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Brownian motors in the microscale domain: Enhancement of efficiency by noise
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We study a noisy drive mechanism for efficiency enhancement of Brownian motors operating on the microscale
domain. It was proven [J. Spiechowicz et al., J. Stat. Mech. (2013) P02044] that biased noise η(t) can induce nor-
mal and anomalous transport processes similar to those generated by a static force F acting on inertial Brownian
particles in a reflection-symmetric periodic structure in the presence of symmetric unbiased time-periodic driving.
Here, we show that within selected parameter regimes, noise η(t) of the mean value 〈η(t)〉 = F can be significantly
more effective than the deterministic force F : the motor can move much faster, its velocity fluctuations are much
smaller, and the motor efficiency increases several times. These features hold true in both normal and absolute
negative mobility regimes. We demonstrate this with detailed simulations by resource to generalized white
Poissonian noise. Our theoretical results can be tested and corroborated experimentally by use of a setup that
consists of a resistively and capacitively shunted Josephson junction. The suggested strategy to replace F by η(t)
may provide a new operating principle in which micro- and nanomotors could be powered by biased noise.
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I. INTRODUCTION

Transport occurring in the microscale domain is strongly
influenced by fluctuations and random perturbations. In certain
regimes they can play a dominant role. The typical situation
is then that randomness hampers directed transport with
respect to quantifiers such as the average transport velocity
with particle motions being erratic and thus uncontrollable.
However, a constructive role of both equilibrium and nonequi-
librium fluctuations has since been demonstrated for many
situations with the occurrence of several intriguing, noise-
assisted phenomena such as Brownian ratchets [1], stochastic
resonance [2], molecular motors and machines [3,4], genetic
and biochemical regulatory systems [5], intracellular transport
[6], energy transport [7], to mention a few. Fluctuations and
noise may enhance the average velocity, reverse the natural
transport direction, or induce anomalous transport processes.
The conventional way to transport particles into a desired
direction is to apply a constant force F pointing in this
direction. Here we consider transport in spatially periodic
systems and study a class of systems where both normal and
anomalous transport regimes exist. We show that a stochastic
force η(t) of equal mean value as the deterministic force F

proves to be more effective than the deterministic counterpart.
Our idea and main message is: replace the deterministic forces
by suitable noise, which in some regimes can appear to be
much more effective. The proposal is in some sense universal
and can be realized both in classical and quantum systems; in
condensed matter physics and soft matter physics; in physical
and biological systems. Examples where this idea could be
realized are: motors which are cold atoms in optical lattices
[8], carbon nanotube motors based upon the torque generated
by a flux of electrons passing through a chiral nanotube [9],
motors based on the chaotic quantum dots [10].

The paper is organized as follows. In Sec. II we describe
a mathematical model of the inertial Brownian motor, which
is driven by a time-periodic force and a constant force F

or biased noise η(t). The model has been previously studied

in various aspects and is proved to exhibit a rich diversity
of anomalous transport characteristics [11–14]. Section III
contains a detailed analysis of three quantifiers characterizing
transport processes, namely a long-time average velocity, its
fluctuations and efficiency. Section IV provides summary and
some conclusions.

II. MODEL OF BROWNIAN MOTOR

Modeling systems and understanding their generic prop-
erties discloses which components of the setup are crucial
and which elements may be subrelevant. Here we demonstrate
this with an archetype class of Brownian motors, which is
composed of a minimal number of elements but nevertheless
is able to exhibit a wide class of anomalous transport features,
such as absolute negative mobility (ANM) in a linear response
regime, negative mobility in a nonlinear response regime,
and negative differential mobility [11]. The modeling uses
a classical Brownian particle moving in a one-dimensional
periodic potential landscape. Using dimensionless variables,
the model consists of the following parts [12,13]: (i) a particle
of mass M = 1, (ii) moving in a symmetric, spatially peri-
odic potential V (x) = V (x + 1) = sin(2πx) of period L = 1,
(iii) being driven by an unbiased time-periodic force a cos ωt

with amplitude a and angular frequency ω, and (iv) subjected
to a constant force F . We also consider the counterpart by
replacement of the force F with biased noise η(t). In order to
make a comparison with the case of the deterministic force F ,
we set the mean value of the random force η(t) equal to F ,
namely 〈η(t)〉 = F (Fig. 1). The corresponding dimensionless
Langevin equations therefore read

