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We analyze the fluctuations of an electronic thermal current
across an idealized molecular junction. The focus here will
be on the spectral features of the resulting heat fluctuations.
By use of the Green function method we derive an explicit
expression for the frequency-dependent power spectral density
of the emerging energy fluctuations. The complex expression
simplifies considerably in the limit of zero frequency, yielding
the noise intensity of the heat current. The spectral density for
the electronic heat fluctuations still depends on the frequency
in the zero-temperature limit, assuming different asymptotic
behaviors in the low- and high-frequency regions. We further
address subtleties and open problems from an experimental
view point for measurements of frequency-dependent power
spectral densities.

Sketch of a molecular junction setup used in the text. The aver-
age heat flow is generated by electrons moving from a hot
electrode TL across the molecular junction towards a neigh-
boring cold electrode TR. The inter-electrode electronic level ε0

can be tuned continuously.

© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction The experimental activities over the
last 15 years in investigating electronic transport across
molecular junctions [1–3] have triggered several waves of
intense research in theory [4–8] and experiment [9–13].
Single molecule electronics is still considered as a promis-
ing candidate for the substitution of silicon-based elements
in the information processing technology [2, 3, 10, 11]. Like-
wise, molecular junctions have advantages in the context of
energy-related applications. This is due to the potential of
hybrid solid-state molecular structures which enable novel
interface features. Moreover, the abundant selection of possi-
ble molecules and electrode materials allows to tailor specific
properties. In particular, the topic of thermoelectric [8] and
photovoltaic [9] conversion processes continue to prompt
timely research in the field of molecular electronics.

Apart from the standard current–voltage character-
istics [1, 12, 13], it is also important to obtain insight

into the fluctuations that accompany the corresponding trans-
port processes. For example, by use of the full counting
statistics [14–17] it is possible to extract information about
the fluctuations of the electric current flowing across a molec-
ular wire [18–22].

In the context of thermoelectric applications, the issue
of energy transport through molecular junctions and the
properties of the corresponding fluctuations acquire spe-
cial importance. Thermal fluctuations may crucially impact
the electronic transport features, and even affect the overall
performance of the molecular junction. With the molecular
systems operating on the nanoscale corresponding energy
current fluctuations can become sizable. This may be so
even in situations where the average energy current is van-
ishing identically, as it is the case in thermal equilibrium
with both interconnecting electrodes held at the same tem-
perature. Moreover, the properties of nonequilibrium noise
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2356 F. Zhan et al.: Power spectrum of electronic heat current fluctuations

Figure 1 Idealized setup of a molecular junction used in text: Two
metal leads, each filled with an ideal electron gas, are connected by
a single orbital ε0. The coupling strengths are determined by ΓL/R.
The left lead is prepared at a higher temperature as compared to the
opposite right lead, i.e., TL > TR. The chemical potential, μ, is the
same for both leads so that no electric current due to a finite voltage
bias is present.

correlations, or likewise, its frequency-dependent spectral
properties, are in no obvious manner related to the mean value
of the energy flow itself. With this work we shall explore the
fluctuations of the heat current caused by the transferring
electrons. Our goal is to obtain analytical estimates for the
power spectral density (PSD) of the heat fluctuations, even at
the expense that these may mainly apply to idealized setups
only. With such a restriction these analytical results may nev-
ertheless be useful to appraise the role of heat current noise in
more realistic molecular junctions. It is further of interest to
have an estimate available when devising molecular circuitry
for more complex tasks.

Energy transport across a molecular structure which links
two electrodes is induced by a difference of the two elec-
trode temperatures, see in Fig. 1. The physics of heat transfer
generally involves both electrons and phonons and their
mutual interaction [8, 23, 25, 27–34]. Therefore, the amount
of energy flow carried across the wire should be addressed
with care, with the need to distinguish between energy trans-
fer mediated either by electrons or phonons, or a combination
of both. If phonons are mainly at work this situation relates
to the new field of phononics [35], a novel research area
which may lead to new circuit elements, such as molecular
thermal diodes, thermal transistors, thermal logic gates, to
name but a few [35–41]. Then, the size of fluctuations in
heat current does matter; this is so because those may well
turn out to be deleterious to intended information processing
tasks.

