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Controlling coherent interaction at avoided crossings and the dynamics there is at the heart of quantum
information processing. A particularly intriguing dynamics is observed in the Landau-Zener regime, where
periodic passages through the avoided crossing result in an interference pattern carrying information about
qubit properties. In this Letter, we demonstrate a straightforward method, based on steady-state
experiments, to obtain all relevant information about a qubit, including complex environmental influences.
We use a two-electron charge qubit defined in a lateral double quantum dot as test system and demonstrate a
long coherence time of T2 ≃ 200 ns, which is limited by electron-phonon interaction.
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A qubit is a quantum mechanical two-level system
characterized by its tunnel coupling and the detuning from
its symmetry point at which the qubit levels form an
avoided crossing. Dynamic control can be achieved by
switching the detuning between finite values and zero at
velocities ranging from almost sudden to adiabatically slow
changes. A particularly intriguing dynamics was predicted
by Landau, Zener, Stückelberg, and Majorana (LZSM)
[1–4] for the intermediate (Landau-Zener) regime that is
hallmarked by quantum superpositions. These give rise to
interference for the case of periodic passages [5–11]. A
particular application is LZSM interferometry, a double-slit
kind of experiment that, in principle, can be realized with
any qubit, while the specific measurement protocol might
vary. Ours is based on two-electron states in a lateral double
quantum dot (DQD) embedded in a two-dimensional
electron system (2DES) (Fig. 1). Source and drain leads
at chemical potentials μS;D, each tunnel coupled to one dot,
allow current flow by single-electron tunneling. Applying
the voltage V ¼ ðμS − μDÞ=e ¼ 1 mV across the DQD
[Fig. 1(b)], we use this current to detect the steady-state
properties of the driven system. We take the singlet S11 (one
electron in each dot) and the singlet S20 (two electrons in
the left dot) as charge qubit states. They form an avoided
crossing [Fig. 1(c)], described by the Hamiltonian

Hqubit ¼
�

0 Δ=2
Δ=2 −εðtÞ

�
; (1)

where we consider a variable energy detuning εðtÞ and a
constant interdot tunnel coupling tuned to Δ≃ 13 μeV,
corresponding to a clock speed of Δ=h≃ 3.1 GHz, where
h is the Planck constant.

Let us first discuss a single sweep through the avoided
crossing at ε ¼ 0: as shown back in 1932 independently by
Landau, Zener, Stückelberg, and Majorana, it brings the
qubit into a superposition state [1–4], the electronic analog
to the optical beam splitter [13–17]. The probability to
remain in the initial qubit state PLZ ¼ expð−πΔ2=2ℏvÞ
thereby grows with the velocity v ¼ dε=dt, here assumed to
be constant [1–4]. Because the relative phase between the
split wave packets depends on their energies, repeated
passages by a periodic modulation εðtÞ ¼ ε̄þ A cosðΩtÞ
give rise to so-called LZSM quantum interference [5–11].
We present a breakthrough that makes LZSM interferom-
etry a powerful tool: it is based on systematic measure-
ments together with a realistic model, which explicitly
includes the noisy environment. We demonstrate how to
decipher the detailed qubit dynamics and directly determine
its decoherence time T2 based on straightforward steady-
state measurements.
Keeping the experiment simple, we detect the dc-current I

through the DQD. It involves electron tunneling giving rise
to the configuration cycle ð1; 0Þ → ð1; 1Þ↔ð2; 0Þ → ð1; 0Þ,
where pairs of digits refer to the number of electrons
charging the (left, right) dot [Fig. 1(b)]. The energetically
accessible two-electron states include the singlets S11 and
S20 but also three triplets T11 [Figs. 1(b), 1(c)]. These triplets
are likely occupied during ð1; 0Þ → ð1; 1Þ, and their decay
via a spin flip T11 → S11 is hindered by a Pauli-spin
blockade [18,19]. This slows down the transition ð1; 1Þ →
ð2; 0Þ and thereby limits the current. To nevertheless quickly
initialize the qubit and generate a measurable current, we lift
the blockade using an on-chip nanomagnet [Fig. 1(a)] [12].
I is proportional to the occupation probability of S20 and
serves as destructive qubit detector.
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As it is possible to tune the relative couplings and the mean
detuning ε̄ of the singlet-singlet and singlet-triplet crossings
by gate voltages and magnetic fields, our two-electron DQD
opens two interesting perspectives: (i) LZSM interferometry
involvingmultiple avoided crossings [8,20–23] and (ii) coher-
ent Landau-Zener transitions between our charge qubit and
the recently very successful spin-based qubits [24]; see the
Supplemental Material [25], Sect. IIA for details.
Concentrating on the two-electron charge qubit, in

