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Abstract

The fluctuation dissipation theorem is at the heart of equilibrium statistical mechanics. For a system
away from thermal equilibrium, generalized nonequilibrium fluctuation relations have been found in
recent years. Fluctuation relations reveal the fundamental connection between the response of a phy-
sical system to a weak externally applied force and the fluctuations in the system without the external
force. This ‘focus on’ series summarizes the present state of the art on nonequilibrium fluctuation
relations from classical to quantum statistical physics.

1. Introduction

A central finding of equilibrium statistical physics is that fluctuations inevitably induce dissipation in a system
with many degrees of freedom. This is the content of the well-known fluctuation-dissipation theorem. For a
system at thermal equilibrium, it relates the fluctuations in the system with its dissipative response to sufficiently
weak external perturbations. Historically, this connection was first observed by William Sutherland [1, 2] and
Albert Einstein [3—5] for the relation between the mobility of a Brownian particle, which is a quantity that
measures the response to an external electric field, and the diffusion constant, which is a quantity that
characterizes the fluctuating forces at equilibrium. The resulting Einstein relation between the diffusion
constant and temperature is of fundamental importance.

Yet another form is known as the Johnson—Nyquist relation [6, 7] for thermal charge fluctuations in an
electrical resistor and the electrical resistance of a circuit regardless of any applied voltage. A generalized
quantum relation, consistent with the second law of thermodynamics and the principle of detailed balance, has
been derived by Callen and Welton [8] in form of the quantum fluctuation-dissipation theorem
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Here, the Fourier transform ¥ () of the symmetric equilibrium correlation function of an observable is related
to the Fourier transform @ () of the antisymmetric response function of this observable in thermal equilibrium
at temperature T. It was recognized by Green [9, 10] and Kubo [11] that the fluctuation-dissipation theorem is a
special case of the general linear response theory. This formalism relates the quantities of the system which is
perturbed out of thermal equilibrium only to quantities given at thermal equilibrium.

Clearly, the assumption of thermal equilibrium is often not appropriate, for example, for systems in strong
external fields, charge currents in transport systems with large differences in the electrochemical potential, heat
currents in systems with large temperature gradients, or systems strongly coupled to polar solvents and
disordered media which themselves are in a metastable quasi-equilibrium only.

Itis an interesting question how the equilibrium fluctuation dissipation theorem can be generalized for
nonequilibrium situations. Generalized nonequilibrium fluctuation theorems have been formulated for
classical nonstationary Markov processes [ 12] and for stationary Markov processes away from thermal
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equilibrium [13, 14]. They relate the higher-order nonlinear response to higher-order correlation functions of
stationary nonequilibrium fluctuations. An exact universal nonlinear classical fluctuation relation has been
provided by Bochkov and Kuzovlev [15]. It solely builds on the time-reversal invariance of the equations of
motion and the assumption of a thermally equilibrated initial state. The quantum version was formulated by
Andrieux and Gaspard [16] and led to fundamental insights into the fact that work injected to or extracted from
asystem is not a quantum mechanical operator or observable, because it characterizes a process rather than a
state of the system [17]. An alternative formulation for the statistics of nonequilibrium fluctuations in steady
states has been provided by Evans et al [ 18] and by Gallavotti and Cohen [19]. Moreover, Jarzynski [20] and
Crooks [21] have formulated a corresponding relation for the statistics of work performed by a transient time-
dependent perturbation. The reviews [22—28] give an overview in this field.

In this ‘focus on’ series, we have collected recent works to illustrate the present state of the art on
nonequilibrium fluctuation relations from classical to quantum statistical physics. Fluctuation relations build
on the fundamental connection between the response of a physical system to an externally applied force (which
is not necessarily weak) to corresponding changes of equilibrium state functions. For classical nonequilibrium
systems, the separation of the total entropy production into the adiabatic and nonadiabatic contributions is
useful for understanding irreversibility. For driven open quantum systems, Horowitz and Parrondo [29]
formulate quantum analogues in terms of quantum jump trajectories. A quantum formulation of the local
detailed balance condition is found.

Then, Talkner et al [30] characterize the work which is performed on a system in a microcanonical state by
changes in a control parameter in terms of transition probabilities between eigenstates of the system
Hamiltonians at the beginning and the end of the parameter change. They obey a detailed balance-like relation
from which various forms of the microcanonical fluctuation theorem are obtained. Verley et al [31] identify the
conditions under which a stochastic driving that induces energy changes into a system coupled with a thermal
bath can be treated as a work source. Then, the work statistics satisfy the Crooks fluctuation theorem which is
traditionally derived for deterministic drivings.