Heat transport mediated by electrons relates at the same
time to charge transfer: electrons moving from lead-to-lead
carry not only charge but also energy [24–26]. However, the
amount of energy transferred by a single electron, unlike to its
charge, is not quantized [42]. In contrast to those studies that
examine the average heat flow, however, much less attention
has been paid to the issue of fluctuations of the accompany-
ing flow of energy. In prior work [43] the energy transport
through a ballistic quantum wire has been considered in the
Luttinger-liquid limit, by neglecting the discreteness of the
wire’s energy spectrum. Likewise, with Ref. [44], the PSD of

the heat current fluctuations has been derived within a scatter-
ing theory approach, using the assumption that the electrons
are transmitted (reflected) at the same rate, independently
of their actual energies. The results of the last two papers,
however, are challenging because it has been shown therein
that the noise characteristics of heat current at equilibrium
exhibits a well-pronounced frequency dependence even at
absolute zero-temperature. Therefore, this very zero temper-
ature finding is in contradiction with the naive expectation
as provided by the equilibrium fluctuation–dissipation the-
orem (FDT). This found deviation from the FDT in those
works is attributed loosely to the role of zero-point-energy
fluctuations [44].

With this work we shall consider the electronic energy
current that proceeds across a molecular wire composed of a
single energy level with the two electrodes held at different
temperatures. A preliminary short discussion of such elec-
tronic nonequilibrium heat noise has been presented by us
with Ref. [45]. Here, we complement and extend this study
and present further useful details on the theoretical derivation
of the noise expression. Moreover, we discuss the nonequilib-
rium heat noise of the corresponding heat current over much
broader parameter regimes and frequency regimes away from
the zero-frequency limit. With our setup we also corrobo-
rate the results obtained in the zero temperature limit for the
power spectral density at finite frequencies for a different
setup in Ref. [44]. In addition, we address several subtleties
when it comes to the explicit validation of our theoretical
findings by experimental means.

2 Molecular junction setup In order to obtain
analytical tractable expressions we shall neglect electron–
phonon interactions and, as well, electron–electron inter-
actions. Such a simplification can be justified for tailored
situations that involve a very short wire only. Then, the
Coulomb interaction via a double occupancy shifts the energy
far above the Fermi level so that its role in thermal transport
can be neglected. Likewise, the electron dwell time is short
as compared to the electron–phonon relaxation time scale.
Note however, that in contrast to previous works [44], we
account here for the dependence of the transmission coeffi-
cient on its electron energies, and, within the Green function
approach [6, 34], derive an explicit expression for the PSD of
the heat current fluctuations, S̃h(ω). In particular we demon-
strate below that the net noise features of the heat current are
quite distinct from their electronic counterpart.

Our molecular junction setup is depicted with Fig. 1: It
is described by a Hamiltonian

H = Hwire + Hleads + Hcontacts. (1)

It contains three different contributions, namely the wire
Hamiltonian, the leads and the wire-lead coupling, respec-
tively. We consider here the regime of coherent quantum
transport whereby neglecting dissipation inside the wire. The
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wire is composed of a single orbital; i.e.,

Hwire = ε0d
†d, (2)

at an energy ε0, with the fermionic creation and annihilation
operators,d† andd. The energy level ε0 can be tuned by apply-
ing a gate voltage. Our idealized setup allows for explicit
analytical calculations. Physically, it mimics a double barrier
resonant tunneling structure GaAs/AlxGa1−x-structure of the
type considered for electronic shot noise calculations in Ref.
[46], herein truncated to a single Landau level. As commonly
implemented, the electrodes are modeled by reservoirs, com-
posed of ideal electron gases, i.e.,

Hleads =
∑

�q

ε�qc
†
�q
c�q, (3)

where the operator c
†
�q (c�q) creates (annihilates) an electron

with momentum q in the � =L (left) or � =R (right) lead.
We assume that the electron distributions in the leads are
described by the grand canonical ensembles at the temper-
atures TL/R and with chemical potentials μL/R. Using such
ideal electron reservoirs we obtain

〈c†
�q
c�′q′ 〉 = δ��′δqq′f�(ε�q), (4)

where

f�(ε�q) = [
e(ε�q−μ�)/kBT� + 1

]−1
(5)

denotes the Fermi function.
We impose a finite temperature difference �T = TL −

TR and use identical chemical potentials, μL = μR = μ for
the electrodes. When an electron tunnels out from a lead, the
energy E is transferred into the wire which presents the heat
transfer, δQ. Observing the value for the chemical potential,
μ, it reads δQ = (E − μ). In the following we use that all the
electron energies are measured from the chemical potential
value μ, being set at μ = 0.

The Hamiltonian which describes the tunneling events
reads:

Hcontacts =
∑

�q

V�qc
†
�q
d + h.c. (6)

This part mediates the coupling between the wire and the
electrodes. Here, the notation h.c. denotes Hermitian conju-
gate. The quantity V�q is the tunneling matrix element, and the
tunneling coupling is characterized in general by a spectral
density,

Γ�(E) = 2π
∑

q

|V�q|2δ(E − ε�q). (7)

In the following, we shall use a wide-band limit of the
electrode conduction bands, setting Γ�(E) := Γ�.

