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Boosting thermoelectric efficiency 
using time-dependent control
Hangbo Zhou1,2, Juzar Thingna3,4,†, Peter Hänggi1,3,4,5, Jian-Sheng Wang1 & Baowen Li1,2,5,6,‡

Thermoelectric efficiency is defined as the ratio of power delivered to the load of a device to the 
rate of heat flow from the source. Till date, it has been studied in presence of thermodynamic 
constraints set by the Onsager reciprocal relation and the second law of thermodynamics that 
severely bottleneck the thermoelectric efficiency. In this study, we propose a pathway to bypass 
these constraints using a time-dependent control and present a theoretical framework to study 
dynamic thermoelectric transport in the far from equilibrium regime. The presence of a control yields 
the sought after substantial efficiency enhancement and importantly a significant amount of power 
supplied by the control is utilised to convert the wasted-heat energy into useful-electric energy. 
Our findings are robust against nonlinear interactions and suggest that external time-dependent 
forcing, which can be incorporated with existing devices, provides a beneficial scheme to boost 
thermoelectric efficiency.

The on-going advances of nano-structure engineering have re-energized the search for high-efficiency 
thermoelectric devices1–3. Till date, almost all studies on thermoelectricity are focused on finding high 
efficiency materials guided by the near equilibrium thermodynamic quantities like the Seebeck coef-
ficient and the thermoelectric figure of merit ZT. These passive searches have reached saturation and 
the thermoelectric efficiency achieved thus far is still insufficient from a practical standpoint4. This is 
primarily because, in the near equilibrium regime, the thermoelectric efficiency is limited by various 
thermodynamic constraints, namely, the second law of thermodynamics which imposes an unavoidable 
entropy flow and the Onsager reciprocal relation that connects the Seebeck and Peltier effects.

In order to achieve high thermoelectric efficiency an active approach to overcome these thermo-
dynamic obstacles is the need of the hour. A possible mechanism overcoming these thermodynamic 
constraints is to apply a time-dependent forcing to drive the system far from equilibrium. Unlike bulk 
materials, many nano-systems, such as quantum dots5,6, single-electron-transistors7, and molecular junc-
tions8–12, can strongly interact with an externally applied control force. These systems have been the sub-
ject of intense theoretical investigations to better understand the mechanisms underlying electron13 and 
heat14,15 transport in presence of a time-dependent control. Several applications such as overall device 
efficiency16, thermopower11, thermal refrigeration14, electron pumping17, and heat pumping18,19 have also 
been studied in these systems to figure out the role of an external control. Despite these advances the 
study of dynamic thermoelectric efficiency has been highly non-trivial due to the breaking of thermody-
namic constraints and the non-unique definitions of the thermodynamic quantities such as the Seebeck 
coefficient and the figure of merit ZT.
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In this study we propose a dynamic theory of thermoelectric efficiency to overcome the present 
thermodynamic limitations such as the Onsager reciprocal relation. The main idea being that a strong 
external time-dependent control breaks the time-translational invariance of the system and pushes it in 
the far from equilibrium regime. This in turn causes a breakdown of the celebrated Onsager symmetry 
relation that allows for the possibility to boost the resulting efficiency. The boost for the  thermoelectric 
efficiency (This efficiency should not  be confused with the overall efficiency; the latter also contains the 
time-dependent, external driving input power in the denominator; then yielding an overall efficiency that  
does not exceed unity.) can be as large as four times the near equilibrium value and vitally a large frac-
tion of the supplied input energy is constructively utilized to enhance the thermoelectric performance. 
Thus, our novel approach makes available an extra knob to engineer high thermoelectric efficiency in 
nano-devices.