ẍ + γ ẋ = −V ′(x) + a cos(ωt) +
√

2γDT ξ (t) + F, (1)

ẍ + γ ẋ = −V ′(x) + a cos(ωt) +
√

2γDT ξ (t) + η(t). (2)

Here, the dot and the prime denote a differentiation with
respect to time t and the Brownian particle’s space coordinate
x, respectively. The parameter γ characterizes the friction
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FIG. 1. (Color online) Brownian motors moving in symmetric
periodic structures in the presence of an unbiased harmonic force
a cos ωt and driven by a static, biasing force F can be transported
much faster and in a more effective way when F is replaced by noise
η(t) of equal average bias 〈η(t)〉 = F .

coefficient. Thermal noise due to the coupling of the particle
with thermostat is modeled by symmetric and unbiased δ-
correlated Gaussian white noise ξ (t) with 〈ξ (t)〉 = 0 and
〈ξ (t)ξ (s)〉 = δ(t − s). Its intensity DT ∝ kBT is proportional
to the thermal energy, where T is the bath temperature with kB

the Boltzmann constant. The dimensional version of Eq. (1)
and corresponding scalings of length and time, etc., is detailed
in Ref. [12] for an interested reader. From the symmetry
property it follows that F → −F implies ẋ(t) → −ẋ(t) and
in the following we assume a positive valued force F > 0.
As a model of biased noise η(t) > 0 we choose a random
sequence of δ pulses with random amplitudes defined in terms
of generalized white Poissonian noise [15],

η(t) =
n(t)∑
i=1

ziδ(t − ti), (3)

where ti are the arrival times of Poissonian counting process
n(t) with Poisson parameter λ; i.e., the probability that k

pulses occur in the interval (0,t) is given by the Poisson
distribution Pr{n(t) = k} = (λt)k exp(−λt)/k!, with λ being
the mean number of δ pulses per unit time. The amplitudes
{zi} of the pulses are mutually independent random variables
of a common density ρ(z) and are independent of the counting
process n(t). They are assumed to be exponentially distributed;
i.e., ρ(z) = ζ−1θ (z) exp(−z/ζ ), where θ (z) is the Heaviside
step function. In consequence, all amplitudes {zi} are positive
and realizations of the process η(t) are nonnegative; i.e.,
η(t) � 0. This biased nonequilibrium noise thus has a finite
mean 〈η(t)〉 = λ〈zi〉 = √

λDP with covariance, (〈η(t)η(s)〉 −
〈η(t)〉〈η(s)〉) = 2DP δ(t − s). We introduced the Poissonian
noise intensity DP = λ〈z2

i 〉/2 = λζ 2, where 〈zk
i 〉 = k!ζ k are

the statistical moments of the amplitudes {zi}. We also
assume that the thermal equilibrium fluctuations ξ (t) are
uncorrelated with nonequilibrium noise η(t); i.e., 〈ξ (t)η(s)〉 =
〈ξ (t)〉〈η(s)〉 = 0. The influence of the Poissonian noise param-
eters λ and DP on stochastic realizations of η(t) is presented
in Ref. [14]. Here, we only mention two extreme regimes. The
first limiting case is when both λ and DP are large, then the
particle is frequently kicked by large δ pulses. On the contrary,
when both λ and DP are small, then the particle it is rarely
kicked by δ pulses of small amplitudes.