3 Power spectral density of electronic heat
current fluctuations Working within the Heisenberg
description of operators we present the detailed derivation of
the electronic energy current induced by a finite temperature
difference of the two leads and the PSD of the corresponding
energy fluctuations. We limit the consideration to pure energy
transfer that proceeds in absence of a finite voltage bias across
the two leads and no particle concentration across the leads.
Put differently, no cross-phenomena of energy transfer due
to a charge current (i.e., no Joule heating) or due to a parti-
cle concentration current (i.e., no Dufour effect) is at work.
Therefore, because all other channels for the energy trans-
port between the leads are then explicitly excluded from
our consideration, we follow previous works, e.g., see in
Refs. [24, 44], and use throughout this study the term “heat
current” as synonym for energy current. The electronic ther-
mal current then reads

J h
L(t) =

∑
δQ(t)

�t
. (8)

With our choice of chemical potentials μL = μR = 0, we
find that the heat transfer operator is δQ(t) = EL, with the
energy operator given by

EL =
∑

q

εLqc
†
Lq

cLq. (9)

Its time derivative thus yields the operator for the heat
flux, reading:

J h
L(t) = −

∑
q

2εLq

�
Im[VLqc

†
Lq

(t)d(t)] . (10)

The heat current is positive valued when heat transport
proceeds from the hot left lead, i.e., TL > TR to the adjacent
cold lead, see in Fig. 1. In deriving the above expression we
have employed the Heisenberg representation for the lead
electron operators. The average current is obtained by the
ensemble average 〈J h

L(t)〉. Because there are no electron sinks
and sources in between the leads we have 〈J h

L(t)〉 = −〈J h
R(t)〉.

We henceforth focus on the quantities derived with regard to
the left lead; i.e., 〈J h

L(t)〉 := 〈J h(t)〉.
The quantum correlation function of heat current fluc-

tuations is described by the symmetrized auto-correlation
function, i.e.,

Sh(t, t′) = 1

2

〈
[�J h

L(t), �J h
L(t′)]+

〉
(11)

with respect to the operator of the heat current fluctuation

�J h
L(t) = J h

L(t) − 〈J h
L(t)〉 . (12)

www.pss-b.com © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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2358 F. Zhan et al.: Power spectrum of electronic heat current fluctuations

The heat current noise is described with τ = t − t′ by the
symmetrized quantum auto-correlation function

Sh(τ) = 1

2
〈[�J h

�
(τ), �J h

�
(0)]+〉 (13)

of the heat current fluctuation operator �J h
�
(s) = J h

�
(s) −

〈J h
�
(s)〉, where the anti-commutator [A, B]+ = AB + BA

ensures the Hermitian property.
With this work we throughout consider the asymptotic

long time limit t → ∞ when all transients are decayed. In
this asymptotic limit the average heat current is stationary and
the auto-correlation function of the heat current fluctuations
becomes time-homogeneous; i.e., it is independent of initial
preparation effects. It thus depends on the time difference τ =
t − t′ only. The Fourier transform yields the power spectral
density (PSD) S̃h(ω) for the heat current noise, i.e.,

S̃h(ω) = S̃h(−ω) =
∫ ∞

−∞
dτeiωτSh(τ) ≥ 0, (14)

S̃h(ω) is an even function in frequency and strictly semi-
positive, in accordance with the Wiener–Khintchine theorem
[47]. In the following we address positive values of the fre-
quency, ω > 0, only.

The annihilation operators of the electrode states satisfy
the Heisenberg equations of motion; i.e.,

ċ�q(t) = − i

�
ε�qc�q(t) − i

�
V�qd(t), (15)

yielding the solution

c�q(t) = c�q(t0)e−iε�q(t−t0)/�

− iV�q

�

∫ t

t0

dt′e−iε�q(t−t′)/�d(t′). (16)

Here, the first term on the right-hand side describes the
dynamics of the free electrons in the leads, while the second
term accounts for the influence of the molecule.

The Heisenberg equation of the molecular annihilation
operator is given by

ḋ(t) = − i

�
ε0d(t) − i

�

∑
�q

V ∗
�q
c�q(t). (17)

Upon inserting Eq. (16) into Eq. (17), we obtain

ḋ(t) = i

�
ε0d(t) − ΓL + ΓR

2�
d(t) + ξL(t) + ξR(t), (18)

where we have defined the noise operator

ξ�(t) = − i

�

∑
q

V ∗
�q

exp

[
− i

�
ε�q(t − t0)

]
c�q(t0). (19)

In addition, we have employed the definition (7) and used
the wide-band limit.

