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Entanglement creation in a quantum-dot–nanocavity system by Fourier-synthesized acoustic pulses
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We explore the possibility of entangling an excitonic two-level system in a semiconductor quantum dot with
a cavity defined on a photonic crystal by sweeping the cavity frequency across its resonance with the exciton
transition. The dynamic cavity detuning is established by a radio frequency surface acoustic wave (SAW). It
induces Landau-Zener transitions between the excitonic and the photonic degrees of freedom and thereby creates
a superposition state. We optimize this scheme by using tailored Fourier-synthesized SAW pulses with up to five
harmonics. The theoretical study is performed with a master equation approach for present state-of-the-art setups.
Assuming experimentally demonstrated system parameters, we show that the composed pulses increase both the
maximum entanglement and its persistence. The latter is only limited by the dominant dephasing mechanism,
i.e., the photon loss from the cavity.

DOI: 10.1103/PhysRevA.89.012327 PACS number(s): 03.67.Bg, 42.50.Ct, 78.67.Hc, 71.36.+c

I. INTRODUCTION

Entanglement, an intrinsically quantum-mechanical corre-
lation in composite systems, is indispensable for most quantum
information protocols [1,2] and, thus, should be available for
any qubit realization. By definition, entanglement cannot be
created by local operations and, thus, requires some interaction
between the subsystems. In order to achieve a controlled
degree of entanglement, one may turn on and off the effective
interaction by tuning the subsystems into or close to resonance
for a limited time. This includes a linear sweep across the
resonance giving rise to a Landau-Zener (LZ) scenario at
an avoided crossing. In between the regimes of adiabatic
following and sudden switching, this process splits the wave
function into two parts with a well-defined phase and thereby
creates an entangled state.

Since entanglement relies on a well-defined phase relation,
it is fundamentally limited by the susceptibility to decoherence
of the chosen architecture. In the very active field of solid-
state quantum systems the focus of LZ-based entanglement
creation was set in the past mainly to superconducting [3,4]
or spin-based [5] setups using their remarkable coherence
properties. Although all-electrical radio frequency control
can be readily implemented in these systems, transfer of the
encoded quantum information to “flying” photonic qubits [6,7]
at optical frequencies is extremely challenging. On the other
hand, optically active quantum dot (QD) nanostructures
provide a versatile platform allowing for tunable interdot
coupling of exciton and spin states and for coupling excitonic
two-level systems to optical resonators to implement a solid-
state cavity QED system. For such optically active systems the
implementation of LZ schemes has been considered extremely
challenging, because most tuning mechanisms are quasistatic.
While resonators available for cavity QED allow for reaching
the required regime of strong light-matter interaction, the
lifetime of cavity photons is typically more than two orders
of magnitude shorter than the coherence times of excitons
in an isotropic environment. Thus, theoretical proposals
and experiments almost exclusively focused on quantum

operations using the nonlinear optical properties of a static
system.

In this paper we develop strategies to implement LZ gates in
a semiconductor cavity QED system consisting of an excitonic
two-level system in a single semiconductor QD coupled to a
cavity localized in the optical mode of a photonic resonator
(see Fig. 1). The time-dependent detuning is provided by
surface acoustic waves (SAWs), for which we consider various
feasible pulse shapes. In order to simulate the dynamics of
the system, we numerically solve a master equation including
the dissipative effects of (spontaneous) QD decay and photon
loss. Moreover, we show that, for experimentally demonstrated
system parameters, entanglement with a persistence of the
photon lifetime can be achieved. Finally, we discuss directions
to reduce the experimental complexity due to the high
drive frequencies by using tailored Fourier-synthesized gating
pulses.

