
PHYSICAL REVIEW B 90, 094517 (2014)

Geometric quantum pumping in the presence of dissipation
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The charge transported when a quantum pump is adiabatically driven by time-dependent external forces in
presence of dissipation is given by the line integral of a pumping field F. We give a general expression of
F in terms of quantum correlation functions evaluated at fixed external forces. Hence, an advantage of our
method is that it transforms the original time-dependent problem into an autonomous one. Yet another advantage
is that the curl of F gives immediate visual information about the geometric structures governing dissipative
quantum pumping. This can be used in a wide range of experimental cases, including electron pumps based
on quantum dots and Cooper-pair pumps based on superconducting devices. Applied to a Cooper-pair sluice,
we find an intriguing dissipation-induced enhancement of charge pumping, reversals of current, and emergence
of asymmetries. This geometric method thus enables one to unveil a plethora of beneficial, dissipation-assisted
operation protocols.
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I. INTRODUCTION

Ever since the discovery of the geometrical phase accompa-
nying adiabatic driving in quantum systems [1], the role that
geometric quantities play in many physical phenomena has
been in the focus of intense research [2–5]. By geometric
quantities we mean here quantities which are determined
solely by the geometry of the path drawn by the changing
driving parameters. The Berry phase is one such quantity:
As a quantum system is adiabatically transported along a
closed cycle in the space of the driving parameters, its wave
function accumulates a phase �G which depends only on the
geometry of the cycle. In particular, �G is the line integral of
a vector field (the Berry connection) over the closed path in
the parameter space. Geometric quantities are indeed common
in other branches of physics besides quantum mechanics, and
all can be expressed as the line integral of some vector field.
The most prominent example is the work output W = ∮

dV P

per cycle of a thermodynamic engine [4,6]. This is perhaps the
simplest example of a geometric pump, namely, a system that
adiabatically converts an ac driving into a dc current (not to be
confused with rectification). Like the thermodynamic engine,
any geometric pump is fully characterized by a vector field F,
which we shall call the pumping field.

Adiabatic pumps are currently in the limelight of topical
experimental and theoretical research. Stochastic pumps [4],
whose mechanisms underlie, e.g., the functioning of Brownian
motors [7], or heat pumps [8] are important examples.
Quantum charge pumps [9–11], based on the adiabatic ma-
nipulation of coherent devices, are another exciting avenue
of research of this kind, also in view of their application to
metrology [12]. Since the pioneering paper by Thouless [9]
many aspects of adiabatic pumping have been elucidated. An
incomplete list includes the scattering theory of (charge, spin,
heat) pumping [9,10,13–15], its extension to include electron-
electron interaction [16–19], the theory of Cooper-pair pump-
ing in superconducting nanocircuits [20–22], and topological

pumping [9,23]. Along with this intense theoretical activity,
a number of important experiments have been successfully
performed [24–27]. In all these cases, dissipation plays an
unavoidable, possibly constructive role, whose features are
yet to be fully understood. This motivated a renewed interest
in studying the combined effects of noise and driving [28] in
the context of adiabatic quantum transport [29–36].

All those prior attempts attacked the problem by solving
the reduced dynamics of the slowly driven open quantum
system within some approximation scheme appropriate to each
specific physical case. This gives the reduced density matrix ρt ,
which is used to calculate the instantaneous current I = TrIρt ,
and by time integration the total pumped charge, out of which
one has to single out the geometric contribution. Here we
pursue instead a geometric approach to calculate the pumping
field F giving the geometrically pumped charge directly. Our
approach is based on the salient observation that, independent
of the specific physical scenario, F is in fact the vector of
linear response coefficients in the adiabatic expansion of the
current [see Eq. (2) below]. To the best of our knowledge, this
result was never exploited before in the context of dissipative
quantum pumping. It brings about two main advantages:
(i) When applied to an open quantum system, it leads to
an exact expression of F in terms of equilibrium quantum
correlation functions, which are calculated at frozen driving
parameters. That is, our scheme makes evident that solving the
reduced dynamics of an undriven system suffices. (ii) Since F
characterizes the geometric pumping fully, once one knows it,
calculating the charge pumped along any cycle is as simple as
doing a line integral. Besides, the curl G = ∇ × F provides
immediate visual information about the geometric features
associated to dissipative pumping. These unveil the possibility
of many previously undetected dissipation-assisted operation
protocols. See our Cooper-pair sluice example below.