The noise quantity defined in Eq. (19) denotes operator-
valued Gaussian noise, which is characterized by its mean
and correlation properties, reading

〈ξ�(t)〉 = 0, (20)

〈ξ†
�′ (t′)ξ�(t)〉 = δ��′

∫ ∞

−∞

dε

2π�2
e−iε(t−t′)/�Γ�(ε)f�(ε). (21)

This noise accounts for the influence of the states stem-
ming from the electrodes l = L, R.

Now the central problem is to solve the inhomogeneous
differential equation (17). Once we obtain the solution of
Eq. (17), we obtain also the solution for Eq. (16), the heat
current (10) and also the power spectral density in Eq. (14).

To obtain the solution of Eq. (18), we follow the Green
function approach in Ref. [6] and start with solving the fol-
lowing differential equation

(
d

dt
+ iε0

�
+ ΓL + ΓR

2�

)
G(t − t′) = δ(t − t′), (22)

followed by the application of the convolution d(t) =∫
G(t − t′)(ξL(t′) + ξR(t′))dt′. The solution of Eq. (22) is thus

given by:

G(t) = θ(t) e−iε0 t/�−(ΓL+ΓR)t/2�. (23)

Then, the molecular operator in Eq. (18) assumes the
form

d(t) =
∑

�q

V ∗
�q

exp[−iε�q(t − t0)/�]

ε�q − ε0 + i(ΓL + ΓR)/2
c�q(t0). (24)

In what follows we address solely the asymptotic
properties which are reached with the initial time of
preparation t0 → −∞. This implies that average currents
assume stationary values and correlation functions become
time-homogeneous. With this expression and its Hermitian
conjugate, we obtain the occupation value of the molecular
energy level ε0 as

nε0 = 〈d†(t)d(t)〉

=
∑
��′qq′

V�q exp[iε�q(t − t0)/�]

[ε�q − ε0 − i(ΓL + ΓR)/2]

× V ∗
�′q′ exp[−iε�′q′ (t − t0)/�]

[ε�′q′ − ε0 + i(ΓL + ΓR)/2]
〈c†

�q
(t0)c�′q′ (t0)〉

=
∑

�q

|V�q|2f�(ε�q)

(ε�q − ε0)2 + (ΓL + ΓR)2/4
, (25)

where we have employed the ensemble average, Eq. (4). We
find that this occupation is determined by the Fermi func-
tion of the leads, weighted by the tunneling matrix elements

© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.pss-b.com
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V�q and the difference between lead states and the molecular
energy level ε0, see in Eq. (25). This occupation value is time-
independent because there are no time-dependent external
fields present.

Upon substituting the result in Eq. (24) into Eq. (16), we
find for the operators in the electrodes

c�q(t) = c�q(t0) e−iε�q(t−t0)/�

+
∑
�′q′

V�qV
∗
�′q′e

−iε�′q′ (t−t0)/�

ε�′q′ − ε0 + i(ΓL + ΓR)/2
c�′q′ (t0)

× B[ε�′q′ − ε�q], (26)

where

B(E) = P
(

1

E

)
− iπδ(E) (27)

and P denotes the integral principal value. In going
from Eqs. (24)–(26) we have used Sokhotsky’s for-
mula which states that limε→0 1/(x + iε) = P(1/x) − iπδ(x),
where P(1/x) = ∫ 0−

−∞ dx/x + ∫ ∞
0+ dx/x, see in Ref. [48].

Next we insert Eqs. (24) and (26) into the heat current
operator, Eq. (10), and by consequently taking the ensem-
ble average, we obtain a Landauer-like formula for the heat
current, reading [8, 24–26, 33, 51]:

〈J h(t)〉 := J h = 1

2π�

∫
dEET (E)[fL(E) − fR(E)],

(28)

where the transmission coefficient

T (E) = ΓLΓR

[(E − ε0)2 + Γ 2]
(29)

is energy-dependent.
The expression for the thermoelectric charge current [25]

reads very similar to Eq. (28), except for its absence of the
energy multiplier E in the integral on the rhs of Eq. (28). This
seemingly small difference changes, however, the physics
of transport through the wire, because the multiplier inverts
the symmetry of the integral. Namely, the thermolelectric
current is an antisymmetric function of orbital energy and
vanishes when the orbital energy level is aligned to the chem-
ical potentials of the leads [45], while the heat current is a
symmetric function and acquires a nonzero value at ε0 = 0,
see in Fig. 2a.