Results
Dynamic theory of thermoelectricity.  Since in the far from equilibrium regime the Seebeck 
coefficient and the figure of merit ZT are ill-defined we establish a thermoelectric formalism based on 
the underlying time-dependent currents. This objective can be achieved through the evaluation of the 
Onsager transport matrix which relates the electron or heat current with the temperature or chemi-
cal potential bias. In the conventional, near equilibrium, formalism the transport-matrix coefficients 
are autonomous and constrained by various thermodynamic laws. However, a time-dependent control 
pushes the system far from equilibrium and results in the transport coefficients depending on the entire 
history of the applied protocol. Moreover the presence of a time-dependent control force causes the 
charging and discharging of the nano-system resulting in a time-varying current (known as the displace-
ment current)11,20, which will vanish exactly in the near-equilibrium scenario.

Figure 1.  Efficiency and transport-matrix coefficients for non-interacting electrons. (a) time evolution of 
the thermoelectric efficiency η (normalized by the steady-state efficiency η(0) =  ηss). Inset shows a typical 
set-up studied in this work of a multi-level system (depicted by coloured rings within a central sphere), 
acted upon by an external time-dependent control. (b) the entropy flow direction determined by det(L). (c) 
the Onsager reciprocal relation L21/L12. The control F(t) =  sθ(t −  1), kB(TL +  TR)/2 =  0.1Γ , chemical potential 
μL =  μR =  0, and electron energy ε0 =  0.5Γ . The efficiency ratio is calculated with a bias kBΔ T =  0.02Γ  and a 
load resistance  = /ħR e15 2.
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In order to construe the above mechanism we consider a two-probe transport set-up consisting of a 
system connected to a left and right lead as depicted in the inset of Fig. 1(a). When the system is sub-
jected to an external driving force F(t) the left lead electron and heat current will be functions of the 
thermodynamic forces and the entire history of the applied protocol, F(t′ ), t0 ≤  t′  ≤  t, with the starting 
time t0 of the force protocol of otherwise arbitrary strength. In the linear response regime for the ther-
modynamic forces, namely, temperature difference Δ T/T and chemical-potential difference Δ μ/e small, 
we Taylor-expand the currents at each instance of time as,
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control and is called the displacement current. Since the displacement current doesn’t change sign under 
reversal of thermodynamic forces we can write the above Taylor expansion as a transport-matrix equa-
tion that reads,
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The super-script α takes values L and R corresponding to the leads. The elementary charge e >  0 and 
Δ Lμ =  − Δ Rμ =  μL −  μR (similar interpretation for Δ αT). Above  ⋅( ) [ ]e h

D  represents displacement current 
kernel acting on the history of the applied protocol such that the displacement current ( ) =( ) ( )I t F[ ]e h

D
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For an undriven system, i.e. F(t) =  0  ∀t, the displacement currents vanish, leaving only the biased 
currents, yielding a nonequilibrium steady state. Specifically, the transport matrix reduces to a commonly 
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 and the transport coefficients are obey-

ing the constraints of near equilibrium thermodynamic steady state transport; namely the Onsager recip-
rocal relation are valid, imposing that L21/L12 =  1. Likewise, the second law of thermodynamics ensures 
a positive thermal conductance, or det(L) >  03.

The primary result in this work is to obtain the transport coefficients under a time-dependent control. 
This can be achieved in the following manner: (i) We assume small thermodynamic forces for the tem-
perature bias and the potential difference so that the relationship w.r.t to these forces stays linear. (ii) The 
currents are evaluated (see below) at any time instant t as a function of the two small thermodynamic 
forces. (iii) Then, setting Δ αμ/e =  0 the slope of the electron- (heat-) current w.r.t Δ αT/T yields L12[F] 
(L22[F]) at the time instant t. Likewise, for Δ αT/T =  0 we extract L11[F] and L21[F], respectively. The inter-
cept of the electron (heat) current at time instant t w.r.t Δ αT/T =  0 or Δ αμ/e =  0 yields the contribution 
of the currents solely arising from the arbitrary driving F(t); i.e. the displacement current.