III. EFFICIENCY OF MOTOR

The most important quantity characterizing a Brown-
ian motor is its directed average velocity. In the asymp-

totic long-time regime it is determined by the relation
[2,16,17]

〈v〉 = lim
t→∞

ω

2π

∫ t+2π/ω

t

E[v(s)] ds, (4)

whereE[v(t)] denotes the average of the actual velocity v(t) =
ẋ(t) over the noise realizations and initial conditions. Although
this average velocity is a main quantifier for the transport, it is,
however, not necessarily of decisive character in attaining an
optimal efficiency for the working operation. For example, a
large transport velocity is of little use if the fluctuations are too
erratic around the average velocity, thus spoiling effectiveness.
We next study the size of the velocity fluctuations. In the
long-time regime these are given by

σ 2
v = 〈v2〉 − 〈v〉2. (5)

Typically the velocity mainly assumes values within the
interval v(t) ∈ (〈v〉 − σv,〈v〉 + σv). If these fluctuations are
very large, i.e., if σv > 〈v〉, it implies that the Brownian motor
can move for some time in the direction opposite to its average
velocity 〈v〉. As a measure of its effectiveness we consider a
common measure, namely its Stokes efficiency εS [18,19]: it is
evaluated as the ratio of the dissipated power Fv〈v〉, associated
with the directional movement against the mean viscous force
Fv = γ 〈v〉, to the input power Pin [20,21]; i.e.,

εS = Fv〈v〉
Pin

= γ 〈v〉2

Pin
= 〈v〉2

〈v2〉 − DT

. (6)

Here, Pin is supplied to the system by all external forces, i.e.,
by both the ac-driving a cos(ωt) and the static force F or the
random force η(t). From an energy balance of the underlying
equations of motion, Eqs. (1) or (2), it follows that Pin =
γ (〈v〉2 + σ 2

v − DT ) = γ (〈v2〉 − DT ),which is always positive
valued [20–22]. We note that this nonequilibrium efficiency
Eq. (6) does not coincide with the thermodynamic efficiency;
e.g., see the discussion on p. 218 of Ref. [3]. Physical intuition
tells us that a decrease of the variance σ 2

v generates a smaller
input power and hence to an increase of the overall efficiency.
Put differently, transport is optimized in regimes that maximize
the directed velocity and minimize its fluctuations.

The deterministic system dynamics, i.e., if DT = DP = 0
in Eq. (1), is extremely rich in complexity [23,24]. Particularly,
main features of the asymptotic behavior are locked states
in which the motion of the Brownian particle is bounded to
one or several spatial periods, chaotic and running states in
which movement is unbounded in space. The latter modes of
transport are crucial for the occurrence of the deterministic
directed transport. Adding the Poissonian noise η(t) or
thermal fluctuations ξ (t) activates a stochastic dynamics for
which transitions between neighboring states are induced and
therefore can result in diffusive or even directed transport.
Since the Fokker-Planck-Kolmogorov-Feller master equation
[15] corresponding to the white noise driven Langevin Eqs. (1)
or (2) surely cannot be solved analytically, we performed
extensive numerical simulations. The specific details of the
employed numerical code can be found in Ref. [14]. Here, we
only mention that all numerical simulations were done by use
of a CUDA environment, which is implemented on a modern
desktop GPU. This scheme allowed for a speedup of a factor
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FIG. 2. (Color online) Normal (left panels) and anomalous (middle panels) transport regimes. Upper horizontal panels: the asymptotic
averaged velocity 〈v〉. Middle horizontal panels: the velocity fluctuations σv . Bottom horizontal panels: the Stokes efficiency εS . All as a
function of the deterministic constant bias F and the random force η(t) modeled here by white Poissonian noise of the mean value 〈η(t)〉 = F .
In right panels, the dependence on the spiking rate λ is shown for fixed mean value of noise 〈η〉 = 0.58. Parameters in the left panels:
a = 27.5, ω = 8.5, γ = 1.194, DT = 10−6, λ = 10. In the middle and right panels they are as follows: a = 8.95, ω = 3.77, γ = 1.546, DT =
0.001, λ = 151.

of the order 103 as compared to a present-day CPU method
[25]. Our so obtained main results are presented next.

A. Normal and ANM regimes

The vast majority of stable running states point into the
positive direction for F > 0. However, there are also running
stable states that on average move in the opposite direction to
F > 0 and the phenomenon of ANM occurs [12]. It can been
shown [14] that similar anomalous transport processes occur
for the system Eq. (2). The negative mobility is generated
by various mechanisms. In some regimes it is caused by
thermal equilibrium fluctuations [12] and ANM is absent for
vanishing fluctuations. In other regimes, ANM can occur in
the deterministic system while noise either destroys the effect
or diminishes its strength [11,13]. Nevertheless, the origin of
ANM is in the noise-free structure of stable and unstable orbits;
see a detailed discussion in Ref. [26].

