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The other QFT
Peter Hänggi and Peter Talkner

Fluctuation theorems go beyond the linear response regime to describe systems far from equilibrium. 
But what happens to these theorems when we enter the quantum realm? The answers, it seems, are now 
coming thick and fast.

Simply put, fluctuation theorems 
connect the probabilities for quantities 
like work, heat or particle number 

in an experiment to those that would 
be observed in a time-reversed set-up. 
Although these relations only hold when 
both the forward and backward processes 
start out in thermal equilibrium, they apply 
to systems that may be subsequently driven 
arbitrarily far from equilibrium. They 
are not restricted to the linear response 
regime, and instead establish exact relations 
between the non-equilibrium fluctuations 
of these forward and backward processes, 
and the equilibrium quantities of the 
corresponding equilibrium states. Perhaps 
unsurprisingly, research focused on how 
this formalism translates to the quantum 
world has undergone rapid progress in 
recent years, leading to quantum fluctuation 
theorems (QFTs), which open up promising 
new avenues for characterizing the 
nonlinear transport of energy, charge or 
heat for quantum devices and engines.

The response of a system to a disturbance 
can reveal valuable information about the 
state and properties of the system. Many 
experimental techniques use this basic 
effect to determine electrical, magnetic, 
mechanical, thermal and other properties 
of materials by means of specifically 

designed perturbations. Indeed, linear 
response theory provides a convenient 
theoretical description of a system’s time-
dependent reaction to a small perturbation 
in terms of the fluctuations of the 
unperturbed system1–9.

The theory was largely developed in 
the 1950s for systems initially in thermal 
equilibrium, and made a name for the likes 
of Herbert Callen and Theodore Welton1, as 
well as Melville Green2,3 and Ryogo Kubo4. 
These authors extended the notions 
characterizing systems in thermal 
equilibrium to describe small deviations 
from equilibrium. They developed a 
statistical mechanical basis for Onsager’s 
phenomenological theory5,6 of non-
equilibrium thermodynamics. The linear 
response of a system far from equilibrium 
was later related to fluctuations of its 
unperturbed state — and the concept of a 
fluctuation theorem was born9.

Transience and the second law
The transient behaviour of a closed system 
initially residing in thermal equilibrium 
subject to an external, time-dependent 
perturbation for a finite period of time can 
be understood in terms of the work applied 
to the system. Looking at the problem in 
this way led to both the Jarzynski equality10 

and the Crooks relation11, 
both of which 
offer far-reaching 
understanding 
about the properties 
of the statistics 
of work, w, done 
by an external 
perturbation (see 
refs 12,13 and 
the Commentary 
on page 105 for 
more details).

Work belongs 
to the most basic 
notions of physical 
science. And yet 
it deserves to be 
handled with care. 

For a closed system, the work performed 
by an external, time-dependent force is 
determined by the difference between the 
system energies at the end and the beginning 
of the force protocol. Work, therefore is not 
an observable14.

Briefly, the Jarzynski equality describes 
the mean value of the exponentiated work 
applied to a system by the action of a 
force protocol. The equality is expressed 
in terms of the difference, ΔF, between 
the free energies of equilibrium systems 
corresponding to the initial and final force 
values and the inverse temperature, β, as 
〈e–βw〉 = e–βΔF. Here, ΔF is independent of 
the details of the force protocol. But the 
average is performed with respect to the 
distribution of work, pΛ(w), which does 
depend on the force protocol (denoted by 
Λ), and can be related to the analogous 
distribution for the reverse process 
(denoted by Λ

_
) through the Crooks 

relation, pΛ(w) = e–β(ΔF – w)p_
Λ(–w).

It follows from the Jarzynski equality 
that the average work applied to a system by 
any force must be larger than the change of 
the free energy, or at least equal to it. This 
is one way of expressing the second law of 
thermodynamics — as a consequence of the 
Jarzynski equality.