In order to investigate the consequences of the time-dependent control on the thermoelectric effi-
ciency we bias the system with a temperature difference Δ T, connect a load of resistance R  to the 
system and calculate the amount of power consumed by the load. We assume that the load is a pure 
resistor that cannot lead to charging effects due to the passage of electron current. Therefore, the amount 
of current passing through the load is related to the bias and the transport matrix L. After accounting 
for the back-action from the load, the biased electron current reads Ie(t) =  L12Δ T/[T(1 +  M)], where 

= /M R R M is the ratio of the resistances with ≡ −R LM 11
1 being the resistance of the system. Hence the 

thermoelectric efficiency ratio of the heat-work conversion, reads21,22,
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Here, we have suppressed the explicit time-dependence in all terms on the r.h.s. for notational simplicity. 
The numerator I Re

2  is the useful power on the load while the denominator is the heat extracted per unit 
time from the hotter lead. The extracted heat consists of three contributions due to the entropy flow 
det(L)RMΔ T/T, the Peltier heat due to the electron current L21RMIe, and the Joule heating term I Re M

2  
with the factor − 1/2 indicating that half of the heat flows back to the hotter lead. In the nonequilibrium 
steady state this efficiency ratio will reduce to the standard formalism2 where, det(L)RM/T represents the 
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thermal conductance, L21RM is the Peltier coefficient, and the efficiency is directly related to the figure of 
merit ZT provided that the Onsager reciprocal relation L21/L12 =  1 is satisfied. Since all the transport 
matrix coefficients [forming the numerator and denominator of Eq. (4)] are affected by the time-dependent 
control, a priori it is not clear if the control will have an overall enhancing or diminishing effect on the 
dynamic thermoelectric efficiency. Equation (4) represents one of our main results, generalizing the 
conventional thermoelectric theory to a dynamic one which can be applied to far-equilibrium 
non-steady-state regime. Note that the thermoelectric efficiency is defined in the absence of the 
time-dependent, external driving input power in the denominator. In distinct contrast to an overall effi-
ciency which would contain this additional driving input power, the thermolelectric efficiency in Eq. (4) 
can formally exceed unity, cf. in Fig. 1.

Non-interacting electrons.  As a proof of concept, we first consider a single electron quantum dot 
in the regime of strong Coulomb blockade. The time-dependent external force F(t) causes charging and 
discharging on the system and the total Hamiltonian reads,

= + + ( ) + , ( )H H H H t H 5L R S T
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is the tunnelling Hamiltonian between the quantum dot and the leads, and the Hamiltonian of the 
quantum-dot system is

ε( ) = + ( ) . ( )†H t F t d d[ ] 6S 0

This quantum resonant model has been extensively studied in the context of single-electron-transistors6,7,23–25, 
molecular junctions26, and nano-wires27,28. The energy level of the dot can be controlled either via a 
time-dependent gate voltage11, or via long-wavelength electromagnetic fields such as microwaves12,29 or 
lasers28,30.

The result of heat-work conversion efficiency ratio of this model under step-like control is shown in 
Fig. 1. From Fig. 1(a) we detect large enhancements in the efficiency, upto a factor of 4 compared to the 
steady-state efficiency, as soon as the step-pulse is applied. After some relaxation time the values even-
tually saturate to the new steady state. Interestingly, the magnitude of L21/L12 [Fig. 1(b)] shows a profile 
similar to the efficiency ratio indicating that the breakdown of the Onsager reciprocal relations L21/L12 ≠ 1 
and the efficiency enhancement are closely intertwined. Physically, when L21 is not bounded by L12, the 
contribution of the particle flow to the heat current can increase under the influence of external driving. 
As a result the efficiency is boosted via increasing the useful heat (due to particle flow) while limiting 
the waste heat (due to entropy flow). To substantiate this claim we plot det(L) in Fig. 1(c). Because the 
det(L) is proportional to the entropy flow we see that it decreases in the regime of efficiency enhance-
ments. Importantly, for sufficiently strong driving (s =  0.5Γ ) we detect a regime with negative values for 
det(L), indicating a reversal of the entropy flow, even though the overall heat current still flows from the 
hot lead to the cold one.