II. QUANTUM DOT IN A NANOCAVITY

For the nanocavity we assume a high-Q nanophotonic
defect resonator defined in a two-dimensional photonic crystal
membrane [8] interacting with a two-level system in a single
semiconductor QD. This two-level system is formed by the
crystal ground state of the QD and its fundamental optical
excitation with one electron-hole pair, a single exciton X [9].
Such systems have been studied over the past decade by several
groups [10] who successfully demonstrated in key experiments
both the weak-coupling [11–13] and the strong-coupling
[14–19] regime of cavity QED. Most importantly, this type
of nanocavity uniquely allows for a dynamic and reversible
spectral control of the optical mode at gigahertz frequencies
by the coherent acoustic phonon field of a radio frequency
SAW [20], which is crucial for the implementation of LZ
gates. We emphasize that the QD transition is sensitive to the
strain and electric field of the SAW. Our previous experimental
data [21] as well as other studies [22] on self-assembled
InGaAs QDs suggest that the bandwidth of this modulation
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FIG. 1. (Color online) (a) Semiconductor quantum dot placed in
a photonic crystal, which serves as a realization for the cavity QED.
Applying surface acoustic waves (SAWs) to the photonic crystal
leads to a modulation of the cavity resonance frequency. (b) Energy
spectrum of the system in dependence on the detuning �. Owing to
the cavity-QD coupling g, the exciton energy (black solid line) and
the one-photon energy (red solid line) split at the degeneracy point
� = 0 to form an avoided crossing (dotted lines). (c) Wave forms
considered herein, which originate from a superposition of higher
SAW harmonics.

is roughly three times smaller than that of the cavity, γ .
Therefore, we set the QD transition to be constant during
the acoustic cycle and treat the nanocavity resonance as time
dependent. A schematic of this system is shown in Fig. 1(a).

For our modeling we restrict ourselves exclusively to ex-
perimentally demonstrated system parameters for an InGaAs-
based system with optical transitions at E0 = �ω0 = 1.3 eV
(λ0 = 954 nm, ω0/2π = 314 THz). First, for SAW excitation
we assume fSAW � 5 GHz. These frequencies are well below
the highest frequencies reported for bulk GaAs- and GaAs-
based suspended membranes of fSAW � 24 GHz [23] and
fSAW > 9 GHz [24], respectively. Second, for the coupled
QD-cavity system, the limiting constituent is the photon loss
rate �γ from the photonic crystal nanocavity. For our investiga-
tions we use ��γ = 25 μeV (�γ = 38 GHz), compatible with
values reported by Ota et al. [19]. This value corresponds to a
cavity quality factor of Q = ν/�ν = 5.2 × 104 and a photon
lifetime of τγ = Q/ω0 = 26 ps. The decay rate of the QD
exciton ��X = 0.2 μeV (�X = 300 MHz) [17] is low when
compared to �γ . Furthermore, we assume the system in the
strong-coupling regime with a vacuum Rabi splitting �g >

��γ = 25 μeV. The energies of the adiabatic and nonadiabatic
states of this coupled system are plotted in Fig. 1(b) as a
function of detuning �. The adiabatic energies show the
characteristic avoided crossing between X and γ . We can
write the corresponding states |nX,nγ 〉, where nX = 0 and 1
correspond to the two states of the two-level system, while
nγ refers to the cavity photon number. For adiabatically slow
sweeping, the exciton state |1X,0γ 〉 transforms into a photon,
|0X,1γ 〉, by adiabatic following. Increasing the sweep velocity,
the initial states remain partially occupied with a probability
given by the LZ formula [25–28]:

PLZ = 1 − exp(−2πg2/�v), (1)

where the coupling g determines the splitting at the degeneracy
point � = 0. In the derivation of Eq. (1), it was assumed
that the detuning �(t) = vt varies at a constant rate v which
for our SAW-based approach is proportional to the SAW
frequency and SAW amplitude, v ∝ fSAWA. Since we restrict
ourselves to experimentally accessible parameters, we keep
the amplitude of the SAW modulation constant throughout
the paper to A = max(�) = 1 meV, a base frequency of f0 =
1 GHz, and wave forms Fourier synthesized by superpositions
of harmonics: In addition to pure sine drive at fSAW = nf0

and n = 1,3, and 5, we investigate the three synthesized
wave forms summarized in Fig. 1(c). In the limit n → ∞,
they converge either to a δ peak, henceforth referred to as
spike, or to a wave form of either square or sawtooth type,
respectively. For a realistic modeling, these waves consist of
the fundamental frequency f0 and its first four harmonics. For
the LZ gate, the system is initialized by a Rabi oscillation from
its ground state to the excited state X by a laser pulse [9,29].
To ensure selective excitation of X and to avoid initial
photon population in the cavity the spectral bandwidth of this
excitation pulse has to be δElaser � 250 μeV corresponding
to a pulse length δtlaser � 20.7 ps. This in turn requires that
the initialization has to occur at t0 > δtlaser before the system
is tuned through resonance, at which the initial product state
|1X,0γ 〉 is converted to an entangled state.

