer, both of
the size up to 104 states.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Fast progress in manipulations with cold and ultra-cold atoms,
quantum optics and nanoscale fabrication techniques has brought
quantum physics in touch with technology [1–3]. It is then natural
that computational quantum physics plays an ever increasing role
in explaining and guiding current experiments and suggesting new
ones [4]. From the computational point of view, the complete
resolution of a coherent, i.e., an isolated from the environment,
quantum system means the solution of the eigenvalue problem
for the system Hamiltonian H . When the Hamiltonian is time-
independent, this task can be executed by performing full
diagonalization of the Hamiltonian matrix. When the system
becomes too large the size of the matrix may not allow any longer
for its full diagonalization. The task, however, could be restricted to
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finding lowest energy eigenstate(s) which can be accomplished by
using the Lanczos algorithm [5] ormore sophisticated tools, such as
the Density-Matrix Renormalization Group (DMRG) methods [6].
In cases that the system is periodically modulated in time, its
Hamiltonian becomes a time-periodic operator H(t + T ) = H(t +

2π/ω) = H(t). The dynamics of the system is accordingly then
governed by the set of so termed Floquet states [7,8]. These states
are not eigenvectors of the Hamiltonian H(t) but instead of the
unitary Floquet operator

UT = T exp

−

i
h̄

 T

0
H(t ′)dt ′


, (1)

where T is Dyson’s time-ordering operator. This operator
propagates the system over the period T of modulations, while the
corresponding time-periodic Floquet states form a time-periodic
orthogonal basis spanning the system Hilbert space [9,10]. The
structure of the unitary Floquet matrix, and thus the properties of
the Floquet states, dependon themodulationprotocols andparam-
eters. This is a key feature of periodically driven quantum systems
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which makes them so attractive to the theoreticians and experi-
mentalists working in the field of quantum optics, optomechan-
ics and solid state physics [9–13]. Strong modulations can sculpt
a set of non-equilibrium eigenstates which may drastically dif-
fer from the states exhibited by the system in the unmodulated,
stationary limit. Thus, modulations allow to grasp novel phenom-
ena and effects which are out of reach within time-independent
Hamiltonians; they can be used to create topological insulators in
semiconductor wells [14], synthesize Majorana fermions in quan-
tum wires [15], and engineer gauge fields for spinless neutral
atoms [16].

The calculation of Floquet states of a large quantum system
constitutes a challenge. The key step is a construction of the unitary
Floquet matrix, Eq. (1) (its final diagonalization computationally
similar to the diagonalization of stationary Hamiltonian matrices).
The most straightforward way to obtain UT is to numerically
propagate the identity matrix over the time period T . However,
the propagation with a time-dependent Hamiltonian operator
presents an issue of its own. There are two ways to do so.

The first option is to use piecewise-constant modulation
functions. This allows to reduce the computational task to the
diagonalization of time-independent Hamiltonians, one for every
time interval, and the expansion of eigenvectors of a preceding
Hamiltonian in the basis of the consecutive one. Such modulations
were used to investigate connections between integrability
and thermalization [17–19], and to explore disorder-induced
localization [20] in periodically driven many-body systems. With
respect to the thermalization it was found that the temporal
modulations heat the system to infinite temperature so that
the system Floquet states are near uniformly smeared over the
eigenbasis of the system in the absence of driving [17–19]. An
important question that immediately arises is whether this is a
universal phenomenon or it is related to the non-differentiability
of the modulation function (whose property induces the presence
of all multiple frequencies kω, k = 1, 2, . . . , in the spectrum
of the modulations function). Evidently, this question cannot be
answered without going beyond the piecewise setup. In addition,
in view of possible experimental realizations, smooth continuous
modulations are also more preferable.

An alternative option is to expand the time-dependent
Hamiltonian into a Fourier series and, and then truncating it, by
keeping 2F + 1 harmonics kω, k = −F , . . . , 0, . . . , F only, to
reduce the problem to the diagonalization of a time-independent
super-Hamiltonian [8,21]. This is a reliable method to obtain
Floquet spectrum of a system of a size up to a hundred of states.
For larger systems, this strategy leads to a computational problem:
the size of the super-Hamiltonian scales as N × (2F + 1), where
N is the dimension of the system’s Hilbert space. Computational
diagonalization efforts increase as [N×(2F+1)]3, while the known
diagonalization algorithms are poorly scalable. For a system of the
size N = 104, already F = 50 harmonics is far too much; a full
diagonalization of a 106

× 106 matrix becomes unfeasible. At the
same time, this large number of harmonics is not enough to resolve
faithfully the Floquet spectrum of the system.1

Therefore, in order to calculate the Floquet state of a system
with N > 103 states, the propagation stage has to be included
into an algorithm. A propagation method should guarantee a high
accuracy with respect not only to the unitary time evolution, but
as well with respect to the phases of complex vectors. That is
because Floquet states appear as superpositions of basis vectors
used towrite system’s Hamiltonian. Accumulated phase errorswill

1 The eigenvalue spectrum of the super-Hamiltonian can be resolved with the
accuracy 2π/(2F +1) at best. This is not enough taking into account that the actual
mean spacing between the eigenvalues is π/N .
destroy the interference and lead to an incorrect set of Floquet
states. As we show in Section 7, quantum interference effects,
together with some results from quantum chaos theory [22], can
be used to benchmark the accuracy of an algorithm.

Because of the trade-off between the accuracy and system
size, the time of sequential vector propagation grows super-
linearly with N . Faithful calculations of Floquet spectra of non-
integrable systems (whose Hilbert space cannot be decomposed
into several non-interacting low-dimensional manifolds [23]),
with tens of thousands of states, can only be performed with
scalable algorithms.