The difference between the average 
work and the change in free energy can be 
thought of as dissipated work. The idea here 
is that if, following completion of the force 
protocol, the system were weakly coupled 
to a heat reservoir with the temperature of 
the initial state and the parameter values 
of the final state, no further work would 
be needed to equilibrate the system. The 
dissipated work is thus the amount of 
energy that would then flow as heat into 
the reservoir.

Enter quantum mechanics
So far, all of this applies just as well to 
quantum systems as it does to classical 
systems. The essential difference arises 
due to the unavoidable impact that any 
measurement has on a quantum system. 
Whereas classical trajectories can be 
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observed — and work determined — 
without any perturbation to the dynamics, 
the same approach cannot be applied 
to a quantum system without seriously 
influencing its dynamics.

Alternatively, the applied work can be 
determined by the difference between the 
outcomes of two energy measurements, one 
at the beginning and one at the end of the 
force protocol. Applying this reasoning, one 
finds that the transient fluctuation relations 
for quantum mechanics take the same 
form as the classical relations14–17. In other 
words, the Jarzynski equality and the Crooks 
relation also apply to quantum systems, 
provided that the initial and final energies 
are determined by so-called projective 
measurements. This means that for a given 
energy measurement only one eigenvalue 
of the relevant Hamiltonians is detected, 
and immediately after the measurement the 
system remains in the eigenstate 
corresponding to the measured 
eigenvalue.

It is well known that 
this idealized picture of 
a measurement — which 
can be traced back to 
von Neumann18 — does not 
always properly describe 
an actual measurement 
device and its outcome. 
However, most other types of 
measurements are incapable 
of recovering the transient 
fluctuation theorems19,20 because 
measurements that are not 
projective typically leave the 
system in a post-measurement 
state that differs from the 
eigenstate corresponding to the 
measured energy value. These 
measurements may even come up with an 
incorrect result for the energy.

It is remarkable, then, that projective 
measurements of arbitrary observables 
performed during the force protocol 
manage to leave the transient fluctuation 
relations unaffected, even though the 
work distributions may be substantially 
altered21,22. A large class of generalized 
intermediate measurements also leaves the 
fluctuation theorems unchanged23.

Prerequisites
There are two essential conditions under 
which transient fluctuation relations hold. 
The first condition requires canonical 
equilibrium states for the forward and 
backward processes. Other initial conditions 
describing microcanonical or grand 
canonical states give rise to modified 
fluctuation relations involving changes 
of thermodynamic entropy and grand 

potential, respectively, rather than free-
energy changes24–26.

Time-reversal symmetry (illustrated on 
the previous page) is the second ingredient. 
Given a wavefunction, ψ(t), running 
forward in time according to a protocol-
dependent unitary operator U(Λ), time-
reversal symmetry relates its backward 
propagation under the action of a time-
reversal operator, Θ, to the time-reversed 
protocol, Λ

_
. Both t and t’ start at 0 and run 

to τ according to the physical arrow of time. 
This symmetry is fulfilled for a large class 
of Hamiltonian systems, which most likely 
covers all physically relevant cases. It relates 
the inverted dynamics that formally runs 
backward in time, like a movie in rewind, 
to a solution of the corresponding time-
reversed Hamiltonian system proceeding in 
physical time27.

Validation and verification
The Jarzynski equality and the Crooks 
relation have been experimentally verified 
for classical systems28–30 and both have been 
used as a theoretical basis to determine 
free-energy differences between different 
configurations of large molecules in 
single-molecule experiments31. With 
continuous control of the end-to-end 
distance of a molecule, for example, 
together with the known stretching force, 
the instantaneously applied power and 
thus the work done on the molecule can 
be determined. By no means can this 
technique be readily applied to quantum 
systems though, because a continuous 
observation would freeze the dynamics 
of the quantum system according to 
the quantum Zeno effect32. However, 
an experimental implementation of the 
two-energy measurement scheme applied 
to an ion in a harmonic trap was proposed33 

and recently performed34, thus validating the 
Jarzynski equality.