A. Excitonic quantum dot coupled to a SAW-driven cavity

Without the SAW driving, the system sketched in Fig. 1(a)
is described by the Jaynes-Cummings (JC) Hamiltonian [30]:

HJC = ε

2
σz + �ω0a

†a + g(aσ+ + a†σ−), (2)

where the pseudospin operators σz and σ± describe the
excitonic quantum dot within a two-level approximation in
the basis of the ground state |0X〉 and the one-exciton state
|1X〉 with the energy splitting ε. The bosonic operators a and a†

refer to the cavity with resonance frequency ω0, which is dipole
coupled to the quantum dot according to gσx(a† + a). Close to
resonance, i.e., for ε ≈ ω0, we can neglect the counter-rotating
terms aσ− and a†σ+ to obtain the last term of the Hamiltonian
Eq. (2). Then the Hilbert space of the composed system
discerns into doublets spanned by the states |1X,nγ 〉 and
|0X,(n + 1)γ 〉. As a function of the detuning � = ε − �ω0,
the eigenenergies of HJC form avoided crossings of width
2
√

n + 1g [31] [see Fig. 1(b)]. The central idea is to exploit
the LZ dynamics at the avoided crossing of the lowest doublet
to entangle the quantum dot with the cavity, i.e., to reach a final
state ∝|1X,0γ 〉 + eiϕ |0X,1γ 〉 with a well-defined but possibly
unknown and time-dependent phase ϕ.

The SAW modulates the cavity frequency so that it becomes
time dependent, i.e., ω0 → ω0(t). This implies that also the
detuning gets modulated with time: � → �(t). For the case
of a sinusoidal wave it is �(t) = �0 + A sin[�(t − t0)],
where the amplitude A has to exceed the static detuning �0

to pass through the avoided crossing. If the amplitude is large
compared to the crossing region, the driving can be linearized,
resulting in a sweep velocity of the order v ∼ A�. This
sweep velocity is of crucial importance because, according
to the LZ formula Eq. (1), it determines the probability
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for adiabatically following the ground state. Significant
exciton-cavity entanglement requires PLZ ≈ 1/2. On the other
hand, it is desirable to slow down the modulation after the
entanglement is created, so that further state manipulations or
a readout of the quantum state can be performed. Therefore
we like to exploit recent experimental achievements of a
controlled superposition of higher harmonics to the SAW and
consider more generic waves that lead to the detuning �(t) =
�0 + ∑N

n=1 An sin[n�(t − t0) + φn]. In an experiment both
the amplitudes An and the phases φn can be controlled rather
well, which enables a flexible design of the pulses. Here we
consider, besides purely sinusoidal driving, also waves with
the characteristic shapes of a square, a sawtooth, and a spike.
We restrict ourselves to the experimentally feasible case
in which those waves are approximated by a fundamental
angular frequency of � = 2π × 1 GHz and its harmonics up
to order N = 5; i.e., we consider the drivings

�(t) = �0 +

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

A sin[�(t − t0)] sine,

∑5
n=0

A
N

cos[n�(t − t0)] spike,

∑2
n=0

A
2n+1 sin[n�(t − t0)] square,

∑5
n=1

A
n

sin[n�(t − t0)] sawtooth,

(3)

sketched in Fig. 1(c). Moreover, in order to highlight the
benefit of nonsinusoidal pulses, we also consider pure sine
waves with the angular frequencies 3� and 5�.

