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ABSTRACT: With this work, we present two new methods for the
generation of thermostatted, manifestly Hamiltonian dynamics and
provide corresponding illustrations. The basis for this new class of
thermostats is the peculiar thermodynamics as exhibited by logarithmic
oscillators. These two schemes are best suited when applied to systems
with a small number of degrees of freedom.

■ INTRODUCTION
Back in 1984, Nose ́ put forward a method for the generation of
equations of motion that sample the canonical ensemble.1 The
method is based on the Nose ́ Hamiltonian, reading
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where a log oscillator with Hamiltonian P2/2M + kBT ln X is
nonlinearly coupled to a “virtual” system (x,p). The thermo-
statted dynamics of the “real” system are obtained after a time-
rescaling and the application of a noncanonical transformation.
The method was later further developed by Hoover2 and is
currently widely used and known as the Nose−́Hoover
thermostat.
In this paper, we unveil those special thermodynamic

properties of log oscillators that provide them with the power
to act as thermostats and, based on them, show two more ways
in which log oscillators can be employed to generate
thermostatted dynamics. At variance with the method of
Nose,́ these methods are genuinely Hamiltonian, in the sense
that the thermostatted dynamics are obtained directly from
Hamilton’s equations of motion, with no need to perform a
time rescaling nor use noncanonical transformations.3,4

Consequently, these methods not only constitute a numerical
means but, as well, can even be implemented in situ with real
experiments aimed at thermostatting a physical system. The
first of the two methods has been reported recently with a
Letter; see ref 5. Its feasibility has been further discussed with a
short account in ref 6, providing there the response that dispels
a criticism raised by Hoover and co-workers.7

It is important to stress that, just like the Nose−́Hoover
method, these methods only work provided the overall
dynamics are ergodic, which might present a problem,
especially when applied to small systems. In the case of

Nose−́Hoover thermostatting, one possible solution was
offered by Martyna et al.,8 who proposed the use of chains of
Nose−́ Hoover thermostats. Our first method, at least in the
implementation that we have explored (that is, considering a
system of particles that interact with each other and with a log
oscillator via short-range, hard-core repulsion; see eq 21)
seemingly is immune in reference to this ergodicity issue.5,9,10

Regarding our second method (see eq 29), the absence of
ergodicity may present an issue; this second method, however,
is sufficiently flexible as to overcome this challenge.

■ HELMHOLTZ THEOREM
The fact that logarithmic oscillators have a thermostatting
power is a consequence of their peculiar thermodynamic
properties. In this section, we shall clarify in what sense it is
meaningful to talk about the thermodynamics of mechanical
systems that have only one or few degrees of freedom, as is the
case of logarithmic oscillators, and demonstrate how to
calculate their thermodynamic properties.
Our starting point is the salient equation of thermodynamics

δ = =Q
T
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also known as the heat theorem.11 As early as 1884, Helmholtz
proved that this mathematical structure of thermodynamics is
inherent to the classical Hamiltonian dynamics of systems
having only one single trajectory for each energy, which he
called monocyclic systems.12 Arguably, this seldom appreciated
and rarely known fact was one of the cornerstones on which
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ergodic theory (which generalizes Helmholtz monociclicity)
and statistical mechanics were later built up by Boltzmann and
others.11,13−15

The Helmholtz theorem goes as follows: Consider a classical
particle in a confining potential φ(X;λ), where λ is an external
parameter. To each couple (E,λ) of values of the energy and the
external parameter is associated one closed trajectory in the
system phase space. For each trajectory, one can calculate the
average quantities
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where P and M are the particle momentum and mass,
respectively, and ⟨·⟩E,λ denotes the time average over the
trajectory specified by (E,λ). Noticing that F(E,λ) is the average
force that the particle exerts against the external agent, keeping
the parameter λ at a fixed value, one realizes that