Our expression of the pumping field [see Eq. (7)] can be
used in a wide range of cases of experimental interest, ranging
from electron pumps based on quantum dots to Cooper-pair
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pumps in superconducting devices. We illustrate the method
in the latter case. To this end we pursue here the derivation
of a specific equation of motion (EOM) for the calculation
of equilibrium quantum correlation functions at fixed driving
parameters under the sole assumption of weak coupling to a
bosonic bath. We emphasize that the EOM neither rests on a
Markov nor a rotating wave approximation.

II. THEORY

Consider a generic geometric pump, namely, a physical
device that can be externally manipulated by several control
parameters B = (Bx,By,Bz, . . . ) and supports the flow of a

current I. We are interested in the “charge” q = ∫ T
0 dtIt that

is transported by the device as the parameters draw a closed
path C in the parameter space. The symbol T denotes the
time duration of the cycle. In general, the transported charge
has a geometric contribution. The key to singling out the
geometric component of the transported charge is to perform
an “adiabatic expansion” of the current at any generic time t ,
namely, a Taylor expansion of the current I in terms of the
rate of change Ḃ of the parameters:

I = I0 + F · Ḃ +
∑
i,j

Lij ḂiḂj + · · · , (1)

where the coefficients Fi,Lij , . . . are functions of the value B
taken by the parameters at time t . Accordingly, the transported
charge is given by

q =
∫ T

0
I0dt +

∫ T

0
dt F · Ḃ +

∫ T

0
dt

∑
i,j

Lij ḂiḂj + · · · .

(2)

The zeroth-order term is what is customarily referred to as
the dynamical charge. It is due to the fact that charge could
possibly flow even at fixed parameters [37]. Note that the
dynamical charge depends very strongly on the duration of
the cycle: the same cycle operated at half the speed would
result in twice the dynamic charge. The first-order term, in
contrast, is geometric, because

∫ T
0 dt F(Bt ) · Ḃt = ∮

F(B) ·
d B depends only on the geometry of the path. On the contrary,
the higher-order terms are not geometric, because the change of
variable Ḃdt = d B would not suffice to remove the explicit
Ḃ dependence of their integrands. Thus the full geometric
contribution to the transported charge qG is exactly and solely
given by

qG =
∮
C

F(B) · d B =
�

G(B) · d�, (3)

with F the vector of adiabatic linear response coefficients,
and G = ∇ × F its curl. (The double integral is a surface
integral over any surface having C as its contour, i.e., the
Stokes theorem.)

III. THE COOPER PAIR SLUICE

As an application of timely interest, we consider the
Cooper-pair sluice [25] sketched in Fig. 1. The sluice con-
sists of two superconducting quantum interference devices
(SQUIDS) separated by a superconducting island. The system

Φ

ΦL ΦR

ng

kBT

Vg

EJL EJR

φ

By

Bx

Bz

FIG. 1. (Color online) Left panel: Schematics of the Cooper-pair
sluice. Two SQUIDS of tunable Josephson couplings EJL(�L),
EJL(�R) are separated by a superconducting island (green) whose
polarization charge ng is externally controlled by the gate voltage Vg .
The resistor (blue) represents environmental gate noise of thermal
energy kBT . The threading magnetic flux � fixes the overall phase
difference φ across the sluice. Right panel: Typical driving path used
in experiments [25].