This paper presents an algorithm to calculate the Floquet spec-
tra of strongly-modulated quantum systems with N > 104 quan-
tum states and its implementation on a parallel supercomputer.
The propagation part of the algorithm is based on the combina-
tion of the Magnus expansion of time-dependent linear opera-
tors [24] and the Chebyshev expansion of operator exponents [25].
This combination has been proposed in [26], where its particu-
lar numerical realization, implementing a commutator-free Mag-
nus scheme, was tested. We demonstrate here the accuracy and
scalability of the algorithm by using two quantum models, with
a synthesized random-matrix Hamiltonian and a many-body non-
integrable bosonic dimer. The size of model system is limited by
the diagonalization routine only, so the algorithm can be used to
calculate Floquet states of systems of the size up to N ∼ 50 000
states.

The paper is organized as follows: Section 2 outlines the
theoretical background and introduces theMagnus and Chebyshev
expansions; Section 3 describes the algorithm; in Section 4 we
introduce model systems, apply the cluster implementation to
calculate their Floquet states in Section 5, and analyze the results
in Section 7. Finally we summarize our findings and outline further
perspectives in Section 8.

2. Theoretical background

Floquet states. We consider quantum systems whose dynamics
is determined by the time-dependent Schrödinger equation

ih̄∂t |ψ(t)⟩ = H(t)|ψ(t)⟩, (2)

where the Hamiltonian H(t) denotes a time-periodic Hermitian
operator, H(t + T ) = H(t). We assume that the system evolves
in a finite-dimensional Hilbert space spanned by N basis vectors.
The time evolution of the system is fully determined by a unitary
operator U(t0, t), being the solution of the equation

ih̄∂tU(t0, t) = H(t)U(t0, t) (3)

for the initial condition in the form of the identity matrix,
U(t0, t0) = 1. This provides the propagator of the system, i.e. a
unitary operator, which evolves any system state from a time t0
to time t0 + t , U(t0, t)|ψ(t0)⟩ = |ψ(t0 + t)⟩. A time t0 ∈ [0, T ]

specifies the state of the Hamiltonian operator at the initial time,
when, for example, the driving is switched on. This starting time
can be absorbed into the Hamiltonian as a parameter, H(t, t0) =

H(t + t0) (the propagator U(t0, t) can be obtained from U(0, t) as
U(t0, t) = UĎ(0, t0)U(0, t + t0)), so for later convenience, we set
t0 = 0 in Eq. (3) and denote U(0, t) by Ut . Eigenvectors {|φµ(0)⟩}
of the unitary matrix UT ,

UT |φµ(0)⟩ = e−iθµ |φµ(0)⟩, µ = 1, . . . ,N, (4)

form a time-periodic full orthonormal basis in the system Hilbert
space2 [7–9,15,16,18,20]

|φµ(t + T )⟩ = |φµ(t)⟩. (5)

2 When the notion of the Floquet states was introduced in quantum physics,
the following convention has originally been employed: The set {ϕµ(t) =
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These vectors are simply related to the stroboscopic snapshots,
|ψ(nT )⟩, when |ψ(0)⟩ = |φµ(0)⟩, namely |ψ(nT )⟩ = e−iϵµnT/h̄

|φµ(t)⟩ with ϵµ = h̄θµ/T , n ∈ N. The exponents ϵµ have the
dimension of energy and are termed quasienergies. Quasienergies
can be determined up tomultiples of h̄ω so they are conventionally
restricted to the interval [−h̄ω/2, h̄ω/2].

Upon knowing the Floquet spectrum of a system, {ϵµ, |φµ(t)⟩},
and the initial system state |ψ(0)⟩, one can evaluate the state of
the system at any later instant of time t > 0, i.e.

|ψ(t)⟩ =


µ

cµe−iϵµt/h̄|φµ(t)⟩, cµ = ⟨φµ(0) | ψ(0)⟩. (6)

Magnus expansion. The idea of the Magnus expansion [27] is
to construct a time independent Hamiltonian operator Ω(t1, t2),
parameterized by the two times, t1 and t2, such that

U(t1, t2) = exp

−

i
h̄
Ω(t1, t2)


. (7)

The operator is given by an infinite series involving nested
commutators [24], i.e.

Ω(t1, t2) =

 t2

t1
H(τ1)dτ1

+
1
2

 t2

t1
dτ1

 τ1

t1
[H(τ1),H(τ2)]dτ2

+
1
6

 t2

t1
dτ1

 τ1

t1
dτ2

 τ2

t1


[H(τ1), [H(τ2),H(τ3)]]

+ [H(τ3), [H(τ2),H(τ1)]]

dτ3 + · · · . (8)

An implementation of the expansion (8) assumes truncation
of the infinite series, summation of the obtained finite series to
obtain operator Ω(t1, t2), and use of the latter for the propagator
U(t1, t2) [27]. The Floquet operator UT can then be approximated
as a chain

UT = U(0, t1)U(t1, t2) . . .U(tM−1, tM)

≈ e−iΩ(0,t1)/h̄e−iΩ(t1,t2)/h̄ · · · e−iΩ(tM−1,tM )/h̄, (9)

where tk = kh = kT/M , k = 0, . . . ,M . Because all terms on
the rhs of Eq. (8) are Hermitian, the truncated operator Ω(t1, t2)
is Hermitian, and an approximation of any order preserves the
unitary time evolution. The truncated operator in the form (8)
is not very suitable for computations. It is more convenient
to approximate Ω(t1, t2) with lower-order commutator series,
calculated by using values of H(t1/2) at the corresponding
midpoints t1/2 = (t1 + t2)/2 (this is our choice, see Section 3
for more details), or with a commutator-free linear combination
of H(tj), calculated at different times tj ∈ [t1, t2] [24,26].