Harvested power.  Supplementary to the colossal boosts in the heat-work conversion efficiency it is 
also crucial that most of the input power due to the control force is properly utilized to enhance the 
heat-work conversion efficiency. We analyse this using the harvested and input power
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where wharvest is the power harvested from the enhancement of efficiency that is defined as the difference 
of the useful power consumed on the load under time-dependent control (first term) and the power from 
the steady-state contribution (second term). 

w input is the input power via the external control force, 
where the factor, − F(t)/e, represents the input voltage and ( )I t2 e

D  is the total displacement current.
Figure  2(a) depicts that the harvested power can be much larger than the input power due to the 

control forcing. This feature occurs, even in the linear response regime, in the system-parameter regime 
when the steady-state efficiency is low, due to the low electron conductance, but the Seebeck coefficient 
itself remains large. Thus, the presence of time-dependent control constructively facilitates the movement 
of electrons and boosts the thermoelectric efficiency.

Resistor-capacitor model.  In order to better understand the displacement current in the high tem-
perature and weak control limit, we propose an elementary resistor-capacitor model as illustrated in the 
inset of Fig. 2(b). The time-dependent control is acting on the gate with capacitance Cg which can induce 
charging or discharging of the capacitor. This variation leads to a current generation which flows from 
the capacitance towards the leads which are represented as the two sink sources (the ground connection) 
in the circuit. The current generated solely depends on the time-dependent control and does not require 
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a thermodynamic bias between the leads for its existence and is known as the displacement current 
( )I te

D . Due to dissipative effects the current experiences a total resistance R while flowing from the 
capacitor to the leads.

In case of the quantum dot model with non-interacting electrons subjected to a step-like gate control 
F(t) =  sθ(t −  t0) the solution reads,

θ( ) = − ( − ) . ( )
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eR
t t e

2 8e
D t t

0
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The intuitive picture for the displacement current above is based solely on circuit law considerations. 
Hence a priori it is not clear if such a model is able to describe correctly a fully quantum mechanical 
system. In order to justify that this indeed is the case we use the parameters R and τ from Eq. (8) as 
variables and fit the equation to the fully quantum mechanical displacement current obtain via nonequi-
librium Green’s function. Figure 2(b) shows the NEGF calculation as a solid line and the fit via the red 
dots. The perfect fit gives us the parameters τ ≈  ħ/Γ  which further strengthens our resistance-capacitance 
circuit model. This is because in an open dissipative quantum system one expects the relaxation time of 
the system to be inversely proportional to the sum of the coupling strengths of each lead Γ −1 see Ref. 31. 
Thus, the verification of our resistance-capacitance model gives an intuitive picture of the displacement 
current.

Electron-phonon interaction.  One of the main challenges for experimental devices to obtain 
enhanced efficiencies is the unavoidable presence of nonlinear interactions mainly arising due to 
the involvement of stray phonon modes32, which can drastically alter the thermoelectric efficiency. 
Hence, we consider a quantum dot interacting with a single phonon mode giving rise to the following 
electron-phonon interaction Hamiltonian,

ε ω λ( ) = + ( ) + + ( + ). ( )† † † †H t F t d d a a d d a a[ ] 9S 0 0

Here, a† and a are creation and annihilation operators of the phonon, ω0 is the phonon angular fre-
quency, λ is the electron-phonon interaction strength and F(t) represents the time-dependent control of 
the coherently driven quantum dot. The model manifests itself under various physical scenarios like in a 
nano-mechanical resonator6,7,33, molecular junction26,34, and standard lattice vibration model35. Recently 
it was shown that a small amount of nonlinearity in this model can greatly suppress the steady-state 
efficiency33. Thus, the model serves as a perfect test bed to establish the robustness of our approach.