is phase biased, with the phase difference φ. The two
SQUIDS with respective Josephson couplings EJL and EJR

can be independently manipulated by controlling the magnetic
flux threading each of them, EJL = EJL(�L) and EJR =
EJR(�R). The island is further capacitively coupled to a gate
electrode controlling its polarization charge in units of Cooper
pairs ng = CgVg/2e, where Cg is the gate capacitance, e < 0
is the electron’s charge, and Vg is the applied gate voltage. The
three driving parameters in this case are Bx = EJL, By = EJR ,
and Bz = EC(1 − 2ng), with EC the charging energy of the
island. We assume the sluice is operated in the regime where
the charging energy EC is much larger than EJL and EJR . In
this regime the sluice can be conveniently modeled as a tunable
two-level system. In the basis of charge states {|0〉,|1〉}, the
Hamiltonian reads H (B) = −B · S, with Sx = [σx cos(φ/2) +
σy sin(φ/2)]/2, Sy = [σx cos(φ/2) − σy sin(φ/2)]/2, and Sz =
σz/2 (σx,σy,σz are the Pauli matrices). The charge flowing
through the sluice is associated to the current operator [38]

I = 2e

�
∂φH . (4)

The sluice is subject to thermal noise at temperature T coming
from the voltage gate.

Depending on the time scale T , there are two distinct
adiabatic regimes: the coherent regime and the dissipative
regime [34]. The first is relevant when the driving time T is
very short compared to the thermal relaxation and decoherence
times but long compared to the transition times �−1

mn(B).
Accordingly, one performs an adiabatic expansion around
the eigenstate |n(B)〉 (as in [39]), and the pumping field
emerges as Fn(B) = 2�

−1 Im
∑

k(�=n) Snk(B)Ikn(B)�−2
kn (B).

For the Cooper pair sluice working close to the ground state,
we obtain, for its curl, the following analytical result:

G0(B) = −e
cos φ(B2 − BxBy cos φ) + 3BxBy

(B2 + 2BxBy cos φ)5/2
B . (5)
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Notice that G0 = −2e∂φ BB , where BB is the ground-state
Berry curvature [38].

In the case when the driving time T is very short compared
to the thermal-relaxation time, instead, the reference state
around which the expansion is performed is the instantaneous
thermal state ρ

eq
B = e−βH(B)/Z(B), with Z(B) the partition

function and

H(B) = H (B) + HE + HSE, (6)

the total Hamiltonian, sum of system, environment, and
coupling Hamiltonians, respectively. The adiabatic linear
response theory developed in Ref. [40] gives then

F(B) = −
∫ 0

−∞
ds

∫ β

0
duTrρeq

B I−i�u
Ss , (7)

where S = −∇H , 
S = S − Trρeq
B S, and the subscripts of

I and 
S denote that these operators are considered in
the Heisenberg representation generated by the full Hamil-
tonian (6) (with fixed B) at the times −i�u and s, respectively.
Note that, as anticipated, the correlation functions of Eq. (7)
are evaluated at fixed B. Clearly, their evaluation does not
involve the solution of a driven open-system dynamics. The
expression (7) is exact and approximations enter only at the
point of evaluating it. Below we present our original method for
its calculation. We emphasize that Eq. (7) cannot be obtained
within the common reduced density matrix approach [41],
because the sole, single-time, reduced density matrix operator
does not suffice for the exact evaluation of two-time quantum
correlations [40,42].