Figs. 2(a) and 2(b) we display LZSM interference patterns
measured at T2DES ≃ 20 mK for two different modulation
frequencies Ω=2π. Within the triangle defined by A≳ jε̄j,
the qubit is periodically driven through the avoided

crossing and the current oscillates between zero and distinct
maxima indicating destructive and constructive interfer-
ence [9,26]. An interpretation based on photon-assisted
tunneling, which is for ℏΩ≳ Δ fully equivalent to the
LZSM picture discussed above, facilitates quantitative
predictions: using Floquet scattering theory [27], we find
for Δ ≪ ℏΩ the current per spin projection

Iðε̄; AÞ ¼ e
ℏ
ΓinΓout

4γ

X∞
n¼−∞

Δ2
n

ðε̄ − nℏΩÞ2 þ Δ2
n þ γ2

; (2)

where Γin is the qubit initialization rate ð1; 0Þ → S11, Γout is
the decay rate ð2; 0Þ → ð1; 0Þ, and γ ¼ ð1=2ÞðΓin þ ΓoutÞ.

(a) (b) (c)

FIG. 1 (color online). Experimental setup. (a) Scanning electron micrograph showing Ti/Au gates, fabricated by electron-beam
lithography, on the surface of a GaAs/AlGaAs heterostructure, grown by molecular beam epitaxy (500 nm scale bar). 85 nm beneath the
surface it contains a 2DES with carrier density ne ¼ 1.19 × 1011 cm2 and mobility μ ¼ 0.36 × 106 cm2 V−1 s−1. Six of the Ti/Au gates
(light yellow) are biased with negative voltages to electrostatically define a DQD in the 2DES, and the other gates are grounded. A
cobalt single-domain nanomagnet (thick blue bar) produces an inhomogeneous magnetic field that slightly mixes singlet and triplet
states of the DQD [12]. (b) Typical situation in our two-electron DQD: vertical lines indicate tunable tunnel barriers, horizontal lines
mark the chemical potentials, blue areas are the degenerate 2DES leads. The voltage V ¼ ðμS − μDÞ=e causes a single-electron
tunneling current [green arrow in panel (a)]. (c) Energy diagram of the relevant two-electron DQD eigenstates. Singlets (the qubit states)
are represented as black and red lines; triplets, which are Zeeman split, are represented as gray lines. Rf modulation of the gate voltage
V∼ [panel (a)] results in a modulated detuning εðtÞ, indicated by gray shading.

(a)

(c)

(b)

(d)

(e) (f)

(g) (h)

FIG. 2 (color online). LZSM interference. Measured current through the DQD as a function of mean detuning ε̄ and modulation
amplitude A at T ≃ 20 mK for the modulation frequencies 2.5 GHz (a) and 4.5 GHz (b). [(c), (d)] Corresponding numerically calculated
current for realistic conditions. [(e)—(h)] Two-dimensional numerical Fourier transformed (A → τA, ε̄ → τε, I → Î) of measurements
(upper panels) and theory (lower panels). The shape of the sinusoidal branches of enhanced Î is determined by Ω; see Eq. (3). Their
decay with increasing τε encodes dephasing and decoherence. The horizontal and vertical lines of enhanced amplitude at τA ¼ 0 and
τε ¼ 0 are artifacts caused by the finite region of data being transformed.
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The interdot tunnel coupling is renormalized with the nth-
order Bessel function Jn of the first kind:Δn ¼ JnðA=ℏΩÞΔ.
Equation (2) predicts Lorentz-shaped current maxima of
width δε̄ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

n þ γ2
p

at ε̄ ¼ nℏΩ, which for Δ ≪ jε̄j
corresponds to the bare n-photon resonance

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε̄2 þ Δ2

p
¼

nℏΩ. The peaks are modulated by J2nðA=ℏΩÞ as a function
of A. This scattering approach provides an appealing
physical picture and describes the main features of the
measured LZSM patterns as can be easily seen for the
high-frequency limit ℏΩ ≫ δε̄ (see the Supplemental
Material [25], Fig. 5). For lower Ω, the distance between
current peaks is smaller and, hence, the broadened reso-
nances tend to merge [Fig. 2(a)].
The visibility of the LZSM pattern (i) depends on

frequency and amplitude via the Landau-Zener probability
PLZ [captured in Eq. (2) by Δn], (ii) is strongest for
Γin ≃ Γout, and (iii) is diminished for Δ < γ, where the
qubit decay is faster than its clock speed. However, Eq. (2)
fails to predict the qubit coherence time as it ignores
environmental noise. The nevertheless qualitative consent
indicates that environmental noise can be treated perturba-
tively. In this spirit, we developed a complete model that
goes beyond Eq. (2) by explicitly including all energeti-
cally accessible states of our driven DQD and, importantly,
decoherence within a system-bath approach.
An evident source of decoherence is the interaction