δ λ λ= +Q E F Ed ( , )d (5)

represents the heat differential. The Helmholtz theorem states
that 1/T(E,λ) is an integrating factor for δQ
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Here, X±(E,λ) are the turning points of the trajectory and θ(x)
denotes the Heaviside step function. Accordingly, it is
meaningful to call T(E,λ) the temperature of the particle and
S(E,λ) its entropy. S(E,λ) in eq 7 is also known as the Hertz
entropy,15 or the Gibbs entropy.16

Once the function S(E,λ) is known, one can then quickly
calculate T(E,λ) and F(E,λ) in accordance with eq 6 as
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and so obtain the thermodynamics of the system, such as the
equation of state, specific heat, and so forth.
Following this scheme, in the next section, we will proceed to

derive the thermodynamics of log oscillators and highlight the
peculiar properties that provide them with thermostatting
power.

■ PECULIAR THERMODYNAMICS OF A LOG
OSCILLATOR

Heat Capacity Is Infinite. Let us consider a log oscillator
with the Hamiltonian
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where M is the mass and b is some positive constant with the
dimension of length. Figure 1 depicts some trajectories in phase

space of different energies. Solving the equation Hlog(X,P) = E
for X, one sees that the trajectories are given by the equations
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that is, the trajectories possess a Gaussian shape. Note that,
accordingly, the maximal excursion grows exponentially with E/
kBT; Xmax = beE/kBT. A straightforward calculation gives
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Accordingly, the entropy, eq 7, reads
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Using the Helmholtz theorem, we get
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This expresses the major feature of the thermodynamics of a
log oscillator; all of its trajectories inherit one and the same
absolute temperature, which is given by T, where T is the
strength of the logarithmic potential. This fact is very peculiar.
Consider, for example, the 1D harmonic oscillator, in this case,
kBT(E) = E, namely, the higher the energy, the higher the
temperature. Similarly, this is the case for a particle in a 1D box,
where kBT(E) = E/2.
It therefore follows that the log oscillator possesses a

spectacular property; it has an infinite heat capacity, that is
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Thus, it mimics a bath composed of an infinite collection of
harmonic oscillators17 or one with an infinite number of
particles in a box.

Log Oscillators Sampling the Maxwell Distribution.
Yet another peculiar feature of the log oscillator is that the

Figure 1. Black solid lines: Phase space trajectories of a log oscillator at
energies of E = 1/2, 1, 3/2, ..., 9/2; inner curves have lower energies.
Red dashed line: The momentum distribution function, eq 17. Here M
= 1 and kBT = 1.
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probability density f(P) to find it with momentum P is given by
the Maxwell distribution at temperature T

π= − −f P Mk T( ) (2 ) e P Mk T
B

1/2 /22
B (17)

This holds independent of its energy E. To see this, consider
the trajectory of the log oscillator of some energy E. The
probability to find the system at X,P is given by the
microcanonical distribution

ρ
δ

=
−
Ω

X P
E H X P

E
( , )

[ ( , )]

( )
log

log (18)

where δ(x) denotes Dirac’s delta function, and
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Therefore, the probability to find the log oscillator at
momentum P is obtained by the marginal distribution
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where we have used δ(y) = dθ(y)/dy.
From eq 17, it is immediate to obtain T(E) = ⟨P2⟩E/MkB = T,

in accordance with eq 15.
The red dashed curve in Figure 1 illustrates eq 17. When

projecting the microcanonical distribution of the log oscillator
onto the P axis, the Maxwell distribution is obtained, regardless
of the energy.

■ METHOD I
The central feature of a thermal bath is that its heat capacity is
infinite; hence, in this sense, a single log oscillator does indeed
act like a thermal bath. On the basis of this observation, it is
reasonable to expect that when a system interacts weakly with a
log oscillator, the latter should induce thermostatted dynamics
at temperature T in the system.
That this is indeed the case can be seen formally in the

following manner.5 Consider the total Hamiltonian
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is the system Hamiltonian, and h(x,X) is a weak interaction
term that couples the system to the log oscillator. Under the
assumption that the total dynamics are ergodic, the probability
density function p(x,p) for finding the system at (x,p) reads18
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where Etot is the total energy of the compound system and