IV. EQUATION OF MOTION FOR THE QUANTUM
CORRELATION FUNCTION

We model the thermal environment of the sluice as a set of
harmonic oscillators [43–45]:

HE =
∞∑

α=1

p2
α

2mα

+ mαω2
α

2
x2

α, HSE = A ⊗ E. (8)

Here xα , pα , mα , ωα , are the oscillators positions, momenta,
masses, and frequency, respectively, A is a system operator,
and E is an environment operator. The evaluation of the field
F(B) in (7) involves evaluating the equilibrium quantum
correlation function at various, but fixed, parameter values
B. The dependence of F on B comes from the parametric
dependence of the total Hamiltonian H(B) on B. To this end
we begin by writing the imaginary-time integrals in Eq. (7)
as real-time integrals [46], F(B) = i

�

∫ ∞
0 ds s 〈[I,
S−s]〉eq

B =
i
�

∫ ∞
0 ds s TrSI (Y−s − Y †

−s), where

Y−s(B) = TrE
[
Us(B)
Sρ

eq
B U †

s (B)
]
, (9)

and TrS(E) denotes trace over the system (environment) Hilbert
space. The operator 
S belongs to the system-Hilbert space,
while Us(B) = e− i

�
H(B)s is the evolution operator with a fixed,

frozen B. For simplicity of notation, we will keep in the
following, the parametric dependence on the fixed B implicit.

Our aim is to obtain an equation of motion (EOM) [47]
for Y−s . We first focus on the auxiliary operator in the
full-Hilbert space Y tot

−s = Us
Sρ
eq
B U

†
s . Next, using the Kubo

identity eβ(A+B) = eβA[I + ∫ β

0 dλ e−λA B eλ(A+B)] we expand
the evolution operator Us up to second order in HSE to obtain

Us = U 0
sU

I

s , (10)

U 0
s = e− i

�
(H+HE )s , (11)

UI

s = I − i

�

∫ s

0
ds1HSE(s1)

− 1

�2

∫ s

0
ds1HSE(s1)

∫ s1

0
ds2HSE(s2), (12)

where HSE(s) = U 0†
s HSEU 0

s is the free evolution of HSE ,
and UI

s is the truncated-evolution operator in the interaction
picture.

Using the above definition of the evolution operator and
differentiating Y tot

−s with respect to s we obtain an integro-
differential equation,

dY tot
−s

ds
= − i

�

[
H + HE,Y tot

−s

] − i

�
[HSE,Y tot(−s)]

− 1

�2

∫ s

0
ds1[HSE,[HSE(s1 − s),Y tot(−s)]], (13)

involving the operator Y tot(−s) = U 0
s
Sρeq U 0†

s . The latter
contains information about the system-environment coupling
due to the presence of ρeq. Hence, we proceed to expand that
up to first order. Using the expansion of the equilibrium density
matrix [48,49]

e−βH

Z
� e−β(H+HE )

ZSZE

[
I −

∫ β

0
dβ1HSE(−i�β1)

]
, (14)

where ZS = TrS(e−βH ) and ZE = TrE(e−βHE ), we obtain

Y tot(−s) = Ỹ
tot

(−s) − Ỹ
tot

(−s)
∫ β

0
dβ1HSE(−s − i�β1),

(15)

where Ỹ
tot

(−s) = U 0
s 
Sρ̃eq U 0†

s with ρ̃eq = e−βH /ZS ⊗
e−βHE /ZE . Using the above expansion in Eq. (13) and keeping
terms only up to second order in HSE , we find

dY tot
−s

ds
= − i

�

[
H + HE,Y tot

−s

] − i

�
[HSE,Ỹ

tot
(−s)]

+ i

�

∫ β

0
dβ1[HSE,Ỹ

tot
(−s)HSE(−s − i�β1)]

− 1

�2

∫ s

0
ds1[HSE,[HSE(s1 − s),Ỹ

tot
(−s)]]. (16)

Tracing over the environment degrees of freedom and
using HSE = σz ⊗ ∑

cnxn = A ⊗ E, we obtain the equation
of motion for the reduced operator Y−s as

dY−s

ds
= − i

�
[H,Y−s] + 1

�2
(R + J ) , (17)

where

R =
∫ s

0
ds1[A,Y−sA(s1 − s)]C(s1 − s)