of the qubit electrons with bulk phonons [28], which
entails quantum fluctuations to the DQD level energies.
It enters our theory as dissipation kernel with a dimen-
sionless electron-phonon coupling strength αZ (see the
Supplemental Material [25], Sect. III) derived from a
system-bath approach, becoming the spin-boson model in
the qubit subspace [29]. We assume for the coupling an
Ohmic spectral density, which is justified by geometry
considerations (see the Supplemental Material [25], Sect.
III C) and also a posteriori by a surprisingly good
agreement with our experimental results.
The second environmental component of our model is

charge noise, well known to cause low-frequency fluctua-
tions of the local confinement potential in semiconductor
heterostructures [30,31]. Being slow compared to all
relevant time scales of our experiment, they can be treated

as static disorder leading in the ensemble average to an
inhomogeneous, Gaussian broadening of width λ⋆.
To determine the key parameters λ⋆ and αZ, we compare

our measurements with theoretical results obtained within a
Bloch-Redfield master equation which can be solved
efficiently after a decomposition into the Floquet basis
of the rf-driven DQD (see Supplemental Material [25],
Sect. IV). The optimized result is displayed in Figs. 2(c)
and 2(d) with λ⋆ ¼ 3.5 μeV and αZ ¼ 1.5 × 10−4. Below,
we illustrate the self-consistent fit procedure by first
determining λ⋆ based on the final value of αZ and then
evaluating αZ using the final value of λ⋆.
Figure 3(a) displays Iðε̄Þ for Ω=2π ¼ 2.75 GHz and

constant amplitude A, corresponding to a horizontal slice in
the presentations of Figs. 2(a)–2(d). The measured data
(dots) in Fig. 3(a) feature a beating of broadened and
overlapping current peaks. The gray line is calculated for
αZ ¼ 1.5 × 10−4 and λ⋆ ¼ 0. Compared to our measure-
ment, it shows a weaker broadening and a higher visibility.
Much better agreement is reached for λ⋆ ¼ 3.5 μeV (blue
line). This result is robust under moderate variations of αZ
and does not depend on frequency or temperature.
Figure 3(b) underlines the good agreement between
measured (dots) versus calculated (lines) data by presenting
IðAÞ at ε̄ ¼ nℏΩ for various n [vertical slices in
Figs. 2(a)–2(d)]. Owing to the electron-phonon interaction,
the visibility of the interference pattern drops with increas-
ing temperature [Fig. 3(c)].
To quantify αZ with high accuracy, we use this temperature

dependence and thereby capture global information of the
extended LZSM patterns [Figs. 2(a)–2(d)] by performing
two-dimensional Fourier transformations Iðε̄;AÞ→ Îðτε;τAÞ.
The results, featured in Figs. 2(e)–2(h), are simple, lemon-
shaped structures of local maxima Îðτε; τAÞjlemon.
Transforming Eq. (2) yields an analytic formula describ-
ing these lemon arcs

τA ¼ � 2k
Ω

sin

�
Ωτε þ 2πk0

2k

�
; (3)

with k ¼ 1; 2; 3;…, k0 ¼ 0; 1; 2;…, and k0 < k. Arcs for
k > 1 are a consequence of Δ≳ γ, a prerequisite for

(a) (b) (c)

FIG. 3 (color online). Raw data analysis. Dots are measured at Ω=2π ¼ 2.75 GHz, lines numerical data for αZ ¼ 1.5 × 10−4 and
λ⋆ ¼ 3.5 μeV, whereas the gray line in panel (a) is for λ⋆ ¼ 0. (a) Horizontal slice through a LZSM pattern: Iðε̄Þ for a constant A ¼ 130 μeV.
(b) Vertical slices through a LZSM pattern: IðAÞ for ε̄=ℏΩ ¼ 0, −2, −4, −6. (c) Measured data as in panel (a) for various temperatures.
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observing a pronounced interference pattern (see the
Supplemental Material [25], Sect. II.E). [Arcs for k > 1
are weakly seen in Figs. 2(e)–2(h). In superconducting
qubits they have been also observed but–considering
Δ ≪ γ [32]–not explained.] Concentrating on the princi-
pal lemon arc for k ¼ 1, we find a nonmonotonic behavior
of Îðτϵ; τAÞjlemon with maxima at the arc’s intersections at
τA ¼ 0 and τε a multiple of 2π=Ω. Regions of decays in
between have the form