∫ δΩ = −E X P E H X Px p x p( ) d d d d [ ( , , , )]tot tot (24)

is the density of states of the compound system. Note that the
shape of the distribution p(x,p) is given by the numerator,
whereas the denominator only represents a normalization
factor. Thus, from the fact that the density of states of a log
oscillator is exponential in E/kBT (see eq 19), it immediately
follows that
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where Z(T) = ∫ dx dp e−HS(x,p)/kBT. Thus, the constant temper-
ature equations of motion read
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where ∂x denotes the gradient operator in the x space and ∂X is
a short notation for ∂/∂X. Note that for h(x, X) = 0, that is, in
the absence of interaction, the system undergoes constant
energy dynamics.

Illustration. Reference 5 illustrates the numerical imple-
mentation of this method for small systems composed of few
particles contained in a box and interacting through a repulsive
hard-core potential
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The main limitation of this method comes from the fact that, in
practical realizations, the logarithmic potential needs to be
truncated at low values of X, for example, by substituting it with

φ = +
X

k T X b
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2 2
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This truncation results in a deviation of the single-particle
velocity distribution from the target Maxwell distribution. This
deviation becomes more and more pronounced as the number
of particles in the system increases (see Figure 3 of ref 5) and
can be compensated for by rising the system energy as E ≈
f kBT/2, where f is the number of degrees of freedom of the
system. This energy rising, however, is accompanied by an
exponential increase of the corresponding length and time
scales involved in the dynamics, which go as eE/kBT ≈ ef/2, thus
limiting the applicability of the method to systems with a small
number of degrees of freedom.
A prominent novel aspect of this method when compared to

the other existing methods discussed in the literature is that it
can be implemented not only with computer simulations but
also in analogue simulations, provided that one is able to
implement the Hamiltonian in eq 21 in a real experiment.5

Reference 6 discusses such an experimental feasibility of this
method using cold atoms and laser fields.
Figure 2 illustrates this method for a system composed of

either one particle or two particles in a one-dimensional box
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performing short-range, hard-core collisions (eq 26) with the
truncated log oscillator in eq 27. It reports the probability ρ(ES)
of finding the particle at energy ES during a long simulation run.
A symplectic integrator was used to produce the trajectory of
the total system, and the initial condition was sampled
randomly from the shell Etot = 5kBT. The numerically
computed probability (relative frequency) ρ(ES) is compared
to the expected Gibbs distribution calculated from eq 25
according to the standard rules of probability theory as

∫
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where ΩS(ES) is the density of states of the system. In
calculating it, we neglect the contribution coming from the
short-range interaction, thus obtaining ΩS(ES) ∝ ES

n/2−1, with n
= 1, 2 being the number of particles in the system. For n = 1,
this yields ΩS(ES) ∝ ES

−1/2, while for n = 2, we find that ΩS(ES)
is a constant. The agreement between theory and simulations is
excellent. Further details and discussion can be found in refs 5
and 10.

■ METHOD II
An alternative method to produce thermostatted dynamics is to
couple the system to a free particle via a logarithmic interaction
potential. More explicitly, the statement is that the extended
Hamiltonian
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produces thermostatted system dynamics, provided the
(otherwise arbitrary) function g(x,p) induces ergodic dynamics
of the total system.
To demonstrate this, consider the probability ρ(x,p,X,P) to

find the total system at (x,p,X,P). Thanks to the ergodic
assumption, this is given by the microcanonical distribution
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Making the change of variable X′ = X − g(x,p), one obtains,
irrespective of g(x,p)
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Note that the numerator is the log oscillator density of states
Ωlog taken at Etot −HS. Therefore, just as with Method I
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The constant temperature equations of motion of this second
method read
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Note that for T = 0, the system undergoes constant energy
dynamics.
It is important to repeat that thermostatted system dynamics

are only reached if the global dynamics are ergodic. As
illustrated below, this requirement is however not too
restrictive because we have the freedom to choose the function
g(x,p).