− [A,A(s1 − s)Y−s]C(s − s1), (18)
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THINGNA, HÄNGGI, FAZIO, AND CAMPISI PHYSICAL REVIEW B 90, 094517 (2014)

J = i�

∫ β

0
dβ1[A,Y−sA(−s − i�β1)]C(−s − i�β1), (19)

where C(s) = 〈E(s)E〉 and we have taken 〈E〉 = 0, which is
valid for an environment composed of harmonic oscillators.
Above, we have replaced Ỹ

tot
(−s) ≡ Y tot

−s in the second-order
terms since we are interested in the weak-coupling regime.
Casting Eq. (17) in the energy eigenbasis of the system
Hamiltonian H , we obtain our central result for the equation
of motion as

dYnm

ds
= −i�nmYnm + 1

�2

∑
k,l

(
Rkl

nm + J kl
nm

)
Ykl, (20)

where ��nm = εn − εm, with εn’s being the systems’ eigenen-
ergies, and

Rkl
nm = AnkAlm[Wnk(0,s) + W ∗

ml(0,s)]

− δl,m

∑
j

AnjAjkWjk(0,s)

− δn,k

∑
j

AljAjmW ∗
j l(0,s), (21)

J kl
nm = AnkAlm[W ∗

ml(s,∞) − eβ��lm Wlm(s,∞)]

− δn,k

∑
j

AljAjm[W ∗
j l(s,∞) − eβ��lj Wlj (s,∞)].

(22)

We recall that the eigenenergies εn, as well as the coefficients
Rkl

nm, J kl
nm, Wnk(0,s), all depend parametrically on B. The

contribution J in Eq. (17) accounts for the salient thermal
equilibrium correlations between system and environment. In
this initial value term J kl

nm we have converted the imaginary-
time integral for the environment correlators to real time
using the standard Kubo scheme (see in Ref. [46]). Note that
the operator Y−s above does not obey the basic properties
of reduced density operator, i.e., it is not trace preserving
[TrS(Y−s) �= 1], and it need not be positive. Hence, it is worth
stressing here that the above EOM is not a master equation
for the reduced density operator. In order to derive the EOM
above, we solely made use of the weak system-environment
coupling approximation. The non-Markovian nature of this
EOM, however, is evident from the s dependence in the W

values, i.e., no Markov approximation has been used.
The matrix Wij (s1,s2) characterizes the properties of

the environment and can be expressed as Wij (s1,s2) =∫ s2

s1
ds e−i�ij s C(s). In order to evaluate the operators W we

would require the correlators C(s), which can be expressed in
terms of the spectral density J (ω) of the environment as

C(s) = �

π

∫ ∞

0
dωJ (ω)

×
[

coth

(
β�ω

2

)
cos(ωs) − i sin(ωs)

]
. (23)

In case of the ohmic spectral density with Lorentz-Drude
cutoff, i.e., J (ω) = η�ω[1 + (ω/ωD)2]−1, the correlator can

be analytically obtained as

C(s) = η�
2

2
ω2

D

[
cot

(
β�ωD

2

)
− isgn(s)

]
e−ωDs

− 2�η

β

∞∑
l=1

νl

1 − (νl/ωD)2 e−νls s � 0, (24)

where sgn(s) = 1 if s > 0, or sgn(s) = 0 if s = 0 and νl =
2πl/(�β) are the Matsubara frequencies. Using the above form
of the correlator, the elements of the W matrix can be readily
evaluated, thus forming the relaxation (R) and the initial
value (J ) tensors. We then propagate the operator Y using
a fourth-order Runge-Kutta propagation scheme with special
care taken of the initial condition. Initially, the operator Y 0 =

STrE(ρeq), where 
S = S − Tr(ρeq S). Consistent with our
weak-coupling approximation, we expand the initial condition
up to second order in the coupling strength, using canonical
perturbation theory [49].