An alternative means of confirming 
the transient fluctuation relations, 
which circumvents the experimentally 
difficult projective-energy measurements, 
was also recently proposed35,36. In this 
approach, the characteristic function of 
work — the Fourier transform of the work 
distribution — is encoded in the reduced 
density matrix of an auxiliary two-level 
system. This system interacts with the 
actual system with a strength whose time 
dependence is determined by the actual 
force protocol. A successful experimental 
verification of the Crooks relation and 
the Jarzynski equality was reported for 
a nuclear spin of a carbon atom in a 
chloroform molecule37. A similar approach 
using an auxiliary quantum system was 
proposed to test transient fluctuation 

relations for a light mode in 
a cavity38.

Opening up
We have restricted our attention 
to systems that can gain or lose 
energy simply by performing 
work. But this requires that the 
system under consideration 
be well isolated from its 
environment, at least on the 
timescale of the duration of 
the force protocol. If not, the 
environment and its interaction 
with the system have to be 
taken into account. In principle, 
this can always be done in the 
framework of a Hamiltonian 
description of the resulting 
total system.

In this case (pictured left), the total 
system is initially prepared in a canonical 
thermal equilibrium state at inverse 
temperature β. To achieve this initial state, 
a ‘super bath’ with the required inverse 
temperature, β, must weakly couple to the 
total system. The open system (S), with 
Hamiltonian HS(λ(t)), therefore interacts 
with its environment (B), with Hamiltonian 
HB, through Hamiltonian HSB.

Only parameters, λ(t), in the system 
Hamiltonian, HS(λ(t)), can be changed by a 
force protocol such that work is performed 
on the system, but not on the surrounding 
environment. Sooner or later, however, the 
amount of energy applied to the system will 
be shared with the environment through 
their mutual interaction. This means that 
measurements of the energy of the total 
system — including the actual system, the 
environment and interactions between the 
two — determine the work done on the 
open system39.
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The transient fluctuation relations 
hold for the total system provided that it 
initially stays in a canonical equilibrium 
state. Again, the work in these relations is 
performed on the open system. Moreover, 
the free-energy change of the total system 
is given by that of the open system, because 
the free-energy contribution from the 
environment does not change during the 
protocol. This is because the force protocol 
is supposed to act only on the system, not 
on the environment. In practice, this means 
that the Jarzynski equality and the Crooks 
relation are also valid for open systems39,40, 
regardless of the nature of the coupling, 
its strength and the particular nature of 
the environment. 

In the special case of weak coupling, 
the fraction of energy that contributes 
to the interaction between the system 
and the environment can be neglected 
compared with the energy of the system 
and the environment. Hence, during a force 
protocol, a change in the system energy is 
simply the change in the internal energy 
of the open system, and a change in the 
energy of the environment corresponds to 
the exchanged heat. For the joint probability 
distribution of the internal energy change, 
ΔE, and the exchanged heat, Q, a generalized 
Crooks relation holds, from which the 
Crooks relation and the Jarzynski equality 
both follow41. However, neither the 
marginal probability densities of the internal 
energy nor those of the heat are satisfying 
these relations.

The generalized Crooks relation 
for internal energy and heat and an 
equivalent relation for work and heat are 
valid independent of the nature of the 
environment, and therefore also apply to 
open systems undergoing non-Markovian 
dynamics. This requires that the total system 
initially is in thermal equilibrium, and that 
the open system is weakly coupled to its 
environment. A consistent definition of heat 
is currently not known for systems coupled 
strongly to their environment. In particular, 
a means of properly assigning an interaction 
energy to the system and its environment is 
still missing.

Many reservoirs
Our discussion has focused on cases 
in which the environment and system 
initially reside in thermal equilibrium. But 
much richer scenarios emerge when the 
environment consists of distinct reservoirs 
that are not in equilibrium with one 
another — with different temperatures 
and/or chemical potentials for one or 
several particle species. In cases such as 
these, each reservoir is assumed to be large 
enough that together they can maintain a 

steady state in the system for a sufficiently 
long time. And such a steady state will be 
able to carry currents of heat, charge and 
neutral particles.