Îðτε; τAÞjlemon ∝ e−λjτϵj=ℏe−1
2
ðλ⋆τε=ℏÞ2 ; (4)

where the exponential decay originates from the
Lorentzian broadening due to electron-phonon coupling
and the Gaussian term describes the inhomogeneous
broadening caused by charge noise. Notice that τε is a
Fourier variable rather than a real time variable, and thus,
λ should not be interpreted as physical decay rate. [Only
for Δ ≪ γ, all Lorentzians in Eq. (2) possess the same
width, so that Îðτε; τAÞjlemon is described by Eq. (4) with
simply λ ¼ γ as suggested in Ref. [32].] In Figs. 4(a)
and 4(c) we plot measured and calculated decays (dots),
respectively, for various temperatures between 18 and
500 mK. The solid lines in panels (a) and (c) are identical
and express Eq. (4) with λ as a fit parameter, while λ⋆ is kept
fixed at 3.5 μeV. Figure 4(b) compares λðTÞ obtained by this
procedure from our measurements (black dots) with the
numerical results using three different values of αZ. An
outstanding agreement between theory and experiments is
found at αZ ≃ 1.5 × 10−4 [blue in Fig. 4(b)]. This completes
our set of model parameters needed to calculate LZSM
patterns as in Figs. 2(c) and 2(d). λðTÞ increases linearly for
T ≳ 100 mK, whereas it is bounded by λmin ≃ 4 μeV at our
lowest temperatures. This bound marks the intrinsic decay of
Îðτε; τAÞjlemon present even in the low-temperature limit of
our transport measurement but is not related to the low-
temperature bound of the qubit coherence time T2.
To actually identify T2ðTÞ, we use its dependence on αZ

in the spin-boson model. In the absence of rf modulation, it
provides the analytical prediction [33]

T2ðT; αZÞ ¼
ℏ
παZ

�
2kBTε̄2

E2
þ Δ2

2E
coth

�
E

2kBT

��−1
: (5)

In the low-temperature limit kBT ≪ E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ ε̄2

p
our

undriven qubit has T2 ¼ 2ℏE=παZΔ2. Assuming ε̄ ¼ 0, we
find T2 ≃ 0.2 μs, which further increases at finite detuning.
Alternatively, T2 could be increased by decreasing Δ. This
would, however, reduce the clock speed of the qubit. In the
same spirit, the rf-induced renormalization of Δ → Δn
stabilizes the qubit’s coherence on the expense of a larger
gate operation time [34].
Summarizing, we demonstrated that steady-state LZSM

interferometry is a viable tool to fully characterize a qubit
including its coupling to a noisy environment. The quanti-
tative agreement between our experiments and our com-
plete system-bath model analyzed with Floquet transport
theory allows us to trace the origins of inhomogeneous
broadening and decoherence. Thereby we determined
the individual values of T⋆

2 ¼ ℏ=λ⋆ and T2 of the qubit.
Our steady-state method is remarkably simple compared
to the alternative pulsed gate experiments. Our two-electron
charge qubit is affected by slow charge noise limiting
T⋆
2 to ≃0.2 ns but a coherence time of T2 ≃ 0.2 μs, being

much longer than previously reported values in quantum
dot charge qubits [17,35,36]. The clock speed of our
qubit, Δ=h≃ 3.1 GHz, which limits T2 at T ≃ 20 mK
and ε̄ ¼ 0, would then provide enough time for > 600
quantum operations. At higher temperatures or sizable
ε̄, decoherence is dominated by the electron-phonon
coupling. Our method is simple, very general, and can
be applied to arbitrary qubit systems. An extension includ-
ing individually controlled Landau-Zener transitions and
a combination with nonadiabatic pulses will open up
alternative means of quantum information processing.
Our two-electron qubit experiments illustrate an interesting
approach for studying the interaction of qubits and complex
many body quantum systems.
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(a) (b) (c)

FIG. 4 (color online). Electron-phonon coupling. (a) Decaying region of the measured Îðτε; τAÞjlemon for three temperatures (dots). Lines
are generated using Eq. (4) for λ⋆ ¼ 3.5 μeV and λ as a fit parameter. The inset shows a broader region including maxima at τε ¼ 0, 2π=Ω.
(b) Measured decay rate λðTÞ (black dots) and corresponding numerical data (colored circles) based on λ⋆ ¼ 3.5 μeV (indicated as
horizontal line) and αZ ¼ 1.0, 1.5, 2.0 × 10−4. (c) Analog to panel (a) but based on numerical calculations. Solid lines are identical to those
in (a). The numerical resolution is based on 100 data points sampling the Gaussian broadening in ε̄ of width λ⋆ ¼ 3.5 μeV.
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