In Fig. 3 we depict the results for the interacting electron model. In case of the delta shape and square 
wave driving we modulate the system for sometime and then let it relax to reach its nonequilibrium 
steady state. Clearly the enhancement in the efficiency (as seen from the bottom row of Fig. 3) is observed 
even for a relative strong nonlinear interaction λ as long as the system dynamics is time-dependent. The 
long-time limit, when the transient effects are wiped out, is easily recovered for the delta shaped and 

Figure 2.  Power harvested, displacement current, and the intuitive resistor-capacitor model. (a) the 
time-dependent harvested power (black solid line) and the input power due to driving (red dashed line). The 
system is a non-interacting electron model with load  = /ħR e50 2 and biased with kB(TL +  TR)/2 =  1Γ , 
Δ T =  0.2Γ , μL =  μR =  0. (b) displacement current (solid line) and the fit using the resistance capacitance 
model (red circles) for non-interacting electron model with TL =  TR =  1Γ , μL =  μR =  0, and t0 =  1ħ/Γ . The 
fitting parameters are R =  11.6ħ/e2 and τ =  1.06ħ/Γ . The common system parameters are: s =  0.001Γ  and 
ε0 =  2.5Γ .
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square wave driving giving η(∞)/ηss =  1 [not depicted in Fig. 3]. Analogous to the non-interacting elec-
tron model, the enhancements are closely related to the breakdown of the Onsager reciprocal relation 
L21/L12 and the second law of thermodynamics det(L). Interestingly, external forcing alone is not suffi-
cient to enhance the systems efficiency as seen from the case with a periodic sinusoidal driving where 
the efficiency even decreases when L21/L12 <  1. Thus, we speculate that although driving is a necessary 
condition to allow the breakdown of stringent constraints it does not suffice to enhance the efficiency of 
the device. One possible sufficient condition for an enhancement is the abrupt variation in the driving 
field which causes a sudden change of the charge occupation in the system. As a result the displacement 
current will be large (fourth row of Fig. 3).

Figure 3.  Efficiency and transport-matrix coefficients for electron-phonon interaction. Plot of the 
entropy flow represented by det(L) (a–c), the Onsager reciprocal relation L21/L12 (d–f), the displacement 
current Ie

D (g–i), and the efficiency ratio normalized by the steady-state η(t)/ηss (j–l) for the interacting 
electron model. The system is subjected to delta pulse driving δ( ) = ∑ Ω( − )F t s t t[ ]n n  with Ω tn =  {1, 5, 7, 
9, 11} (a,d,g,j), multi-step driving F(Ω t) =  s when ∪Ω ∈ , ,t [1 3] [5 7] and F(t) =  0 elsewhere (b,e,h,k) and a 
periodic sinusoidal drive F(t) =  2sθ(t −  t0)sin(Ω πt) (c,f,i,l), where Ω = Γ/ħ10  and = . /Γħt 0 10 . Other 
parameters are kB(TL +  TR)/2 =  1Γ , Δ T =  0.2Γ , μL =  μR =  0, Γ L =  Γ R =  Γ /2, ε0 =  2Γ , ω0 =  10Γ , λ =  3Γ , and 
s =  1Γ .
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Discussion
The performance of modern thermoelectric devices is measured in terms of its efficiency to convert waste 
heat energy into useful electric energy. Till date, most efforts towards efficiency enhancement are based 
on the search for suitable materials guided by the near-equilibrium thermodynamic constraints. These 
efforts have led to considerable improvements in the heat-work conversion efficiency but the quest for 
commercially feasible efficiency has been futile so far.

In the present study, we provide an active and complimentary approach to the material search avenue. 
This is achieved by introducing a time-dependent control which pushes the system far from equilibrium 
and provides a rich playground without thermodynamic limitations. The control force can be fused with 
existing high efficiency devices and would allow us to further boost their efficiency by a factor of 4. The 
enhancements are robust and persist even in presence of nonlinear interactions indicating its usefulness 
in existing experimental set-ups.

Thus, our work opens up a whole new arena where we shift attention away from a material design 
perspective and focus on the non-trivial far from equilibrium regime which leads to smart device design. 
Overall the method presented herein provides a rigorous stepping stone which can have wide ranging 
impact for fields such as thermoelectric cooling36–39, solar thermoelectric generation40–42, and can be 
extended to the field of spin caloritronics to efficiently pump spin-currents using thermal gradients43.