The so-called exchange fluctuation 
relations connect the probabilities of 
currents flowing in the direction of and 
opposite to the bias imposed by these 
reservoirs21,42,43. Additional time-dependent 
modifications of the central system coupling 
the reservoirs to each other also perform 
work, which can be incorporated into the 
exchange fluctuation relations44,45.

The way from here
As exact relations, both the transient and 
the steady-state exchange fluctuation 
theorems provide deep insight into 
the energy and transport properties of 
processes far from thermal equilibrium. The 
experimental verification of the transient 
fluctuation relations, in particular, is still 
in its infancy — with some promising 
first results.

Classically, a system can be 
continuously monitored — with unlimited 
precision (in principle) and without 
negative effects on the system. But in 
quantum mechanics, a continuous 
observation is enough to freeze the 
dynamics of the system. Therefore, a 
quantum analogue of a classical trajectory 
is not at our disposal and the experimental 
techniques that are employed to verify 
the quantum fluctuation relations and use 
them for determining free-energy changes 
cannot be directly transferred to the 
quantum regime.

On the whole, the quantum fluctuation 
theorems present far fewer problems than 
the experimental challenges we have yet to 
face. However, some theoretical problems 
remain to be addressed, including, for 
example, a clear definition of heat as a 
fluctuating quantity in the presence of strong 
coupling between a system and its reservoir. 
Another issue is related to the fact that the 
present derivation of exchange fluctuation 
theorems is based on an initial product state 
for the system and the different reservoirs. 
A more realistic initial state that also 
incorporates correlations and entanglement 
of system and reservoirs would be 
advantageous, and may even resolve some 
of the present discrepancies between theory 
and experiment.

Further research in this direction will 
not only provide a better understanding of 
non-equilibrium quantum processes, but 
may also help in engineering nanoscopic 
machines, pumps and data-processing 
operations on the quantum level. For these 
applications, a shift of paradigm from 
processes driven by prescribed protocols 

towards controlled quantum processes 
might be useful.

In any case, the quantum fluctuation 
theorems inherit their specific beauty as 
exact results.� ❐

Peter Hänggi and Peter Talkner are in the 
Institute of Physics at the University of Augsburg, 
86135 Augsburg, Germany.  
e-mail: hanggi@physik.uni-augsburg.de

References
1.	 Callen, H. B. & Welton, T. A. Phys. Rev. 83, 34–40 (1951).
2.	 Green, M. S. J. Chem. Phys. 20, 1281–1295 (1952).
3.	 Green, M. S. J. Chem. Phys. 22, 398–413 (1954).
4.	 Kubo, R. J. Phys. Soc. Jpn 12, 570–586 (1957).
5.	 Onsager, L. Phys. Rev. 37, 405–426 (1931).
6.	 Onsager, L. Phys. Rev. 38, 2265–2279 (1931).
7.	 Bernard, W. & Callen, H. B. Rev. Mod. Phys. 31, 1017–1044 (1959).
8.	 Bochkov, G. N. & Kuzovlev, Y. E. Sov. Phys. JETP  

45, 125–130 (1977).
9.	 Hänggi, P. & Thomas, H. Phys. Rep. 88, 207–319 (1982).
10.	Jarzynski, C. Phys. Rev. Lett. 78, 2690–2693 (1997).
11.	Crooks, G. E. Phys. Rev. E 60, 2721–2726 (1999).
12.	Esposito, M., Harbola, U. & Mukamel, S. Rev. Mod. Phys.  

81, 1665–1702 (2009).
13.	Campisi, M., Hänggi, P. & Talkner, P. Rev. Mod. Phys.  