Not surprisingly, it is practically sheer impossible to probe
numerically the full parameter space {γ,a,ω,DT ,F,λ,DP }.
We have chosen our simulations in regimes that exhibit a most
important and intriguing transport behavior. We start with the
asymptotic average velocity. This transport velocity is reduced
when the deterministic force F acting on the Brownian motor is
replaced by the biased noisy drive η(t), as one naively would
also expect. However, there are regimes in the parameters
space where the use of a random force is more effective. In
Fig. 2, we illustrate two specific cases. The average velocity is
depicted as a function of the mean random force, i.e., the static
bias, 〈η(t)〉 = F . Figure 2(a) corresponds to a normal transport

regime with average velocity pointing into the direction of the
bias. For this specific set of parameters, the average velocity
as a function of the bias F is jagged and not smooth. The
reason is that the chosen temperature is very small and both
amplitude and frequency of the ac-driving are relatively high.
On the other hand, the noisy force η(t) causes a smoothing
of 〈v〉 and in parallel it enhances its magnitude. In particular,
for a bias 〈η(t)〉 ≈ 0.3, the random force increases the average
velocity by a factor of four in comparison to the application of
a deterministic force F .

In Fig. 2(b), the regime of ANM is depicted. The char-
acteristic feature is the emergence of an interval where for
sufficiently large 〈η(t)〉 > 0 the random force can induce
negative average velocity 〈v〉 < 0. Moreover, there exists an
optimal value for the bias 〈η(t)〉 ≈ 0.58 at which the average
velocity takes its minimal value. Most interesting is the fact that
in the case of the stochastic force the minimal value of 〈v〉 is
nearly two times lower than in the corresponding deterministic
case. The origin of this effect is illustrated in Fig. 2(c), where
we depict the average velocity 〈v〉 as a function of the spiking
rate λ for fixed mean value 〈η(t)〉 = √

λDP = 0.58. We see
that depending on the frequency λ of δ pulses we are dealing
with three qualitatively different regimes. For small λ the
Brownian motor is rarely kicked by large δ pulses (because the
intensity DP is large). This situation corresponds to normal,
Ohmic-like transport behavior. On the contrary, when λ is
sufficiently increased and the particle is very frequently kicked
by small δ pulses. In this case the response of the system
is anomalous and similar to the scenario when an equivalent
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static, deterministic force acts [14]. The most interesting effect
takes place for moderate λ. Then the motor operates in the
anomalous regime, moves in the negative direction, and its
average velocity is enhanced as compared to the case of the
static force. There exists an optimal value of λ for which
this effect is most pronounced, namely λ = 151. Moreover,
the spiking rate λ also serves as a control parameter for the
direction of motor movement.

B. Velocity fluctuations

Let us next discuss the relation between the average
velocity and its fluctuations. This study is of relevance for
the optimization of efficiency. In Figs. 2(d) and 2(e), the
velocity variance σv is depicted as a function of the mean value
of the white Poissonian noise 〈η(t)〉 and the corresponding
static force F . Upon closer inspection one observes that the
velocity fluctuations undergo rapid changes, yielding a large
variance for small bias. This statement holds true regardless
of the choice of the symmetry-breaking mechanism. Further
increase of the random or deterministic bias leads to a decrease
of the velocity fluctuations for both analyzed scenarios.
However, when the motor is driven by the random force these
fluctuations become reduced faster. This is clearly noticeable
in the normal transport regime; see Fig. 2(d). The result seems
to be counterintuitive as one would expect that the random
force should enhance fluctuations. Furthermore, as is shown
in Fig. 2(e), there exists an optimal value for bias 〈η(t)〉 at
which the velocity fluctuations assume a minimal value. One
should notice that this minimum nearly coincides with value of
〈η(t)〉 for which the negative average velocity in the anomalous
regime take their minimal values; cf. Fig. 2(b). This bring us to
the conclusion that the replacement of the deterministic force
with the white generalized Poissonian noise not only decreases
the negative-valued average velocity but simultaneously also
minimizes its fluctuation behavior.