Methods
Nonequilibrium Green’s function.  For non-interacting electron in a quantum dot under step-like 
control with F(t) =  sθ(t −  t0) within the wide-band approximation, i.e., 
ε δ ε εΓ ( ) = ∑ ( − ) ≡ Γ/α α

α
∈ V 2k k k

2  (α =  L, R), an exact solution of the electron and heat currents can 
be obtained using the Landauer formalism via the NEGF approach11,44, reading
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Using Eq. (10) it is possible to obtain the displacement current,

∫
ε
π

ε ε ε= −
Γ

( , ) +
Γ

( , ) ( ),
( )−∞

∞

ħ { }I d A t A t f
2

Im[ ]
2 13e

D 2

by setting fL(ε) =  fR(ε) =  f(ε). For step-like driving we obtain the intuitive results where the displacement 
current vanishes in the long time limit. Subtracting the displacement currents from the total currents 
we obtain the biased currents,
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h
B
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2

The biased electron current ( )I te
B  and the first term of the biased heat current ( )I th

B  take the form of the 
Landauer formula which helps preserve the Onsager symmetry. The second contribution to the biased 
heat current arises only due to the presence of an explicit time-dependent, time-reversal breaking control 
that is responsible the breakdown of the Onsager symmetry.
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Given the biased and displacement currents the NEGF formalism allows us to obtain a closed form 
expression of the efficiency η(t) in the weak system-bath coupling and weak control limit. In order to 
achieve this goal we first simplify the efficiency given by Eq. (4) for maximum power output, i.e., M =  1 
and negligible Joule heating (small Δ T) to obtain

η ( ) =
−

∆
.

( )
t

L
L L L L

T
T4 2 16

12
2

11 22 12 21

The weak coupling limit (see Append. of ref. 45) transforms the transmission |A(ε, t)|2 to a delta function 
and subsequently keeping only leading order terms in the control strength s helps obtain the currents 
analytically in a closed form. These currents are then used to obtain the transport matrix coefficients L11, 
L12, L21, and L22 that result in the efficiency

η η
η

ε
η( ) = +

∂

∂

( − )

( − )
+ ( − )

∆
,

( )


t s
f t t

f t t
s t t T

T 17ss
ss

0

2 0

1 0
0

where ηss is the steady-state efficiency at time t =  0 and η( − )


t t0  can be expressed in the high tem-
perature limit as,

η
π
µ ε

( − ) =
( − )

( − )

( − )
.

( )

−Γ( − )/( )



ħ

ħ

t t
t t e

f t t2 18

t t

0
0

0
2

1 0

0

The two functions are, ( − ) = + ( − )−Γ( − )ħf t t e f t tt t
1 0 2 0

0  and ( − ) = ( − )Γ( − )/( )ħf t t e1 t t
2 0

2 20 . Their 
ratio, f2(t −  t0)/f1(t −  t0), monotonically increases from 0 to 1 as (t −  t0) →  ∞, thus providing no temporal 
boost in the efficiency arising from the second term in Eq. (17). The third contribution, i.e., η∝ ( − )


t t0 , 

arises due to the contribution that breaks the Onsager symmetry in the biased heat current [second term 
of Eq. (15)] and is responsible for the temporal boost in the thermoelectric efficiency (in the leading 
order of s). This further strengthens our claim that it is indeed the breaking of Onsager symmetry that 
leads to a boost in thermoelectric efficiency.

Equations of motion for the resistor-capacitance model.  We further elucidate on the 
resistor-capacitor model as shown in the inset of Fig. 2(b). Consider that the capacitor has a charge Q 
then the voltage on its upper plate will be the sum of the voltage across the resistances and the voltage 
across the capacitor46, namely,

−
( )
=

( )
+ ( ) .