Illustration. To illustrate the method, we considered a
quartic oscillator

= +H
p
m

kx
2 4S

2 4
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We simulated the compound system dynamics using a
symplectic integrator with a time step of Δt = 10−2b(M/
kBT)

1/2 for a total simulation time of = 1.287 × 109Δt. In our
simulations, we set kBT, b, andM as units of energy, length, and
mass, respectively. We took (x0,X0,p0,P0) = (2,−1,1,−1) as the
initial condition, k = kBTb

−4, and m = M. We computed the
probability distribution function ρ(ES) to find the system at
energy ES and compared it with the target Gibbs distribution,
eq 28. The latter reads
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where the factor ES
−1/4 stems from the density of states of the

quartic oscillator, ∫ dx dp δ[ES − p2/2m + kx4/4] ∝ ES
−1/4. We

further computed the probability distribution function to find
the system with a velocity of modulus v and compared it to the
target Maxwell distribution, reading

Figure 2. Illustration of Method I. Normalized probability density
function of energy for a system of n particles in a 1D box performing
short-ranged collisions (eq 26) with a truncated log oscillator (eq 27)
of strength kBT = 15ε. The total simulation energy is Etot = 5kBT, the
box length is L = 10eEtot/kBTσ ≃ 1484σ, and the log oscillator cutoff
length was set to b = σ. Black triangles: Numerical simulation with n =
1. Black dots: Numerical simulation with n = 2. Blue line: Gibbs
distribution at temperature kBT = 15ε for n = 1, as it follows from eq
28. Red line: Corresponding Gibbs distribution at temperature kBT =
15ε for n = 2, as it follows from eq 28. This figure has been provided
by Fei Zhan and is adapted here from our ref 10.
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Following ref 5, the numerical evaluation of ρ(ES) proceeded
by recording the value of ES, once every 100 time steps. We
divided the energy interval [0,Etot] into 50 bins and counted
how many times ES was within each bin, so as to construct a
histogram, which, after normalization, gives an approximation
to the actual ρ(ES). A similar procedure was followed for the
calculation of p(v).
To begin with, we chose g(x,p) = x. Notwithstanding the

long integration time, the method fails to converge to the
desired target distributions; see Figure 3a. This means that with
the choice of g(x,p) = x, the overall dynamics is not sufficiently
ergodic to make the system sample the canonical ensemble.
The ergodicity of the overall dynamics can be improved by

choosing a different form for the function g(x,p). Panel (b) of
Figure 3 reports the result of a dynamical simulation of the
same system as that in panel (a), with the same time step Δt
and simulation time but with g(x,p) = kx4/4, namely, we chose
g(x,p) as the system potential energy. While we found very
good agreement between the computed energy probability
distribution function and the Gibbs distribution, the agreement
between the computed absolute velocity distribution and the
target Maxwell distribution is still not very good. With g(x,p) =
sin(kx4/4) (see in panel (c) of Figure 3), reasonably good
agreement between simulation and Maxwell distributions was
achieved, while the agreement between the energy distribution
and the Gibbs distribution was excellent. Excellent agreement
was achieved with longer simulation times; see in panel (d) of
Figure 3.

■ REMARKS
As emphasized above, ergodicity of the global dynamics
constitutes the crucial prerequisite for the presented methods
to work properly. Ergodicity suffices, and no stronger
condition, for example, the system being mixing,19 is necessary.
All that is needed for the system to sample the Gibbs
distribution is that the compound system samples the
microcanonical distribution. It should also be mentioned that
ergodicity is a sufficient but not necessary condition for the
methods to work, namely, in some cases, the methods might
work even if ergodicity does not hold.
In Method I, whether ergodicity holds depends on the

specific choice of the interaction energy h(x,X), which must be
chosen in any case weak. In ref 5, h(x,X) was chosen as a hard-
core, short-range repulsive interparticle potential (eq 26), and
that was sufficient for achieving thermostatting. In Method II,
the ergodicity property depends on the choice of g(x,p), which
in turn fixes the interaction term kBT ln|g(x,p) − X|. It must be
emphasized however that our analysis shows neither formally
nor numerically that the total dynamics are indeed ergodic in
the examples presented but only that, loosely speaking, the
system appears “ergodic enough” for the methods to work.
Note that in method II, the interaction term kBT ln|g(x,p) −