Chebyshev expansion. The exponentiation of an operator is a
computationally expensive operation [28]. In order to propagate
vector |ψ(t1)⟩ to time t2, the knowledge of the unitary operator
exp(−iΩ(t1, t2)/h̄) is redundant: we need only the result of its
action on the vector, |ψ(t2)⟩ = exp(−iΩ(t1, t2)/h̄)|ψ(t1)⟩. This
can be calculated by implementing the Chebyshev polynomial
expansion of the operator exponent, which is based on a recursive
iteration scheme [25],

|ψl+1(t2)⟩ = −2iΩ̃(t1, t2)|ψl(t2)⟩ + |ψl−1(t2)⟩ (10)

exp(−iϵµt/h̄) φµ(t)} was termed ‘‘Floquet states’’, while the set {φµ(t)} was
termed ‘‘Floquet modes’’, see Refs. [7–9]. In the context of the idea of ‘‘effective
Hamiltonian’’, which is now being actively studied, the convention has been
changed so that the states φµ(t) are now addressed as Floquet states in most of
the publications, see Refs. [15,16,18,20]. Here we stick to the latter convention.
with the initial conditions |ψ0(t2)⟩ = |ψ(t1)⟩ and |ψ1(t2)⟩ =

−iΩ̃(t1, t2)|ψ0(t2)⟩. Here Ω̃(t1, t2) is a shifted and rescaled
operator,

Ω̃(t1, t2) =
Ω(t1, t2)− 1 · (∆Ω +Ωmin)

∆Ω
, (11)

which has all its eigenvalues restricted to the interval [−1, 1] [25].
The spectral half-span ∆Ω = (Ωmax − Ωmin)/2 should be
estimated from the extreme eigenvalues Ωmin and Ωmax of
Ω(t1, t2) operator beforehand.

Finally, the new vector can be obtained as

|ψ(t2)⟩ = e−iβh/h̄
L

l=0

al|ψl(t2)⟩, (12)

where β = ∆Ω+Ωmin and h = t2 − t1. The expansion coefficients
al = 2Jl(r) and a0 = J0(r), where Jl(r) denote the Bessel functions
of the first kind and r = h∆Ω/h̄. The parameter L sets the order
of the Chebyshev approximation by truncating the series (12).
Strictly speaking, this scheme does not preserve the unitary time
evolution. However, its convergence upon an increase of L is fast
so that L can be chosen such that the deviation from unitarity is
dominated by the round-off error [25]. We have found that it is
sufficient to take L ≤ 80 for N . 104 and the further increase of L
does not improve the accuracy of calculations.

3. The algorithm

We restrict the consideration to Hamiltonians of the form

H(t) = H0 + f (t)Hmod, f (t + T ) = f (t), (13)

where f (t) is a scalar function and H0, Hmod are time-independent
Hermitian operators. Most of the currently used models, including
the ones discussed in Section 4, belongs to this class. Eq. (13) is
the simplest nontrivial case of a general situation, H(t) = H0 +

s fs(t) · H(s)mod, with s 6 N2. Our results can be generalized to the
case s > 1 in a straightforward manner.

Next we specify the method to approximate Ω(t1, t2). As
we discussed in the previous section, there exist a variety of
schemes [24]. Our choice is conditioned by the form of the Hamil-
tonian, Eq. (13), and the intention to implement the algorithm on
a parallel cluster. More specific on the last point, we are not con-
cerned about the number of commutators needed to be calculated
(and then stored) as long as they are all time-independent and do
not have to be re-calculated in course of the propagation. Here, at
each k-step of time propagation (where k = 1, . . . ,M) we use the
following approximation of the Magnus expansion [24,29]:

Ωk := Ω(tk−1, tk)

= α1 +
1
12
α3 +

1
240

[−20α1 − α3 + C1, α2 + C2] (14)

so that Ω(tk−1, tk) is accurate up to order O(h7). Specifically we
have

αj =
hj

(j − 1)!
dj−1H(t1/2)

dt j−1
, C1 = [α1, α2], (15)

C2 = −
1
60

[α1, 2α3 + C1],

where the midpoint t1/2 = tk−1 + h/2.
The original formulation demands the calculation of αj on every

time step. For the specific choice given by Eq. (13) this task reduces
to calculations of the midpoint values of the scalar functions f (t),
f ′(t), and f ′′(t) only. These values have to be weighted with
time-independent nested commutators of the forms [H0,Hmod],
[H0, [H0,Hmod]], etc. There are nine commutators for the chosen
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scheme, Eq. (14), but they have to be calculated only once, when
initiating the algorithm.

The choice of the operational basis to write operators H0 and
Hmod is important. We use of the eigenbasis of the operator H0
without going into the interactionpicture; see a relevant discussion
in Ref. [26]. In this basis Eq. (13) assumes the form

ih̄∂t |ψ(t)⟩ = [diag(Ei)+ f (t)H̃mod]|ψ(t)⟩, (16)

where diag(Ei) is a diagonal matrix consisting of the eigenvalues
{Ei} of H0, and H̃mod is the matrix representation of the operator
in the eigenbasis of H0. In numerical experiments with different
periodically-driven nonlinear potentials, we found that this choice
of the basis guarantees stable performance for N > 103. Because
of the diagonal form of the matrix H0, it also simplifies calculation
of the nested commutators.

The algorithm can be presented as a sum of three constituents;
these are

• construction of the time evolution operator U(T ) by propagat-
ing all basis states of a time-dependent Hamiltonian over the
time interval [0, T ];

• use of theMagnus expansion for the propagation of a state with
an explicitly time-dependent Hamiltonian;

• numerical diagonalization of the matrix U(T ).

Note that neither of these three is specific to the Floquet
problem; they are often used, separately and in pairs, in
computational quantum physics.