A scheme of a calorimetric measurement of work in a quantum system is proposed by Pekola et al [32] for a
Cooper-pair box driven by a gate voltage past an avoided level crossing at charge degeneracy. Then, the
temperature measurement of a resistor (environment) can detect single microwave photons emitted or
absorbed. By this method, the full distribution of work in repeated measurements can be measured, and, thus
quantum fluctuation relations can be directly revealed.

The transient quantum fluctuation theorems of Crooks and Jarzynski restrict and relate the statistics of work
performed in forward and backward forcing protocols. For these theorems, it has been assumed that the work is
determined by two projective energy measurements, one at the end, and the other one at the beginning of each
run of the protocol. Venkatesh et al have found [33] that one can replace these two projective measurements
only by special error-free generalized energy measurements with pairs of tailored, protocol-dependent post-
measurement states that satisfy detailed balance-like relations.

A nonthermal environment also can yield to nonequilibrium fluctuation relations. For the exactly
analytically solvable case of a quantum harmonic oscillator in a nonthermal harmonic environment, Pagel et al
[34] have derived nonequilibrium fluctuation relations. Moreover, Campisi [35] uses the canonical distribution
of wave functions, as originally proposed by Schrodinger, to derive novel fluctuation relations. They do not
involve any quantum collapse, but involve instead a notion of work as the change in the expectation value of the
Hamiltonian.

Rahav and Jarzynski [36] argue that fluctuation theorems can be understood in terms of the equilibrium
dynamics of a larger supersystem which contains both the system of interest and its thermal surroundings. By
applying the principle of detailed balance to underlying rare events, they are able to recover the fluctuation
theorem in both its transient and steady-state formulations.

Nonequilibrium entropy production can also be related to the information exchange between two stochastic
systems. This is shown by Sagawa and Ueda [37] in terms of a general formula that decomposes the total entropy
production into the thermodynamic and informational parts. Nonequilibrium equalities such as the fluctuation
theorem in the presence of information processing are the result.

In contrast with the understanding of fluctuation symmetries for entropy production, Maes and Salazar [38]
develop corresponding ideas for the time-symmetric fluctuation sector. They provide time-symmetric
fluctuation symmetries in boundary-driven particle systems such as the open Kawasaki lattice gas and the zero-
range model.

When a current flows across an open system in contact with several reservoirs at different temperatures and
chemical potentials, or when a system is driven by time-independent external mechanical forces, general
nonequilibrium fluctuations also arise. Gaspard [39] derives multivariate fluctuation relations for all the
currents in the presence of several reservoirs at different temperatures and electrochemical potentials, or driven
by time-independent external mechanical forces. A nonequilibrium quantum transport setup is also analyzed by
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Zazunov et al [40]. Several helical Luttinger liquid nanowires are coupled to a joint mesoscopic superconductor
with finite charging energy. Including the Majorana bound states formed near the ends of superconducting wire
parts, they derive and analyze the Keldysh phase action describing non-equilibrium charge transport properties
of the junction.

A modulated nonlinear oscillator also provides the framework to study quantum fluctuations far away from
thermal equilibrium. Peano and Dykman [41] address a simple but important nonequilibrium effect—
quantum heating. Here, quantum fluctuations lead to a finite-width distribution of a resonantly modulated
oscillator over its quasienergy (Floquet) states. They analyze large rare fluctuations responsible for the tail of the
quasienergy distribution and switching between metastable states of forced vibrations.

An effectively driven nonequilibrium system is furthermore studied by Pigeon et al [42] in the form of three
interacting spin —1/2, one of which is coupled to a harmonic oscillator. This effectively modulates the
interactions between all of them. By using the large-deviation theory, they find a Gallavotti-Cohen symmetry in
the dynamics of the system which involves a global rather than alocal degree of freedom and which gives rise to a
fluctuation relation associated to the quantum jump rate.

An efficient numerical method for obtaining Markovian equations of motion for a many body system of
interacting coarse-grained variables and additional fluxes is introduced by Kauzlari¢ et al [43]. The system of
Markovian equations of motion approximates Mori’s exact non-Markovian generalized Langevin equation and
is easy to solve by computer simulation.

We believe that the research assembled in this ‘focus on’ series provides an exciting account of the topic of
nonequilibrium fluctuation relations. Such a collection can only be made possible by the contributing authors
and we use this opportunity to thank them for their submissions. Likewise, we are grateful to all the reviewers for
the their careful assessment of the manuscripts and their insightful advice during the review process. Finally, we
are indebted to the publisher Elena Belsole for her support in launching this ‘focus on’ series.
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