X| gives rise to long-range forces. Therefore, at variance with
the implementation of Method I in ref 5, where the system and
the “bath” interacted sporadically through almost instantaneous
collisions, in Method II, they constantly influence each other
due to the long-range force.
We have shown how different choices of g(x,p) can result in

different ergodic properties of Method II. An important subject

Figure 3. Illustration of Method II. Each panel reports the analytically
and numerically computed probability distribution for the system
energy ES (rescaled by the total fixed energy Etot) and system speed v,
rescaled by the maximal speed vmax = (2Etot/m)

1/2, for various choices
of g(x,p). Panel (d) has the same g(x,p) as panel (c) but for a longer
simulation time.
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for further studies would be to derive a set of criteria for
appropriately choosing g(x,p), given the properties of the
system, as encoded in its Hamiltonian HS(x,p).
Besides choosing h(x,X) or g(x,p), the ergodicity of both

methods can be improved also by substituting the log oscillator
with a multidimensional log oscillator, which will add more
degrees of freedom to the whole system; see the Appendix.
In implementing Method II, we have replaced the

logarithmic potential with the same truncated potential (eq
27) used for Method I. Therefore, just as with Method I, this
truncation can lead to deviations to the target Maxwell
distribution when the number of particles in the system
increases. An interesting line for future studies would then be to
put forward implementations that avoid the truncation and
treat the singularity by some other means, which might allow
for applying the methods to large systems as well.

■ CONCLUSIONS

With this study, we presented two Hamiltonian schemes that
allow a system HS to sample a canonical Gibbs distribution.
This being so, the method of thermostatting is achieved here in
a deterministic time-reversal invariant and symplectic manner.
Both schemes rest upon the spectacular thermodynamic
property of logarithmic oscillators of having an infinite heat
capacity. Hence, in our methods, a single log oscillator
substitutes an infinite heat bath coupled weakly to the system.
With our Method I, we couple the system weakly to a log
oscillator where the absolute temperature T denotes the
strength of the logarithmic potential. In Method II, we consider
a composite system of HS and a free particle that is coupled
with a long-range log interaction of strength T to the system of
interest HS. Note that Gibbs thermalization occurs here
independent of the interaction strength T, being either strong
(large T) or weak (small T). A prominent property inherent to
both schemes is that these are manifestly Hamiltonian.9 Also, at
variance with the Nose ́ Hamiltonian (eq 1), our Hamiltonian
functions possess standard (i.e., coordinate-independent)
kinetic energy contributions. This fact in turn allows not only
an implementation with numerical means but also a physical
realization. This advantage should be contrasted nevertheless
with the limitation that both methods inherit from performing a
truncation of the logarithmic potential as in eq 27, which, as
thoroughly emphasized in our previous accounts,5,6 limits an
efficient thermostatting to systems with a small number of
degrees of freedom. Notably, the investigation of such
nanoscale systems is in the limelight of present day research
activities.20−23

■ APPENDIX. F-DIMENSIONAL LOG OSCILLATORS

Consider an f-dimensional log oscillator

= + | |
H

M
fk T

b
X P

P X
( , )

2
lnlog

2

B (37)

where X = (X1,X2,...,Xf) and P = (P1,P2,...,Pf). For the phase
volume Φlog(E) = ∫ H≤E dX dP, one obtains
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where Γ denotes the Gamma function. Therefore, the density
of states is exponential in E/kBT, reading
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Consequently, the methods presented above can also be
implemented with an f-dimensional oscillator replacing the one-
dimensional oscillator. In this case, Method I becomes
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and Method II becomes
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where g, a short notation for g(x,p) = (g1(x,p), ..., gf(x,p)), is an
f-dimensional field.
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