Operationally, the first constituent can be described as the
propagation of the N × N identity (in the eigenbasis of H0) matrix
over the time interval T . The second one is implemented by means
of a chain of M single-step Magnus propagators over the time
interval h = T/M by performing L Chebyshev iterations, Eqs. (10)
and (12), with the rescaled operator Ω̃k := Ω̃(tk−1, tk), Eq. (11).
In order to apply the rescaling procedure (11), Ωk → Ω̃k, which
is a part of second component, one has to estimate the extreme
eigenvaluesΩmin andΩmax beforehand.We diagonalize thematrix
Ω̃k at five equidistant time instants within [0, T ] interval, and use
the maximal and minimal values from the collected eigenvalues
set asΩmin andΩmax.

Once the propagation stage is completed, the result, i.e. a
N × N unitary matrix UT is diagonalized and its eigenvalues
{ϵµ} and eigenvectors {|φµ(0)⟩}, are written into the output file.
An additional propagation round can be performed, now with
eigenvectors {|φµ(0)} as initial vectors, to calculate characteristics
of the Floquet states. For example, it can be the expectation value
of a relevant operator A(t), averaged over the one period

⟨Aµ⟩T =
1
T

 T

0
⟨φµ(t)|A(t)|φµ(t)⟩dt. (17)

4. Models

To test the algorithm, we employed two Hamiltonian models.
The first is an abstract synthesized model, with the Hamiltonians
H0 and Hmod in Eq. (13) being members of a Gaussian orthogonal
ensemble GOE(N) [30] of a variance σ . Randommatrix theory and
the correspondingmodels remain at the center of research inmany
areas of quantum physics [31], but it is only very recently that two
hitherto disentangled research fields, random matrix and Floquet
theories, started to interact [18,19].

Our second test model consists of a driven N-particle
Bose–Hubbard dimer [32], with the Hamiltonians

H0 = −υ(âĎ1â2 + â1â
Ď
2)+

U
2
(n̂1 − n̂2)

2,

Hmod = (n̂2 − n̂1),

(18)
where âĎj (âj) and n̂1 = âĎj âj are the bosonic creation (annihilation)
and particle number operators for the jth site, respectively.
Parameters υ and U are the hopping rate and one-site interaction
strength. In the Fock basis the Hamiltonian H0 acquires tridiagonal
structure, while Hmod becomes a diagonal matrix. This model
is extensively used in many-body quantum physics, both in
theoretical and experimental domains; e.g., see Ref. [33].

5. Implementation of the algorithm on a cluster

Wenowdescribe the program implementation of the algorithm
on a high-performance cluster. Our C code employs Intel R⃝ Parallel
Studio XE package [34]. The main data structures are complex
double-precision matrices. Computational load is distributed
among cluster nodes by the standard Message Passing Interface
(MPI). On each node computationally intensive operations are
implemented by calling BLAS functions from Intel R⃝ Math Kernel
Library (Intel MKL), in the shared-memory parallel mode [35].

The code consists of three main steps, summarized in the pseu-
docode presented in Algorithm 1. Firstly, the program initializes
MPI, allocates memory, reads the seed data and parameters from
configuration files, and makes necessary pre-calculations before
launching the main cycle: calculates the eigenbasis of the Hamil-
tonian H0 and auxiliary matrices diag(Ei), H̃mod (see Eq. (16)), the
Bessel functions3 Jl(r) needed for the Chebyshev series (see Eq.
(12)), and nine commutators needed for the Magnus expansion
(see Eq. (14)). These computations are performed on each cluster
node. It is important to choose appropriate operational presenta-
tion of the N ×N matrices, starting from the initial identity matrix
1. The most straightforward solution is to split 1 into N vectors,
store the vectors as independent arrays, and then propagate them
independently and in parallel. A more efficient solution is to form
sub-matrices of initial vectors that allows for parallel propagation
and then make use of the third-level BLAS operations, in partic-
ular, matrix–matrix product, instead of a series of matrix–vector
products. As a result, the memory hierarchy is used in a more ef-
ficient way and a substantial decrease of the computation time is
achieved.

The second step involves propagation of the initial matrix 1
over the period T . Because the process is iterative, parallelization
in time is not possible. However, data parallelization is feasible.
The initial identity matrix can be split into P sub-matrices Xj,
j = 1, . . . , P , each consisting of N/P basis vectors, which are then
distributed among P cluster nodes. Therefore, the first N/P rows
are propagated on the first node, the next N/P rows on the second
node, etc. (according to the C row-major order, initial vectors
are written as rows). This idea is sketched in Fig. 1. The scheme
possesses a minor drawback that could be encountered in the case
of a large number of processing units, when splitting could cause a
strong imbalance between the number of columns and rows. This
might affect the performance of thosemathematical kernels,which
were not developed to handle ‘‘thin’’ matrices consisting of a few
rows and thus limits the number of processing units that could
be used to accelerate the propagation. The major advantage of the
scheme, however, is a near uniform distribution of the workload
among the nodes. Together with a constant number of operations
on each step, this allows to estimate the scaling of the overall
computing time with P .