B. Decoherence and master equation

Entanglement is a genuine quantum feature and, thus,
is rather sensitive to decoherence caused by the interaction
with environmental degrees of freedom. In our case the latter
are mainly the photonic modes ν outside the cavity. Their
influence can be modeled by the system-bath Hamiltonian
Henv = ∑

ν �ωνa
†
νaν + Z

∑
ν λν(a†

ν + aν), where ων denotes
the frequency of mode ν, while λν is the coupling strength to
a system operator Z which here is the cavity dipole operator
Zγ = a† + a. For a later continuum limit, we assume for the
coupling the Ohmic spectral density J (ω) = π

∑
ν |λν |2δ(ω −

ων) ≡ παγ ω/2 with the dimensionless dissipation parameter
αγ [32–34]. Under the condition that the environment is
initially in a Gibbs state, we derive for the reduced system
density operator ρ a Bloch-Redfield master equation [35,36].
Moreover, we take also dissipative transitions of the quantum
dot into account, which we model in the same way but with
the excitonic dipole moment ZX = σ+ + σ−. For consistency
with the system Hamiltonian Eq. (2), we apply a rotating-wave
approximation to the master equation such that we finally
arrive at [30,31]

d

dt
ρ = − i

�
[HJC(t),ρ] + Lγ (ρ) + LX(ρ), (4)

where the Lindblad forms

Lγ (ρ) = �γ

2
(2aρa† − a†aρ − ρa†a), (5)

LX(ρ) = �X

2
(2σ−ρσ+ − σ+σ−ρ − ρσ+σ−) (6)

describe cavity and quantum dot dissipation, respectively. The
decay rates �γ and �X are determined by J (ω) evaluated at the
transitions frequencies of the dot-cavity Hamiltonian Eq. (2).
Owing to the smallness of the detuning |�| 
 ε,ω0(t) and the
smooth Ohmic spectral density, we can ignore the energy shifts
induced by the dot-cavity coupling g, so that we can evaluate
the spectral densities at the bare cavity and exciton frequency
to obtain �γ = παγ ω0 and �X = παXε, respectively. Notice
that we have assumed that the environmental temperature
is rather low, such that thermal excitation is negligible.
Then the final state of the time-independent problem is
the ground state |0X,0γ 〉, also beyond the rotating-wave
approximation [37].

III. ENTANGLEMENT DYNAMICS

We consider the dynamics of the cavity-QD setup after an
exciton is created at time t = 0, while the cavity is empty;
i.e., we numerically integrate the master equation starting
with the initial state |1X,0γ 〉. In the course of time, the SAW
sweeps the energies of the two subsystems over an avoided
crossing with the state |0X,1γ 〉 reached at t ≈ t0. Moreover,
the Lindblad terms cause a decay toward the ground state
|0X,0γ 〉. Our main aim is to investigate and to optimize the
degree of entanglement for differently shaped SAW pulses.
In order to quantify the entanglement, we treat the cavity
within two-level approximation in the subspace spanned by the
states |0γ 〉 and |1γ 〉 with the corresponding Pauli matrices σ

γ
y .

This approximation is well justified, because our Hamiltonian
Eq. (2) preserves the total number of excitations, while our

FIG. 2. (Color online) LZ entanglement dynamics for SAW
shapes of a pure sine with frequencies 1 GHz (a), 3 GHz (b),
and 5 GHz (c), as well as for a spike (d), a sawtooth (e), and
a square (f), each with fundamental frequency �/2π = 1 GHz.
The cavity-dot coupling is g = 35 μeV, while the static detuning
�0 = 0.3 meV is modulated with an amplitude A = 1 meV, such
that the crossing is reached at time t0 = T/10 = 0.5 ns. The cavity
and exciton decay rates read �γ = 25 μeV/� and �X = 0.2 μeV/�.
Upper panels: Population of the states |1X,0γ 〉 (red solid line) and
|0X,1γ 〉 (green dashed line). The dotted line visualizes the course of
the detuning �(t). Lower panels: Cavity-dot entanglement in terms
of the concurrence C.
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low-temperature dissipation kernels Lγ and LX only contain
decay terms. Then we can employ as entanglement measure
the concurrence [38,39]

C(ρ) = max(χ1 − χ2 − χ3 − χ4,0), (7)

where the χi are the square roots of the eigenvalues of the
matrix ρσyσ

γ
y ρ∗σyσ

γ
y in descending order. Here ρ∗ denotes

the complex conjugate of the density matrix expressed in a
basis of Bell states [38].