3.1 Main result and discussion Upon combining
Eqs. (14) and (10), we end up after a cumbersome evalu-
ation with the nontrivial expression for the PSD of electronic
heat current noise. Due to the complexity of this resulting
expression the physics it inherits is not very illuminative.
Nevertheless, we depict it here as given in our preliminary

Figure 2 (a) Average electronic heat current Jh and (b) the zero-
frequency values of corresponding heat noise power S̃h of the
accompanying heat current fluctuations as a function of orbital
energy for an identical lead coupling strength Γ = 0.1 meV. The
parameters are: TL = 5.2 K, TR = 3.2 K (solid lines) and TL =
TR = 4.2 K (dashed line). Figure in parts adapted from Ref. [45].

report [45], reading:

S̃h(Ω = �ω; TL, TR)

=
∑

±

∫
dE

4π�

{[(
E ± Ω

2

)2

T (E)T (E ± Ω)

+ Γ 2
L [E(E − ε0) − (E ± Ω)(E ± Ω − ε0)]2

[(E − ε0)2 + Γ 2] [(E ± Ω − ε0)2 + Γ 2]

]

×fL(E)f L(E ± Ω)

+
(

E ± Ω

2

)2

T (E)T (E ± Ω)fR(E)f R(E ± Ω)

+
[(

E ± Ω

2

) (
±Ω

2

)
Γ 2

LT (E ± Ω)

(E − ε0)2 + Γ 2

+ E2R(E)T (E ± Ω) ∓ 1

2
EΩT (E)T (E ± Ω)

]

× fL(E)f R(E ± Ω)

+
[

(E ± Ω)

(
±Ω

2

)
T (E)T (E ± Ω)

+ (E ± Ω)2 R(E ± Ω)T (E)

+
(

E ± Ω

2

) (
∓Ω

2

)
Γ 2

LT (E ± Ω)

(E − ε0)2 + Γ 2

]

× fR(E)f L(E ± Ω), (30)

www.pss-b.com © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 3 Power spectral density of the heat current noise as a func-
tion of the frequency ω at temperatures TL = 6 K, TR = 2 K. The
other parameters are ε0 = 0 and Γ = 0.1 meV.

wherein we abbreviated Ω ≡ �ω, f ≡ 1 − f , and R(E) ≡
1 − T (E) denoting the reflection coefficient. Below we con-
sider the case of symmetric coupling between the wire and
the leads, ΓL = ΓR = Γ .

We emphasize here that this heat PSD is a manifest
nonequilibrium result where with a finite temperature bias
the result accounts for ‘heat’-shot noise and, simultaneously
nonequilibrium, Nyquist-like heat noise. Let us next discuss,
via graphical means, some general features of the inherent
complexity as depicted with Eq. (30).

In Fig. 3, we depict the dependence of the PSD of heat
current fluctuations versus frequency ω at finite temperature
bias, given by TL = 6 K, TR = 2 K. We deduce from the fig-
ure that this nonequilibrium PSD exhibits different power
laws in different frequency regions and grows with increasing
frequency.

Moreover, we find that the spectral density strength Γ

of the wire-lead coupling can change the dependence of the
heat fluctuation PSD on the parameters. In Fig. 4, we depict
the PSD as a function of the temperature difference �T over
a wide regime of �T = 40 K, both in the case of weak and
strong wire-lead couplings. With weak coupling, the PSD is
smaller by one order of magnitude and only weakly (i.e., with
a small slope) increases with �T , see Fig. 4a. In contrast, the
PSD increases very fast with �T when the coupling is very
strong, see in Fig. 4b. According to Eq. (29), the transmission

coefficient becomes wider when Γ is larger, such that more
electrons, whose energies deviate stronger from the chemi-
cal potential, are allowed to transport across the molecular
junction. Therefore, the PSD becomes strongly enhanced and
depends sensitively on �T .

It is striking that both dependencies are near perfectly
linear over the wide temperature regime of �T . Given the
complex structure of the nonlinear nonequilibrium PSD
detailed with the lengthy expression in (30) such extended
linearity can hardly be expected a priori. The mechanism
behind this distinctive feature is not evident and thus consti-
tutes an interesting issue for further studies.

3.2 Issues relating to experimental validation
It should also be mentioned here that the explicit verifi-
cation of quantum mechanical power spectral densities is
experimentally not at all straightforward. In clear contrast
to the classical case, the symmetrized quantum correla-
tion for heat in Eq. (13) presents no manifest quantum
observable that can be measured directly, but rather it is a
functional operator expression involving the time-evolution
of the dynamics. This is so because the heat flux operators at
different times do not commute. In fact, a quantum mechan-
ical evaluated PSD can be measured only indirectly via a
single-time measurement of a tailored linear response func-
tion, via a corresponding, generally nonequilibrium quantum
fluctuation–dissipation relation which connects this response
function with a corresponding quantum mechanical two-
time correlation expression [47]. Put differently, this tailored
response function is then required to relate precisely to our so
calculated nonequilibrium quantum correlation of heat fluc-
tuations in (13). This is so because a direct two-time quantum
measurement of two observables at different times t would
then impact (i.e., it will generally alter) the a priori theoret-
ically determined quantum two-time correlation expression
in (14); for further details and similar pitfalls see also in
Refs. [49, 50], where the problem of measuring quantum
work poses the same challenge.