A single propagation step implements the recipe given at the
end of Section 3. By employing MKL functions, we calculate the
matrixΩ(tk−1, tk), Eq. (14). It is computed independently on each

3 The Bessel functions were numerically computed using Fortran intrinsic
function bessel_jn.
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Algorithm 1
1: initialization, memory allocation
2: upload system & method parameters: the number of stepsM per period T , the number of Chebyshev iterations L
3: calculate basis of the stationary Hamiltonian H0, auxiliary matrices diag(Ei) and H̃mod
4: calculate Bessel functions Jl(r), r = r(h), l = 0, ..., L
5: distribute the initial sub-matrices Xj, j = 1, ..., P and precalculated data between P nodes
6: for k = 1 toM do ◃ MPI distributed computational loop
7: calculateΩk := Ω[tk−1, tk] for the current tk = kh = kT/M
8: rescaleΩk → Ω̃k
9: perform L Chebyshev iterations with Ω̃k and update Xj

10: end for
11: combine Xj into UT
12: diagonalize UT
13: save eigenvectors and eigenvalues of UT
14: releasememory
Table 1
Single-node performance: Execution times (in sec) as a function of system sizeN . Multi-threaded version of the code employs all 16 node’s cores on sharedmemory. Columns
ii–iv and vi present data obtained for M = 102 time steps per period and L = 50 Chebyshev iterations on every step. To get an estimate for M = 104 , the times needed to
calculateΩk and perform Chebyshev iterations were extrapolated (last column), see text for more details.

System size, Auxiliary Time of Chebyshev Diagonalization Total time Totaltime
N computations time Ωk calculation iterations time time M = 102 M = 104 , extrapolation

256 0.2 0.4 4.3 0.2 5.1 470.4
512 0.4 1.8 25.3 0.6 28.1 2 711.0
768 1.3 3.2 79.9 1.4 85.8 8 312.7

1024 1.8 8.3 177.3 2.6 190.0 18 564.4
1536 4.3 18.9 559.1 7.3 589.6 57 811.6
2048 8.6 33.2 1 296.6 16.0 1 354.4 133 004.6
3072 23.5 72.1 4 179.2 51.0 4 325.8 425 204.5
4096 49.2 126.0 9 730.5 117.5 10 023.2 985 816.7
5120 100.5 184.3 18 667.2 242.1 19 194.1 1 885 492.6

10240 755.3 919.7 181 722.3 1 857.7 150 0175.1 18 266 809.4
Fig. 1. (Color online) Parallel computation of a Floquet operator UT . The initial
N × N identity matrix 1 is sliced into P rectangular sub-matrices Xj , j = 1, . . . , P ,
each consisting of N/P basis vectors. The sub-matrices are then independently
propagated on P cluster nodes, by using the Magnus–Chebyshev propagation
algorithm. The output vectors form the corresponding columns of the Floquet
matrix.

cluster node, as the small computing time does not justify its
calculation on the distributed memory.

The computationally intensive part of the algorithm is the
approximation of the action of thematrix exponent by Chebyshev’s
iterations, Eqs. (10), (12), and the further updating of propagated
sub-matrices on each cluster node. The mathematical core of
this step is the multiplication of complex double precision dense
matrices (it is implemented with zgemm routine [36]). This part of
the algorithm is fully parallel.
During the final, third step the programassembles sub-matrices
into the Floquetmatrix anddiagonalizes the latter by using amulti-
threaded Intel MKL implementation (we use zgeev routine [36]).
For the matrix size N ∼ 104, a multi-core implementation is
sufficient. Finally, the results of the diagonalization are written to
the output files, the memory is deallocated, and MPI is finalized.

6. Program performance and scalability analysis

In this section we present the performance analysis of the code.
Test runs were performed on the ‘‘Lobachevsky’’ supercomputer
at the Lobachevsky State University of Nizhny Novgorod [37].
We employed up to 64 computational nodes, with the following
configuration per node: 2× Intel Xeon E5-2660 CPU (8 cores, 2.2
GHz), 64 GB RAM, OS Windows HPC Server 2008. We use Intel
MKL, Intel C/C++ Compiler, and Intel MPI from Intel Parallel Studio
XE [34]. All parallel versions of computationally intensive routines
from MKL utilized 16 cores on each node.

To test the performance of the programwe use the synthesized
random-matrix model as a benchmark (see Section 4). In this case,
HamiltoniansH0 and H̃mod in Eq. (16) are generated randomly from
the GOE(N) ensemble of the unit variance σ = 1 [38]. The driving
function is f (t) = cos(ωt)with ω = π [39].

Single-node performance. To test a single-mode performance,
we use M = 102 steps per period and L = 50 Chebyshev
iterations per every time step. The execution time for larger values
of M can be easily extrapolated: due to the linear increase of
operations number with iterations in time, it is sufficient to find
and appropriately scale execution time of the core part of the code,
and add execution time of the other parts, which are independent
of M . Table 1 presents the dependence of the execution time for
different stages on the size of the model system. The last column
of Table 1 presents estimates for the case when the number of
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Fig. 2. (Color online) Total computation time on a single node as a function of the
system size N . The number of steps M per period T is M = 102 with L = 50
Chebyshev iterations per step. Dashed line corresponds to the cubic scaling.

Table 2
Single-node performance. Computational intensity and efficiencymeasures, RN and
R′

N , as functions of the model system size N . Multi-threaded implementation of the
algorithm on a single cluster node (16 cores on shared memory) was used. The
number of steps per period is M = 102 with L = 50 Chebyshev iterations on every
step.

System size, Total time, Operations count, RN R′

N
N TIMEN , in sec OCN , in mln

256 5.1 173612 1.00 1.00
512 28.1 1365642 1.43 1.45
768 85.8 4594916 1.57 1.60

1024 190.0 10875688 1.68 1.72
1536 589.6 36655208 1.83 1.87
2048 1 354.4 86961706 1.89 1.93
3072 4 325.8 292683840 1.99 2.04
4096 10 023.2 693473512 2.03 2.08
5120 19 194.1 1354053950 2.07 2.13

steps is increased 100-fold, i.e. for M = 104. The total calculation
time scales near cubically with N (see Fig. 2). The origin of this
scaling is evident. Namely, as it can be seen from the table, themost
time consuming operation is performing Chebyshev iterations.
The time of a single iteration is determined by the matrix–vector
multiplication, Eq. (10), whose time scales as N2. Their total
number on the propagation round is N (one for every basis vector).
Multiplied, these two factors yield cubic scaling.