Figure 2(f) illustrates the impact of the spiking frequency λ

on the velocity fluctuations for fixed mean 〈η(t)〉 = 0.58 in the
anomalous regime. When λ is very small the Brownian particle
is rarely kicked with large δ pulses and its velocity undergoes
rapid changes yielding a large variance. The opposite situation
takes place in the case of a very large spiking frequency λ.
For small to moderate λ the velocity fluctuations are smaller
as compared to the case with the static force. Moreover, there
exists an optimal value for the spiking frequency λ at which
the velocity fluctuations are minimal.

C. Stokes efficiency

Of main interest is the overall efficiency of the Brownian
motor operation. In Figs. 2(g) and 2(h) we depict the Stokes
efficiency εS versus the mean 〈η(t)〉 and F . From its definition,
the Stokes efficiency approaches zero for small statistical
or deterministic bias values F . In both the normal and the
anomalous transport regimes there occurs an optimal Stokes
efficiency. By use of the biased random force, εS , this efficiency
grows by a factor of 4 over the value obtained with a determin-
istic force. This effect is directly related to the property that
the stochastic force enhances the absolute value of velocity
and also minimize its fluctuations. Further increase of the bias

leads to a decrease of the efficiency of the occurring transport
process. For very large 〈η(t)〉 it approaches the value 1.

Figure 2(i) depicts the dependence of εS on the spiking rate
λ for fixed 〈η(t)〉. The reader can observe two peaks. The first
one corresponds to the regime of small λ which represents
normal, Ohmic-like transport. This maximum is associated
with the fact that in that case the Brownian motor moves
with large positive average velocity and its fluctuations are
moderate. The second peak is located in the ANM-transport
regime. It occurs for medium spiking rates λ. When λ is large,
then the transport process induced by this nonequilibrium
noise approaches the behavior of the deterministic drive. This
result corroborates with the previous statement concerning the
qualitative equivalence between the white Poissonian noise
and the deterministic force for very large spiking rates.

IV. SUMMARY

We have investigated two models of the inertial Brownian
motors: one driven by the deterministic force F and the other
propelled by biased nonequilibrium noise η(t). We find do-
mains in the parameters space such that when F is replaced by
η(t) of equal average bias, the motor velocity is several times
greater, the velocity fluctuations are reduced several times, and
its efficiency becomes several times enhanced within tailored
parameter regimes, both in its normal and its absolute negative
mobility regime. Specific results are detailed for generalized
white Poissonian noise. The main conclusion remains valid,
however, as well for other models of random perturbations
(not depicted). Thus, the idea that random biased forces
can be beneficial over deterministic biasing carries potential
for practical realization in physics of Brownian motors. For
example, it can be validated by use of a setup consisting of
the resistively and capacitively shunted Josephson junction
device operating in corresponding experimentally accessible
regimes. An exemplary set of physical parameters in the ANM
regime can be similar as in the experiment [27]. In order to
evaluate this set, we follow the method described in Ref. [11].
For operational temperature T = 4K and the set of parameters
presented in the middle panels of Fig. 2, the critical Josephson
current Ic ≈ 170 μA. For a realistic capacitance C = 20 pF,
the plasma frequency ωp ≈ 160 GHz. The amplitude of the
ac current is Ia ≈ 240 μA, the ac-angular frequency is � ≈
96 GHz, and the dc current or the mean value of the Poisson
noise is Id ≈ 15.5 μA. Under these conditions, the negative-
valued ANM voltage is V ≈ −15.7 μV for the Poissonian
noise case and V ≈ −7.9 μV for the deterministic force.

The proposed mechanism of a “reduction of noise by
noise” may explain exotic transport phenomena not only in
physical but also in biological settings and, additionally, can be
implemented in enhancing the working efficiency of synthetic
molecular motors, all of which in situ operate in strongly
fluctuating environments.
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