83, 771–791 (2011); erratum Rev. Mod. Phys. 83, 1653 (2011).
14.	Talkner, P., Lutz, E. & Hänggi, P. Phys. Rev. E 75, 050102 (2007).
15.	Kurchan, J. Preprint at http://arxiv.org/abs/

cond-mat/0007360 (2000).
16.	Tasaki, H. Preprint at http://arxiv.org/abs/

condmat/0009244 (2000).
17.	Talkner, P. & Hänggi, P. J. Phys. A 40, F569 (2007).
18.	von Neuman, J. Mathematical Foundations of Quantum Mechanics 

(Princeton Univ. Press, 1955).
19.	Venkatesh, B. P., Watanabe, G. & Talkner, P. New J. Phys.  

16, 015032 (2014).
20.	Watanabe, G., Venkatesh, B. P. & Talkner, P. Phys. Rev. E  

89, 052116 (2014).
21.	Campisi, M., Talkner, P. & Hänggi, P. Phys. Rev. Lett.  

105, 140601 (2010).
22.	Campisi, M., Talkner, P. & Hänggi, P. Phys. Rev. E  

83, 041114 (2011).
23.	Watanabe, G., Venkatesh, B. P., Talkner, P., Campisi, M. & 

Hänggi, P. Phys. Rev. E 89, 032114 (2014).
24.	Talkner, P., Hänggi, P. & Morillo, M. Phys. Rev.  

E 77, 051131 (2008).
25.	Talkner, P., Morillo, M., Yi, J. & Hänggi, P. New J. Phys.  

15, 095001 (2013).
26.	Yi, J., Kim, Y. W. & Talkner, P. Phys. Rev. E 85, 051107 (2012).
27.	Andrieux, D. & Gaspard, P. Phys. Rev. Lett. 100, 230404 (2008).
28.	Liphardt, J., Dumont, S., Smith, S. B., Tinoco, I. & Bustamante, C. 

Science 296, 1832–1835 (2002).
29.	Collin, D. et al. Nature 437, 231–234 (2005).
30.	Douarche, F., Ciliberto, S., Petrosyan, A. & Rabiosi, I. Europhys. Lett. 

70, 593–599 (2005).
31.	Harris, N. C., Song, Y. & Kiang, C‑H. Phys. Rev. Lett.  

99, 068101 (2007).
32.	Misra, B. & Sudarshan, E. C. G. J. Math. Phys. 18, 756–763 (1977).
33.	Huber, G., Schmidt-Kaler, F., Deffner, S. & Lutz, E. Phys. Rev. Lett. 

101, 070403 (2008).
34.	An, S. et al. Nature Phys. 11, 193–199 (2015).
35.	Dorner, R. et al. Phys. Rev. Lett. 110, 230601 (2013).
36.	Mazzola, L., De Chiara, G. & Paternostro, M. Phys. Rev. Lett.  

110, 230602 (2013).
37.	Batalhão, T. et al. Phys. Rev. Lett. 113, 140601 (2014).
38.	Campisi, M., Blattmann, R., Kohler, S., Zueco, D. & Hänggi, P. 

New J. Phys. 15, 105028 (2013).
39.	Campisi, M., Talkner, P. & Hänggi, P. Phys. Rev. Lett.  

102, 210401 (2009).
40.	Jarzynski, C. J. Stat. Mech. 2004, P09005 (2004).
41.	Talkner, P., Campisi, M. & Hänggi, P. J. Stat. Mech.  

2009, P02025 (2009).
42.	Jarzynski, C. & Wójcik, D. K. Phys. Rev. Lett. 92, 230602 (2004).
43.	Andrieux, D., Gaspard, P., Monnai, T. & Tasaki, S. New J. Phys.  

11, 043014 (2009).
44.	Cuetara, G. B., Esposito, M. & Imparato, A. Phys. Rev. E  

89, 052119 (2014).
45.	Campisi, M. J. Phys. A 47, 245001 (2014).

mailto:hanggi%40physik.uni-augsburg.de?subject=
http://arxiv.org/abs/cond-mat/0007360
http://arxiv.org/abs/cond-mat/0007360
http://arxiv.org/abs/condmat/0009244
http://arxiv.org/abs/condmat/0009244