The situation becomes more promising when we focus
on the zero-frequency result of the PSD for heat noise: The
variance 〈�Q2(t)〉 of the accumulated heat fluctuation over

Figure 4 Power spectral density of heat current noise at frequency ω = 2.16 × 1013 Hz (which is the Debye cut-off frequency of gold) as a
function of temperature difference with (a) weak molecule-wire coupling Γ = 0.1 meV or (b) strong molecule-wire coupling Γ = 10 meV.
The other employed parameters are TR = 300 K and ε0 = 0.

© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.pss-b.com
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Figure 5 Power spectral density of the heat current noise at zero frequency ω = 0, (left panel) and power spectral density of the electric
current noise (right panel) as functions of the wire orbital site energy ε0 and wire-lead coupling strength Γ . The parameters employed are
TL = 6.2K and TR = 2.2K.

a time span t reads

〈�Q2(t)〉 =
〈(∫ t

0

ds�J h(s)

)2
〉

. (31)

Using a long measurement time span t the time-
dependent expectation value then relates to the zero
frequency component of the PSD. This is the case upon not-
ing that the symmetrized correlation is a symmetric function
of its argument and assuming that the time-homogeneous
auto-correlation of stationary heat fluctuations vanishes in
sufficiently strong a manner for infinite time. Then, the inte-
gral in (31) can be extended to infinity, yielding

lim
t→∞

〈�Q2(t)〉
t

=
∫ ∞

−∞
dτSh(τ) = S̃h(ω = 0). (32)

The result for the zero-frequency limit therefore relates to
a single time measurement of the manifest quantum observ-
able �Q2(t). Still to measure accumulated “heat” rather
than “heat-flux” presents a formidable challenge for the
experimenter; the case with accumulated electric charge is
a lot easier accessible. The detailed behavior of this zero-
frequency nonequilibrium heat noise PSD will be studied
next.

3.3 Zero frequency noise power The theoretical
PSD of heat current noise at zero frequency ω = 0 simplifies
considerably, assuming the appealing form

S̃h(ω = 0; TL, TR)

= 1

2π�

∫
dEE2{T (E)(fL(E)[1 − fL(E)]

+ fR(E)[1 − fR(E)])

+ T (E)[1 − T (E)][fL(E) − fR(E)]2}. (33)

Here the last line refers to a heat-shot-noise contribution
while the first part corresponds to a nonequilibrium Nyquist-

like heat noise contribution. Matters simplify considerably
in thermal equilibrium where the shot noise contribution
vanishes identically.

Let us also briefly contrast this result with the zero-
frequency PSD of the fluctuations displayed by the nonlinear,
accompanying thermoelectric current. The latter reads [4, 6]:

S̃el(ω = 0; TL, TR)

= e2

2π�

∫
dE{T (E)(fL(E)[1 − fL(E)]

+ fR(E)[1 − fR(E)])

+ T (E)[1 − T (E)][fL(E) − fR(E)]2}. (34)

Most importantly, the zero-frequency PSD for heat cur-
rent in Eq. (33) differs by the energy factor E2 within the
integrand. Although this distinction seemingly appears minor
and may even be guessed beforehand without going through
the laborious task of doing a theoretical rigorous derivation
from which this limit derives from the frequency-dependent
main result given in Eq. (30). It must be emphasized, how-
ever, that the two expressions lead to tangible differences.
Particularly, note the different behavior of the electronic and
heat noise PSDs versus the tunable energy level ε0 as depicted
with Figs. 2b and 5. While the zero-frequency component
of the electric PSD exhibits a maximum at ε0 = 0, see in
Fig. 2c in Ref. [45], its heat current PSD possesses instead
a local minimum at this value, see Fig. 2b. These two PSDs
for charge current and heat current are compared in Fig. 5
over wide regimes of the electronic orbital energy ε0 and the
lead-molecule strength Γ .

These differences originate from the salient feature that
the two transport mechanisms for charge and the energy are
different. The electric current is quantized by the electron
charge e while, in contrast, the energy carried by the elec-
tron is continuous and can assume principally an arbitrary
value. Notably, the main contribution to the electronic noise
power across the wire stems from those electrons occupying
energy levels around the chemical potential μ = 0. When

www.pss-b.com © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



p
h

ys
ic

a ssp st
at

u
s

so
lid

i b

2362 F. Zhan et al.: Power spectrum of electronic heat current fluctuations

ε0 deviates from the chemical potential, increasingly less
electrons participate in the transport. The flow of electron
becomes diminished, and since both, the electric current and
the electric noise are insensitive to the electron kinetic ener-
gies, they both decrease with increasing |ε0|. This scenario
differs for heat flow: There, the deviation from the chemical
potential increases the possibility that successive electrons
will carry different energies. This in turn causes an increase
of heat current noise. With further deviation of the orbital
energy from the chemical potential, the occupancy difference
[fL(E) − fR(E)] decreases monotonically; consequently the
noise power S̃h(ω = 0) decreases again.