To gain a further insight, we analyze single-node performance
in more detail. We consider two metrics, both essentially being
the number of operations per execution time, required to make
calculations for a system of a size N . First, we introduce the
operation rate R and take the value obtained for N = 256 as a unit
measure: RN = (OCN/OC256)/(TIMEN/TIME256), where OCN is the
number of operations and TIMEN is the execution time of the code
for the system of size N .

The number of operations is calculated by Intel R⃝ VTuneTM

Amplifier profiler [40] and returned to CPU performance counter
SIMD_FP_256.PACKED_DOUBLE [41]. This variable contains the
number of issued Advanced Vector Extensions (AVX) instructions
for processing double precision values [42]. The choice of this
counter is based on the fact that almost all computations in our
code occur in Intel MKL BLAS routines. Note, however, that this
estimate of the number of operations is not exact. It is well known
that for the current architectures the profiler tends to overestimate
this number, since it counts the number of instructions issued
but retired. Nevertheless, this estimate is reliable for CPU-bound
processes.

Still, keeping the above said in mind, we introduce the second
quantity, R′

N , substituting the number of operations OCN in the
expression for RN with its estimate N3, according to the scaling
of the most computationally intensive and most frequently called
MKL subroutine zgemm.
Fig. 3. (Color online) Computational efficiency as function of number of cluster
nodes, P , for two values of number of steps per period,M = 102 andM = 104 . The
parameters are N = 5120 and L = 50.

The behavior of R and R′ as functions of N are presented in two
last columns of Table 2. The efficiency increaseswith the size of the
model system, doubling for N = 5120 as compared to N = 256.
That is because of the increasing efficiency in evaluation of larger
matrices of the BLAS computational kernels in the parallel regime.
While the efficiency growswith the systemsize, the execution time
also increases, mainly because the increase of the number of steps
per period needed, and for N = 5120 the estimated calculation
time is about 22 days. Therefore, a multi-node parallelization is
required to decrease the calculation time to more realistic time
scales.

Strong scalability of the algorithm. We next analyze the
performance of the algorithm on a cluster. To benchmark the code,
we use the random-matrix model of the size N = 5120 and launch
the code on P = {20, 21, . . . , 26

} cluster nodes, using the multi-
threaded implementation on each node as before. The results are
summarized in Table 3. Let us note that the time needed for the
diagonalization of N = 5120 matrix is 242.1 sec and does not
depend on P (see column vi in Table 1). Therefore, it is omitted
from the further analysis.

For M = 102 the code accelerates as the number of nodes
increases to 64 (1024 computational cores in total), though the
efficiency of parallelization, defined as the ratio between the speed
up and the number of nodes, drops to 35%. That is because for
this, relatively small, number of integration steps the execution
time of serial parts of the code becomes comparable to that of the
parallel code (Chebyshev iterations), which scaling efficiency, in
turn, is about 86%. Taking into account that practically reasonable
computations require much larger numbers of integration steps, it
is expected that the efficiency of the code will increase with M .
It is confirmed by the results of test runs, see last two columns
of Table 3. In particular, for N = 5120 and M = 104 the
code is executed on 64 cluster nodes in 14.5 h, demonstrating the
efficiency of parallelizing about 57%. Fig. 3 depicts the dependence
of the efficiency on the number of employed cluster nodes.

7. Applications

In this section we test the accuracy of the algorithm employing
two physical model systems which we described in Section 4
above.

The random-matrix model was already specified in Section 6.
For the dimer model, Eq. (18), we use parameters υ = 1 and
U = U ′

·N = 2. The one-site interaction is scaled with the number
of bosons, N − 1, to match in the limit N → ∞ the classical mean-
field Hamiltonian [33,43],

Hcl(z, ν) =
U ′

2
z2 − 2υ


1 − z2 cos(ν)+ 2z · f (t). (19)

The mean-field variables z and ν measure the population imbal-
ance and relative phase between the dimer sites, respectively. The
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Table 3
Scalability analysis: execution times (in sec) of different steps of the algorithm and speed-up factors (in %) are shown as functions of the number of employed cluster nodes.
Each node runs multi-threaded version on 16 cores on shared memory. The parameters are N = 5120 and L = 50.

Number Auxiliary Time ofΩk Chebyshev Chebyshev Total Speed up Total Speed up
of nodes, computations calculation iterations iterations time M = 102 time M = 104

P time time speed up M = 102 M = 104

1 100.5 184.3 18 667.2 1.0 19 194.1 1.0 1 885 457.9 1.0
2 186.4 181.5 9 406.9 2.0 10 017.8 1.9 959 150.8 2.0
4 195.3 180.2 4 670.7 4.0 5 288.8 3.6 485 400.8 3.9
8 173.6 178.7 2 341.2 8.0 2 935.8 6.5 252 305.2 7.5

16 137.1 178.4 1 187.2 15.7 1 744.7 11.0 136 882.6 13.8
32 103.9 178.7 628.0 29.7 1 152.6 16.7 81 006.1 23.3
64 98.9 178.6 338.3 55.2 858.6 22.4 52 053.6 36.2
driving function f (t) = fdc + fac cos(ωt) consists of two com-
ponents, a constant dc-bias fdc = 2.7 and single-harmonic term
fac cos(ωt), with the amplitude fac = 2.5 and frequency ω = 3.
We use the phase space of the mean-field system, Eq. (19) to-
gether with the semi-classical eigenfunction hypothesis [44] and
the concept of ‘‘hierarchical eigenstates’’, as originally introduced
in Ref. [45], to benchmark the program.