In order to get a first impression of the dynamics, we depict
in Fig. 2 the time evolution of the populations of the states
|1X,0γ 〉 and |0X,1γ 〉 and the corresponding entanglement
for various wave forms, while all other parameters are
set equal. For a purely sinusoidal driving with frequency
�/2π = 1 GHz, the population of the initial state is by and
large transferred to |0X,1γ 〉. This corresponds to imperfect
adiabatic following. At an intermediate stage at time t ≈ t0,
the populations of both states are comparable, while phase
coherence between the participating states ensures good
entanglement with a concurrence up to C ≈ 0.7. However,
since for these parameters PLZ is significantly larger than
1/2, soon after the crossing the one-photon state becomes
highly populated. Therefore the systems disentangle soon after
having passed the crossing. Thus, we must increase the sweep
velocity, which can be achieved by using a higher frequency.
The results in panels (b) and (c) demonstrate that this can
indeed augment the concurrence. Moreover, it increases the
time during which the concurrence exceeds a certain threshold
value. This “entanglement persistence” is mainly limited
by the cavity decay rate �γ , at least under the realistic
condition �γ � �X. Thus, our goal is to find parameters and
wave forms for which a significant entanglement is present
during a time of the order 1/�γ . A theoretically interesting
observation is that for higher frequencies the system may
pass through the avoided crossing several times in the time

range considered. The resulting repeated passages depend
on the phase acquired in between the crossings, leading to
Landau-Zener-Stückelberg interference [26–28,40]. However,
for realistic cavity decay rates, dephasing is too fast and, thus,
the coherent superposition of our entangled states turns into
a (separable) mixture. Therefore, we will not further discuss
interference effects. Even though SAWs with frequencies of
3 or 5 GHz are feasible, inducing them with a large intensity
such that the detuning amplitude becomes 1 meV represents
a rather difficult task. Waves with lower amplitudes are not
helpful, because they lead to smaller sweep velocities and,
thus, we would lose what we gained from the higher frequency.
Moreover, the initial preparation of the exciton must be
performed during a fraction of the driving period, because
it takes a certain time and cannot be triggered with arbitrary
precision. Thus, for shorter driving periods, one will encounter
difficulties to carry out the preparation. These difficulties can
be circumvented by employing more elaborate pulses such as
the ones sketched in Fig. 1(c) and mathematically expressed
in Eq. (3). Notice that for these pulses the contribution of each
harmonic is significantly smaller than 1 meV, while the driving
period remains at 2π/� = 1 ns. The resulting entanglement
dynamics is plotted in Figs. 2(e) and 2(f). As compared to
panel (a), the performance of the entanglement creation has
improved. Moreover, as we will see below, this performance
can be reached in a broader parameter range.

In an experimental implementation of our proposed scheme,
one would on the one hand like to obtain a rather large
maximum for the concurrence, while on the other hand an
appreciable entanglement should be found during a not too
short time, ideally limited only by the cavity decay �γ .
Moreover, the cavity-dot coupling g is essentially a fixed
parameter determined during chip fabrication, which implies
that the width of the avoided crossing can be tuned only within
a narrow range via the driving frequency and the amplitude.

FIG. 3. (Color online) Maximum of the concurrence achieved as a function of the static detuning �0 and the dot-cavity coupling g. All
other parameters, the wave forms, and the arrangement of the panels are as in Fig. 2.
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FIG. 4. (Color online) Persistence of the entanglement, i.e., time during which the concurrence exceeds the threshold value set by C > 1/2.
All parameters, wave forms, and the contour lines marking the maximum of the concurrence are as in Fig. 3. The unit of the color bar is in ps.

Therefore, it is desirable that the results do not depend too
sensitively on g. Given this low flexibility, suggestions for
more promising SAW shapes are particularly welcome.