3.4 Electronic heat current noise in thermal equi-
librium Next, let us focus on thermal equilibrium which
is attained when the two temperatures are set equal, i.e., if
TL = TR. In this case the average heat current vanishes identi-
cally, while its fluctuations remain finite. The zero-frequency
spectra of both noise spectra for heat and electric current
noise increase upon increasing the coupling strength Γ . This
is so because the transmission probability increases. The
corresponding heat noise power is nonzero in equilibrium,
however, as depicted with Fig. 2b.

In thermal equilibrium with TL = TR = T the nonequi-
librium zero frequency PSD in Eq. (33) simplifies further,
obeying

S̃h(ω = 0, T ) = 2kBT
2G̃h(ω = 0), (35)

where G̃h(ω = 0) denotes the static, linear heat conductance,
obtained from expanding the result in Eq. (28) around a small
temperature bias and comparing with Eq. (33). This result
is therefore in agreement with the FDT for the static heat
conductance.

Note that an extension to a Green–Kubo-like, but now
frequency dependent conductance, however, would intrin-
sically require also intermediate time-varying temperatures
T (t). Such a concept with a time-dependent, nonequilibrium
temperature, cannot be justified in the coherent quantum
regime of an open system with only one level ε0 connecting
the two leads. In fact even for a different setup with a spatially
extended intermediate thermal conductor it has been found
in Ref. [44] that at finite frequencies ω the PSD is not related
to the corresponding linear heat conductance in the ballistic,
low temperature transport regime. This violation of the FDT
is thus far from being fully settled in the literature.

The properties at zero absolute temperature, TL = TR =
0, become even more subtle. Here, the heat current PSD at
finite frequencies ω still depends on frequency. This depen-
dence originates from quantum fluctuations where virtual
transitions of electrons from lead-to-lead occur [44]. The
Fermi distribution equals the Heaviside step function in this
case. Therefore, the contributions to the integrand in Eq. (30)
stems from the interval [−Ω, 0]. After an integration of
Eq. (30), one finds for the frequency dependent PSD the

expression:

S̃h(ω, TL = TR = 0)

= Γ

4π�

{[
(2Ω)2 − 2Γ 2

]
arctan

(
Ω

Γ

)

+2 ΩΓ

[
1 + log

(
Γ 4

(Ω2 + Γ 2)2

)]}
, Ω ≡ �ω.

(36)

In the limitΓ → ∞ the zero-temperature PSD scales like
S̃h(ω) ∝ ω3. This is in full agreement with results obtained in
the work [44] for a different setup, where such an asymptotic
behavior is found uniformly throughout the whole frequency
region. This uniform feature no longer holds true when Γ is
finite: The second term in the rhs of (36) introduces a linear
cutoff in the limit ω → 0, so that [S̃h(ω) − S̃h(ω = 0)] ∝ ω

in the extreme low frequency limit. In distinct contrast, in
the high-frequency region, the first term in the rhs of (36)
becomes dominating. As a consequence, the PSD (36) in
the high frequency limit approaches a square-law asymptotic
crossover dependence, S̃h(ω) ∝ ω2.

4 Conclusions and sundry topics By using the
Green function formalism we have investigated electronic
heat current. Our focus centered on the issue of the heat cur-
rent fluctuations in a molecular junction model composed of
a single orbital molecular wire. For the noninteracting case
we succeeded in deriving a closed form for the frequency
dependence of heat current noise; i.e., the heat noise PSD,
both in nonequilibrium TL �= TR and in thermal equilibrium
TL = TR. The dependence of the heat current noise on the
orbital energy ε0 is qualitatively different from that for the
accompanying electric current noise, see Fig. 5. Moreover,
the heat current fluctuation properties depend strongly on the
the overall tunneling coupling strengths ΓL = ΓR = Γ .

In the zero-temperature limit, the PSD of the heat cur-
rent noise obeys two distinctive asymptotic behaviors, being
different in the intermediate-low frequency and in the high-
frequency regimes. The particular square-law behavior of the
PSD in the high-frequency region is due to the Lorentzian
shape of the transmission coefficient T (E) in Eq. (29). Yet,
the general effect would remain for any choice of the coef-
ficient in the form of a localized, bell-shaped function: the
noise spectrum will deviate from a cubic power-law asymp-
totic behavior upon entering the high-frequency region.