Once the diagonalization of UT is completed, the program
initiates an additional round of the T -propagation to calculate the
average energies of the Floquet states, with A(t) = H(t) in Eq. (17).
Finally, the Floquet states are sorted in ascending order according
to their average energies. To quantify the accuracy, we adapt the
idea of the overlap phase error [25] and modify it to account for
the periodicity of the Floquet states,

Σµ = |1 − ⟨φµ(0)|UT |φ̃µ(0)⟩|. (20)

where φ̃µ(0) is the Floquet state calculated with the time step
h̃ = h/2. Note that the error is state-specific.

Fig. 4 presents the error Σµ as a function of number of steps
per periodM and number of system states N . A linear dependence
of log10Σµ on log10 M observed for the random-matrix model is
typical for stepwise integrators. The error convergence with the
number of steps does not saturate up to largest valueM = 10 240.
In the case of the dimer, however, the error does not reveal the
power-law scaling and demonstrate a noticeable saturation. The
difference in the scalings can be attributed to the differences in the
spectral properties of the matrices H0 and Hmod: while in case of
the random-matrix model the level spacings of the Hamiltonians
are characterized by a probability density function (pdf) with
a gap near zero, the level spacings in the energy spectrum of
the integrable dimer Hamiltonian are characterized by a gapless
Poisson pdf [22]. The Floquet ground state |φ1⟩ turns out to be the
most sensitive one to the discretization of the unitary evolution,
see in Fig. 4(a).We use this state to test the dependence of the error
on the size of the model system. Fig. 4(b) shows that the scaling of
Σµ with N is qualitatively similar for the both models.

Before analyzing the performance of the algorithm with the
dimer model, we discuss relations between the accuracy and
the efficiency (scalability) of the algorithm. We have not noticed
any improvement of the accuracy on increasing the number of
Chebyshev iterations per step beyond the limit Lmax = 80. This
allows us to assume that for the used approximation of theMagnus
expansion, Eq. (14), this parameter can be fixed, L = Lmax, for
models with N 6 104. The only parameter left to tune is the
number of integration steps per period,M . From the data presented
with Fig. 4(a), it follows that higher accuracy can be gained for the
random-matrix model by increasingM further. The increase of the
number of integration steps will increase the overall computation
time linearly (for the scalable version of the algorithm).

For the Bose–Hubbard model (cf. Fig. 4(b)) the situation is
different: the accuracy saturates with the increase of M . The
only possibility to increase it further, while remaining within
the algorithm bounds, is to use higher-order approximations of
the Magnus expansion [29]. This would increase the number of
commutators in the expression forΩk; see the discussion after Eq.
(14). However, as before, the commutators have to be calculated
once and then stored. The increase of the computation time will
stem form the summation of a larger number of N × N matrices
when calculating operator Ωk. Although, within our scheme, this
operation is not scalable, see Table 3, it is of a sub-linear order with
respect to N . Therefore, when calculating the Floquet spectrum of
a generic quantum model of the type (13), the increase of the
approximation order seems to be the best default strategy to gain
more accuracy.

Now we turn to the quantum benchmarking of the algorithm
with the dimer model. Following the semi-classical eigenfunction
hypothesis [44,22], the Floquet states of the model in the limit
N ≫ 1 can be sorted according to the location of the state’s
Husimi (or Wigner) distributions [22] in the mean-field phase
space. The latter ismixed in the case of the drivenHamiltonian (19),
so that regular and chaotic regions coexists [46] (see dots on the
Poincaré sections on Fig. 5). If the distribution of a Floquet state
is localized inside a regular region the state is labeled ‘‘regular’’.
When the distribution is located in the bulk of the chaotic sea,
the corresponding Floquet states is ‘‘chaotic’’. The regular regions,
called ‘‘islands’’, are often organized in a hierarchical way, forming
fine island-near-island structures. By increasing the number of
bosons in the dimer, it is possible to resolve these structures
with a higher level of detail. It is important to understand,
however, that a gradual shift towards the semi-classical limit
does not simplify the quantum problem. On the contrary, the
increase of N increases the size of the Hamiltonian matrices,
the number of the basis vectors, and, what is most dramatic,
decreases the mean spacing between quasienergies ϵµ (which for
any N remain restricted to the fundamental band [−h̄ω/2, h̄ω/2]).
Therefore, the accuracy of calculations has to be increased in
parallel, otherwise the numerically obtained Floquet states would
represent incoherent mixtures of actual Floquet states (while the
deviation form the unitarity may remain reasonably small). A
theoretical interpretation of so obtained numerical results might
lead to wrong conclusions.

The accuracy of the scheme can be checked by means of
the chaotic—regular dichotomy. Figs. 5(e) and (f) show Husimi
distributions for two regular Floquet states, while Fig. 5(c) presents
the distribution for a chaotic state. The accuracy can be tested even
more carefully with a third class of quantum states, located on
the interface between chaotic and regular ones. On increasing the
number of states N and approaching the semiclassical limit, the
chaotic Floquet states are expected to fit Berry’s conjecture [44]
and have their Husimi distributions smeared over classically
chaotic regions, while the distributions of the regular Floquet
states become localized on the classical regular tori [22]. These
hierarchical [45] states are supported by the classical phase-
space structures located on the chaotic sea’s offshore around
regular islands. The Husimi distribution of a hierarchical state
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Fig. 4. (Color online) Phase error Σµ , Eq. (20), as a function of (a) number of steps per period M (for N = 1024) and (b) size N of the model system. (a) The dependence
Σµ for the three Floquet states |φµ⟩: (�) groundstate, µ = 1; (▽) the state from the center of the energy spectrum, µ = N/2; (◦) the highest-energy state, µ = N . (b)
The dependence of Σµ on system size N for the Floquet groundstate |φ1⟩ for different number M of steps per period: (◦) M = 102 for the random-matrix model (rm) and
M = 5 · 102 for the Bose–Hubbard dimer (dimer); (▽)M = 103; (�)M = 104 .
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Fig. 5. (Color online) Husimi distributions of Floquet states |φµ⟩ of the dimer model with N = 2499 bosons. Dots show the Poincaré section for the mean-field Hamiltonian,
Eq. (19). Circle-like formations correspond to the KAM tori [46]. (a), (b) and (d) Hierarchical Floquet states of the quantum system: µ = 118 (a), µ = 1024 (b), µ = 101 (d,
zoom). (c) Chaotic Floquet state, µ = 1002. (f) and (g) Two regular Floquet states: µ = 30 (f) and µ = 55 (g).
is concentrated in the immediate exterior of the corresponding
island. These regions are structured by ‘‘semi-broken’’ tori of fractal
geometrical structure, which are called cantori (from ‘‘Cantor’’ +
‘‘tori’’) and are responsible for several nontrivial phenomena such
as anomalous diffusion and non-exponential relaxation [47].