( )

F t
e

Q t
C

I t R2
19g

e
D

Above since R is the total resistance, 2R will be the resistance of each resistor giving the voltage across 
each resistor as ( )I t R2 e

D . Differentiating the above equation with respect to time we obtain

τ
( ) + ( ) + ( ) = , ( )

 I t I t
eR

F t1 1
2

0 20e
D

e
D

where τ =  RCg represents the relaxation time of the leads. Above since the displacement current is due 
to the charging or discharging of the gate capacitance Cg we have used ( ) = ( )Q t I t2 e

D  as the total dis-
placement current. The solution to the differential equation reads

 ∫( ) = = − ′ ( ′) , ( )
τ( ′− )/

I t F
eR

dt F t e[ ] 1
2 21e

D
e
D

t
t t

0

The protocol F(t) begins at t0 (0 <  t0 <  t) and ends at time t and the displacement current depends on 
the complete history of the protocol.

Quantum master equation.  Due to the presence of nonlinear interactions in the system we resort 
to the time-dependent quantum master equation formulation to evaluate the currents. The formulation 
treats the nonlinear interactions exactly under an arbitrary forcing at the cost of a weak system-lead 
coupling. Following the standard scheme47 the quantum master equation for the reduced density matrix 
ρ(t) of the system reads

∑
ρ

ρ ρ= − ∆ ( ) + ,

( )
,

, ′

′ħ ħ

d
dt

i t 1

22

nm
nm nm

i j
k k

nmk
ijk

ij2

where the relaxation four-tensor
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 ∑δ=




 ( ) − ( )





 + . ..′

′ ′
,

′ ′Y Y W t Y Y W t c cnmk
ijk

ni
k

jm
k

ni
kk

j m
l

nl
k

li
k

li
kk

Above Δ ij(t) =  Ei(t) −  Ej(t) is the energy spacing with Ei(t) as the i-th instantaneous eigenenergy. Since 
the external time-dependent driving only modulates the eigenenergies, and does not affect the eigenstates 
of the system Hamiltonian, we use the eigenstates of the static Hamiltonian as our basis. The transition 
matrix ∫( ) = ′ ( − ′)∫′

−∞
− ∆ ( ″) ″/ ′

′
ħW t dt e C t tij

kk t i t dt kk
t
t

ij , with the correlation function Ckk′(t) =  〈 Bk(t)Bk′(0)〉 . 
The vector-operators Y and B belong to the system and lead Hilbert space and appear in the tunnelling 
Hamiltonian; i.e., Y =  {d, d†} and = ∑ ∑ , ∑ ∑α α

α
α α

α
= , ∈ = , ∈

†B V c V c{ }L R k k k L R k k k  with Yk (Bk) denoting 
the k-th component of the Y (B) vector. The operator B(t) is the free-evolution of B with the lead 
Hamiltonian HL +  HR.

Generalizing the nonequilibrium steady-state formulation33,45,48 to encompass time-dependent control 
F(t) we obtain the expression for currents as,

∑ ρ( ) = 
 ( ) ( )  , ( )

( )
, ′

′
( )
′

ħ { }I t t Y Y t2 Im Tr
23

e h
L

k k

k k
e h
kk

2

where the electron or phonon hopping rates  ′( )e h
kk  are defined, similar to the master equation, using the 

current-lead correlation functions C B( ) = 〈 ( ) ( )〉( )
′

( )
′t B t 0e h

kk k
e h
k , where the operators 

 = ∑ , − ∑∈ ∈
†e V c e V c{ }e k L k

L
k k L k

L
k  and  ε µ ε µ= ∑ ( − ) , −∑ ( − )∈ ∈

†V c V c{ }h k L k L k
L

k k L k L k
L

k . Once 
we know the time-dependent reduced density matrix of the system, we can deduce the displacement 
current as the time-derivative of the average charge on the dot as, ( ) = − /I t Q 2e

D , where Q =  eTr[ρ(t)d†d].
The above quantum master equation formalism is valid in the weak system-bath coupling limit 

and holds true for arbitrary control strength s and electron-phonon interaction strength λ. Moreover, 
we do not resort to the secular (or rotating wave) approximation and the master equation is kept 
semi-non-Markovian since time t is explicitly present in the integral-limits of the transition matrix. 
The approach is robust to deal with nonlinear interactions exactly and thus allows to obtain the 
transport-matrix coefficients for strongly nonlinear systems.
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