As emphasized in our introduction, with this work only
the electron subsystem has been considered. Realistic heat
transport in real molecular junctions would involve the
complexity of interacting electrons and electron–phonon
interactions [8]. This electronic heat transport may domi-
nate in certain situations so that the measured heat noise
can be attributed approximately to the electronic component
only. The unified approach, which would include both the
electron and the phonon subsystems, as well as the effects
of their interactions, presents a future challenge although
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several contributions in this direction for the average heat
current (but not the heat current noise PSD) have already
been undertaken before [8, 30, 33, 51].

4.1 Open issues We conclude this study with further
remarks that may shed light on challenging open prob-
lems and in addition may invigorate others to pursue future
research in objectives addressed with our study. A first obser-
vation is that we obtained within the Green function analysis
tractable expressions for quantum transport in the steady
state without ever having to invoke the explicit knowledge of
the inherent nonequilibrium density operator. Naturally, the
quantum averages for the current and the auto-correlation of
the quantum fluctuations carry less information as encom-
passed with the full steady state nonequilibrium density
operator. The latter nonequilibrium density operator is typ-
ically very difficult to obtain and explicit results are known
for tailored situations only. In fact, explicit results are very
intricate already for those cases with overall quadratic Hamil-
tonians [52].

As discussed above, a much more subtle issue refers to
the experimental detection of quantum correlations. In clear
contrast to the case with a quantum, single-time expectation
of a quantum observable, the issue of measurement of man-
ifest quantum correlations is a delicate objective that is only
rarely addressed with sufficient care in the literature. This
is so because the mere calculation of a theoretical two-time
quantum correlations does not say anything about its feasi-
ble experimental measurement scenario. Either strong (i.e.,
von Neumann-type) or weak quantum measurements impact
the dynamics as clearly manifested with the example of the
Zeno-effect [53, 54].

With more than one time present this objective relates
to the problem of measurements of quantities that are not
given in terms of quantum observables [49, 50, 55, 56]. To
appreciate the complexity somewhat in more detail let us
first consider the case with classical random variables. Then
the PSD can be obtained experimentally as the limit of a time
average of the classical random process J h(t), via consider-
ing the expression

S̃h
t→∞(ω) = limt→∞

1

2t

∣∣∣∣
∫ t

−t

ds J h(s) exp(iωs)

∣∣∣∣
2

. (37)

Note that classically the measurement of the stochastic
variable of the instantaneous heat flow J h(t) presents no
serious problem while the same is not straightforward for
a quantum dynamics. Moreover, even classically, the result
in (37) holds true only when the stochastic, finite value S̃h

t
(ω)

tends to the exact ensemble averaged value S̃h(ω), with its
variance approaching zero as t → ∞. The latter implies con-
ditions of higher, fourth-order correlations to be satisfied
[57]. With the feature of dealing with the non-commutation
property of quantum observables at different times no such
direct scenario is available for experiment. Here the complex-
ity of quantum measurements will enter in its full generality.

Only for tailored situations this task may simplify further, as
it was the case in Sections 3.2 and 3.4 for the zero frequency
limit.

As mentioned already above, the case of quantum linear
response theory may come as support also for nonequilib-
rium: The measurement of a single observable (here the heat
flux operator) due to an external perturbation is typically
related to the evaluation of a specific quantum correlation
function [47]. The case of the quantum-dissipation relation
of Callen–Welton in thermal equilibrium presents such a
celebrated case [58–60]. There, the dissipative part of the
measurable, frequency-dependent susceptibility of a per-
turbed observable B is uniquely related to the power spectral
density SBA(ω) of quantum fluctuations of the observable B

and the fluctuations of observable A to which an applied
external conjugate force couples. In our case it remains there-
fore a formidable task to identify the corresponding variable
for the nonequilibrium situation so that the single-time mea-
surement of its linear response becomes related to the heat
PSD in Eq. (30) in a prescribed manner. This at best is pos-
sible for the thermal equilibrium PSD in which an imposed
energy perturbation couples to the thermal affinity �T/T ;
cf. in Refs. [61–63]. This is not possible, however, for the
equilibrium heat flow fluctuations at absolute T = 0, with
the inherent thermal affinity being divergent. In presence
of quantum coherence destroying phenomena, such as high
temperature or disorder, the nature of quantum correlations
becomes suppressed. Then, the classical scenario can be used
again to validate the theoretical predictions in thermal equi-
librium [4, 60] and for tailored steady-state nonequilibrium
situations; note the nonequilibrium fluctuation theorems in
Ref. [47].
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