In order to characterize the performance of each wave
form, we employ two figures of merit. The first one is the
maximal concurrence C reached during a time T/4 centered
at the avoided crossing as function of g and �0, depicted
in Fig. 3. For all frequencies and pulse shapes considered,
the concurrence can reach values up to C ≈ 0.8. However,
the basic sinusoidal wave at 1 GHz yields this value only
in a small range of the coupling g, which requires a precise
fabrication process. Since, as discussed above, for 3 and
5 GHz, the required amplitudes of the order 1 meV are
difficult to achieve, the more elaborate pulse shapes are
clearly preferable. For all three composed pulses, the plots
of the concurrence maximum behave very similarly. The
common feature of all three waves is the rather steep slope of
the detuning �(t) close to the center of the avoided crossing,
as can be appreciated in the upper panels of Fig. 2. This
suggests that the main effect of the higher-order Fourier
components is to augment the sweep velocity at the crossing.

Our second figure of merit is the persistence time τ of
the entanglement defined as the time during which C > 1/2.
This quantifier is depicted in Fig. 4. The contour lines
enable a comparison with the results shown in Fig. 3. This
reveals that a large maximum does not necessarily coincide
with long persistence. This is particularly the case for the
sinusoidal pulses with higher frequencies [panels (b) and (c)].
Nevertheless there exist regimes where both the entanglement
maximum and the persistence are rather favorable and where
τ practically reaches its theoretical limit, which is the cavity
lifetime 1/�γ = 26 ps. As for the maximum, the plot for
the sine wave with 3 GHz and the ones for the composed
pulses [panels (d)–(f)] look similar. However, the former has
the disadvantage of being experimentally more demanding.
Interestingly enough, in two regimes, albeit small, pure sine

waves yield surprisingly long entanglement duration: First,
for 1 GHz in the regime �0 ≈ −1 meV, g � 10 μeV, where,
however, the maximum is rather low; second, for 5 GHz,
we witness in panel (f) at g ≈ 25 μeV some islands with
τ � 20 ps. Combining the two criteria of large maximum C
and long persistence, we can conclude that for an experimental
realization the quantum dot-cavity coupling g should be in the
range 20–50 μeV.

IV. DISCUSSION AND CONCLUSION

We have preformed a theoretical study demonstrating
the experimental feasibility of entanglement generation in
a semiconductor QD-nanocavity system by a SAW-gated
LZ transition. Using exclusively experimentally demonstrated
state-of-the-art system parameters we find high levels of
entanglement corresponding to a concurrence of C > 0.8.
Its persistence is mainly limited by the photon loss from
the cavity. This dominant dephasing mechanism arises from
the moderate quality factor of such semiconductor-based
cavities. An extension of this scheme to Fourier-synthesized
SAW wave forms promises two significant advantages over
a single frequency sinusoidal drive. First, our model predicts
for square and sawtooth pulses a large concurrence over the
system-limited time scales for a broad range of g and �0. The
second advantage lies in the experimental implementation:
The complexity to achieve a sufficiently large modulation
amplitude of 1 meV increases significantly with increasing
fSAW, in particular for modulation frequencies of 3 GHz
and higher. In contrast, Fourier-synthesized wave forms with
only moderate amplitudes of higher harmonics significantly
overcompensate the additional requirements for the design
of the transducers for SAW generation. Moreover, the fun-
damental SAW period in the experiment remains constant at
1 ns, which facilitates the synchronization with the optical
initialization and measurement of the entanglement. The latter
can be implemented, e.g., by extending existing schemes
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based on reflectivity spectroscopy [16] using short (<1 ps)
and broadband laser pulses as a function of time during the
acoustic cycle. Moreover, since the system is initialized in
the exciton state, i.e., in the lower branch of the avoided
crossing, any signal from the upper branch detected in the
loss spectrum provides a fingerprint of the LZ transition.
Finally we want to note that the results of our theoretical study
can be directly transferred to other types of semiconductor
cavities, most notably Bragg-type microcavities [41], which
are SAW compatible [42]. In addition, among the broad variety
of control techniques, electrical tuning of the QD transition via

the quantum confined Stark effect [17,43–45] could be an alter-
native approach to realize the required gigahertz frequencies.
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