Hierarchical states are exceptional in the sense that their
absolute number increases sub-linearly with the number of states,
Nhier ∼ Nχ , χ < 1, so that their relative fraction Nhier/N goes
to zero in the limit N → ∞ [45]. These states must be carefully
selected from the complete set of N Floquet states.

Hierarchical states are coherent superpositions of many basis
vectors and therefore sensitive to the phase errors. Even a
small mismatch in vector phases blurs the interference pattern
and causes the flooding of the state’s Husimi distribution into
the island. The high coherence of the superpositions is also a
trait of the regular Floquet states but there is an important
difference: quasienergies ϵµ of the hierarchical states are randomly
distributed over the interval [−h̄ω/2, h̄ω/2], while those of regular
and chaotic states tend to cluster in different regions [45]. Because
of that, phases of hierarchical states are most vulnerable to the
error produced by the numerical propagation. We selected several
hierarchical states for the dimer model with N = 2499 bosons and
inspect their Husimi distributions4 [48], see Figs. 5(a), (b) and (d).
The offshore localization and absence of the flooding [see zoomed
distribution on Fig. 5(d)] are clearly visible.

8. Summary and outlook

We have put forward a method to calculate Floquet states of
periodically-modulated quantum systemwithN ≥ 104 states. Our
method is scalable and thereforewell suited for its implementation

4 We use the definition of the Husimi distribution for the many-particle
dimer presented in Refs. [48]. The expression involves summation over the
series of square roots of binomial coefficients of the order N . We did not find
an alternative expression which allows to avoid the term-by-term summation.
Therefore, although we were able to calculate Floquet states for the periodically-
modulated dimer with 10239 bosons, we were not able to go beyond the limit
N = 2500 when plotting the Husimi distributions.
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on parallel computers. Our study uses massively parallel clusters
as efficient devices to explore complex quantum systems far
from equilibrium, thus answering the need of several, actively
developing, research fields involving quantum physics [12–20].

The method particularly allows for improvements, such as
the increase of the order of the Magnus expansion [29] or the
use of commutator-free approximations [26]. With respect to
further acceleration of the code for systems with N ≤ 104

states, there is a promising perspective related to the fact that
the main contribution to the computation time stems from the
BLAS operations. These operations fit GPU and Intel Xeon Phi
architectures very well. By our estimates, even a straightforward
implementation of the most computationally intensive Chebyshev
iteration stage on a heterogeneous CPU+GPU configuration will
result in a three-fold speedup. A yet further speed-up can be
obtained by using multiple accelerators.

There are several interesting research directions for which
the proposed algorithm may serve as a useful starting point. For
example, there is the perspective to resolve Floquet states of even
larger systems by applying the spectral transformation Lanczos
algorithm [49] to the corresponding time-independent super-
Hamiltonians, to name but a few. Because the super-Hamiltonian
elements can be generated on the fly, this idea potentially would
allow to calculate Floquet states of a system with N ∼ 105

states for F ∼ 104 Fourier harmonics, by employing massively
parallel exact diagonalization schemes5 [51]. Note, however, that
the eigenvalues of the Hamiltonian super-matrix (as well as the
respective quasienergies) are merely phase factors and are not
directly related with the properties of the corresponding Floquet
states (average energy, etc.). Therefore, some targeting of the
algorithm to the low-energy states is required. Our method can
be used to locate the relevant Floquet eigenvectors in the quasi-
energy spectrum of a system with a smaller number of states;
combining this with a knowledge of the spectrum scaling with N ,
one can target the Lanczos algorithm.

Another direction relates to the computational physics of open
periodically-modulated quantum systems that interact with a
large environment (heat bath). Asymptotic states of such systems
are affected by the combined effects of modulation and the deco-
herence induced by the environment [52]. Due to linearity of the
model equations describing the evolution of the density matrices
of the systems, the corresponding asymptotic states are specified
by time-periodic density matrices, which can be called ‘‘quantum
attractors’’ [53–56]. There is presently limited knowledge about
the theme of quantum attractors beyond the limit of the rotating-
wave approximation [57,58]. In the Floquet framework, the attrac-
tor’s density matrix is the eigenvector, with the eigenvalue one,
of the corresponding non-unitary Floquet super-operator acting in
the space of N × N Hermitian matrices. This super-operator can
be constructed by propagating the identity operator—but now in
the space of N ×N matrices. The propagation stage can be realized
by using Padé approximation [28] or with Newton or Faber poly-
nomial schemes [59,60], while the question whether there exists a
possibility to generalize theMagnus expansion to dissipative quan-
tum evolution equations remains open. As the number of the basis
matrices scales as N2, the scalability of non-unitary propagation
algorithms is even more required.
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