V. RESULTS

Figure 2 presents various density plots of the x component
of the curl field on various planes of constant Bx . The
first column refers to the coherent regime, Eq. (5), whereas
the last two columns refer to the dissipative regime at two
different temperatures, as obtained from solving Eq. (20).
For the dissipative regime, gate noise is modeled through
HSE = σz ⊗ ∑

cnxn with coupling coefficients cn [45]. For
the environment, we chose an ohmic spectral density J (ω) with
a Lorentz-Drude cutoff ωD: J (ω) = η�ω[1 + (ω/ωD)2]−1.
Here η determines the dissipation strength. Printed in black
(red) are the values, qG, of the geometrically pumped charge
on a path encircling the whole graph (black paths) and half
graph (red paths), respectively.

Striking differences emerge between the two regimes. The
most apparent is the emergence of an asymmetry of Gx

under Bz ↔ −Bz, in the dissipative regime as opposed to
the coherent regime. This is due to the fact that the two charge
states |0〉 and |1〉 are differently coupled to the bath. At finite
dissipation the asymmetry is weak for small values of Bz, while
at large Bz values, it even turns (at least approximately) into
an odd symmetry. Interestingly, this can be used to enhance
the pumped charge. Take, for example, paths that enclose half
of the graph, cf. the red paths in Fig. 2. At finite dissipation,
they pump more than the paths enclosing the whole graph,
where upper and lower parts contribute with opposite signs
to the pumped charge. One can pump as much as 3.5 e per
cycle on the red path at Bx = 0.1EC , T = 0.25EC . The same
path would pump as little as −0.5 e in the zero dissipation
case. This evidences the beneficial role of dissipation in
quantum pumping. Dissipation can even give rise to a change
of direction of the current. To conceive this current reversal
we shall recall that the force response 〈
St 〉 is composed
of two terms: the friction γ and a geometric magnetism B
[39,40,50–54]: 〈
St 〉 = −γ · Ḃ − B × Ḃ, respectively given
by the symmetric and antisymmetric component of the conduc-
tance matrix, Kij = − ∫ 0

−∞ ds
∫ β

0 du〈Si
−i�u
S

j
s 〉eq

B , according
to the formulas γij = KS

ij , Bk = −∑
ij εijkK

A
ij /2 [where εijk

is the Levi-Civita symbol and K
S(A)
ij = (Kij ± Kji)/2]. We
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FIG. 2. (Color online) Geometric dissipative quantum pumping qG made visible. The x component of the curl G of the pumping field F on
ByBz planes at various fixed Bx . The plots in the first, second, and third row have Bx = 0.003EC , Bx = 0.05EC , and Bx = 0.1EC , respectively.
The plots in the first column are for the coherent case. The plots in the second and third column are for the dissipative case at η = 0.01, and
have kBT = 0.25EC and kBT = 0.5EC , respectively. The quantities qG, printed in black and red colors, denote the charge pumped on the
respective black and red paths. The phase φ is fixed at the value φ = π/2. Here ε = 0.002 sets the minimal value of By/EC . For EC � 1kB K
the plots correspond to typical experimental ranges.

recall that γ is exactly null in the coherent regime. Noticing
that the current operator, Eq. (4), is a linear combination
of Sx and Sy allows us to express the pumping field F as
a linear combination of the Kij values or, accordingly, of
their symmetric and antisymmetric parts, KS

ij and KA
ij . This

in turn allows us to quantify the fractions of pumped charge
due to geometric magnetism and friction, respectively. We
have found that both contributions are greatly affected by the
presence of the thermal bath but appear to have competing
roles, i.e., they possess opposite signs. On the red paths
in Fig. 2, friction wins over geometric magnetism at finite
η, thus resulting in a different current direction as com-
pared to the coherent case where only geometric magnetism
is present [39].

Each pixel in the graphs presented in Fig. 2 is the result
of a single simulation at the corresponding value B of the
parameters. In Fig. 3 (left panel) we report additional results for
one particular slice of kBT = 0.5EC , and Bx = 0.003EC for
a weaker system-environment coupling strength, η = 0.005,
as compared to the coupling strength η = 0.01 in Fig. 2. The

right panel of Fig. 3 depicts the pumped charge qG for Bx =
0.003EC and η = 0.01 for the red and black paths, as shown
in Fig. 2. As expected, the pumped charge decreases with the
increase in temperature.

VI. CONCLUSIONS

We have presented a geometric method for calculation of
the geometrically pumped charge qG in dissipative quantum
systems. The method is based on the calculation of the
pumping field F and uses the salient observation that the
latter coincides with the vector of linear response coefficients
of the adiabatic expansion of the current [Eq. (2)]. For a
dissipative open quantum system, this is given by equilibrium
quantum correlation functions calculated at fixed driving
parameters [Eq. (7)]. Hence, in contrast to the customary
procedure, they can be conveniently evaluated by solving
an undriven problem. Our method for the calculation of F
consists in deriving an equation of motion for a properly
chosen observable under only the assumption of weak coupling
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FIG. 3. (Color online) The left panel shows the x component of the curl of the pumping field F on the ByBz plane for a fixed Bx = 0.003EC

at kBT = 0.5EC and η = 0.005. The right panel shows the pumped charge qG for the red path (red dots) and the black path (black dots) (see
Fig. 2) for Bx = 0.003EC and η = 0.01. All other parameters are the same as in Fig. 2.

(no Markov approximation, no rotating wave approximation,
no factorized initial condition). The timely application to
the Cooper-pair sluice reveals an interplay of geometric
magnetism and a dissipation-induced enhancement of pumped
charge, the emergence of current reversals, and asymmetries.
All these novel phenomena can a priori be identified visually
upon the mere inspection of the pumping field in control
parameter space. Most importantly, the results presented in our
Fig. 2 can be experimentally checked with current devices and
setups.

ACKNOWLEDGMENTS

The authors thank Jukka Pekola for useful remarks. This
research was supported by a Marie Curie Intra European
Fellowship within the 7th European Community Framework
Programme through the projects NeQuFlux, Grant No. 623085
(M.C.), and ThermiQ, Grant No. 618074 (R.F.), by the COST
action, Grant No. MP1209 through a Short Term Scien-
tific Mission (M.C.); by MIUR-PRIN, “Collective quantum
phenomena: From strongly correlated systems to quantum
simulators” (R.F.), and by the Volkswagen Foundation, Project
No. I/83902 (P.H., M.C.).

[1] M. V. Berry, Proc. R. Soc. London, Ser. A 392, 45 (1984).
[2] R. Resta, Rev. Mod. Phys. 66, 899 (1994).
[3] D. Xiao, M. C. Chang, and Q. Niu, Rev. Mod. Phys. 82, 1959

(2010).
[4] N. A. Sinitsyn, J. Phys. A: Math. Theor. 42, 193001 (2009).
[5] Geometric Phases in Physics, edited by F. Wilczek and

A. Shapere, Advanced Series in Mathematical Physics Vol. 5
(World Scientific, Singapore, 1989).

[6] J. H. Hannay, Am. J. Phys. 74, 134 (2006).
[7] P. Hänggi and F. Marchesoni, Rev. Mod. Phys. 81, 387

(2009).
[8] J. Ren, P. Hänggi, and B. Li, Phys. Rev. Lett. 104, 170601 (2010).
[9] D. J. Thouless, Phys. Rev. B 27, 6083 (1983).

[10] P. W. Brouwer, Phys. Rev. B 58, R10135 (1998).
[11] F. Zhou, B. Spivak, and B. Altshuler, Phys. Rev. Lett. 82, 608

(1999).
[12] J. P. Pekola, O. P. Saira, V. F. Maisi, A. Kemppinen,
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