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We numerically investigate the influence of intrinsic channel noise on the dynamical response of delay-
coupling in neuronal systems. The stochastic dynamics of the spiking is modeled within a stochastic
modification of the standard Hodgkin–Huxley model wherein the delay-coupling accounts for the finite
propagation time of an action potential along the neuronal axon. We quantify this delay-coupling of the
Pyragas-type in terms of the difference between corresponding presynaptic and postsynaptic membrane
potentials. For an elementary neuronal network consisting of two coupled neurons we detect character-
istic stochastic synchronization patterns which exhibit multiple phase-flip bifurcations: The phase-flip
bifurcations occur in form of alternate transitions from an in-phase spiking activity towards an anti-
phase spiking activity. Interestingly, these phase-flips remain robust for strong channel noise and in turn
cause a striking stabilization of the spiking frequency.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Time-delayed feedback presents a common mechanism which
is found in many biological systems including neuronal systems.
Signal transmission time delays in neuronal systems either result
from (i) chemical processes in the neuronal synapses where neuro-
transmitters are released and diffusively overcome the synaptic
cleft and/or (ii) from the finite propagation speed of electrical exci-
tations along the neuronal axon. Time delays stemming from
chemical synapses are of the order of a few milliseconds, while
the axonal conduction delays in both, delay-coupled neurons and
autaptic feedback loops, reach values up to tens of milliseconds
[1–4].

As the time scale of the delayed coupling and of the neuronal
dynamics become comparable, the delay-coupling gives raise to
peculiar synchronization phenomena [5]. In particular, phase syn-
chronization phenomena in neuronal systems are commonly
thought to be the basis for many biological relevant processes
occurring in the brain [6,7]. Synchrony of neurons from small brain
regions up to large-scale networks of different cortices comes
along with transmission time delays. Theoretical and computa-
tional studies on neuronal networks with delay-coupling recently
highlighted the occurrence of so-called phase-flip bifurcations
[8–10]. The ensemble activity of the coupled neurons change
abruptly from in-phase to anti-phase oscillations or vice versa.

With this work we research this objective by considering the
influence of internal noise. It is an established fact that noise leads
to various prominent effects in neuronal dynamics [11]. Some
typical examples that come to mind are stochastic resonance fea-
tures [12–15], and noise-assisted synchronization [5,16–18]. With-
in our work the intrinsic noise is due to the stochastic gating of the
ion channels, i.e. the so-called channel noise which is inherently
coupled to the electrical properties of the axonal cell membrane
[19–21]. Interestingly, it has been shown that intrinsic channel
noise does not only lead to the generation of spontaneous action
potentials [22], but as well affects the neuronal dynamics at differ-
ent levels, namely: (i) it can boost the signal quality [14,15], (ii)
enhance the signal transmission reliability [23], (iii) cause fre-
quency- and phase-synchronization features [24–28] and (iv)
may result in a frequency stabilization [29], to name but a few.

The present work is organized as follows: In Section 2 we intro-
duce the biophysical model. We review the standard Hodgkin–
Huxley model and its generalizations with respect to intrinsic
channel noise and a delay-coupling. Numerical methods for simu-
lation are introduced after that. In Section 3, the dynamics of a net-
work of two delay-coupled Hodgkin–Huxley neurons is explored
both, in the deterministic limit and under consideration of channel
noise. As a comparison, we retrospect on the previous work on a
single neuron subjected to a delayed feedback loop resulting from
autapse in Section 4. Our conclusions are given in Section 5.
2. Biophysical model setup

We consider a minimal building block of a neuronal network
composed of two coupled neurons. As an archetype model for
nerve excitation of the individual neuron, we utilize a stochastic
generalization of the common Hodgkin–Huxley model. The
stochastic generalization accounts for intrinsic membranal
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conductance fluctuations, i.e. channel noise, being caused by ran-
dom ion channel gating. Moreover, we account for a delay in the
coupling which accounts for a finite propagation time of the action
potential along the axon.

2.1. Hodgkin–Huxley-type modelling of two delay-coupled neurons

According to Hodgkin and Huxley, the dynamics of the mem-
brane potential Vi with i ¼ 1;2 of two coupled neuronal cells is gi-
ven by Hodgkin and Huxley [30]

C
d
dt

Vi þ GKðnÞðVi � VKÞ þ GNaðm;hÞðVi � VNaÞ þ GLðVi � VLÞ ¼ IiðtÞ:

ð1Þ

Here, Vi denotes the membrane potential of the i-th cell. The stim-
ulus IiðtÞ acting on the i-th neuron reads:

IiðtÞ ¼ Ii; extðtÞ þ Isi;jðtÞ; i; j ¼ 1;2; i – j; ð2Þ

where the bi-directional delay-coupling of Pyragas-type [31] be-
tween the two neurons is assumed to be linear in the difference
of the membrane potentials of a primary, i-th neuron at time t
and a secondary, j-th neuron at an earlier time, t � s. The coupling
thus reads:

Isi;jðtÞ ¼ j ½Vjðt � sÞ � ViðtÞ�; ð3Þ

where j corresponds to the coupling strength and s denotes the fi-
nite delay time. The coupling defined in Eq. (3) is of ‘‘electrotonic’’
type, i.e. we consider an idealized situation wherein the coupling
is proportional to the difference of presynaptic and postsynaptic
membrane potentials. This kind of coupling then corresponds to
so-called gap-junctions which allow the bi-directional transport of
ions and small molecules from one neuronal cell into another. Un-
like the conductance of chemical synapses, the conductance of
gap-junctions is independent of the presynaptic and postsynaptic
membrane potentials and can therefore be modelled by the
constant coupling parameter j. Possible chemical mechanisms
occurring at the synaptic cleft are assumed to be instantaneous as
the time scale for signal propagation along the neuron‘s axon is
much larger than the corresponding one for the transport process
in the synaptic cleft. Note, that the delayed stimulus in Eq. (3) re-
sults in an excitatory coupling mechanism in which the spiking of
neuron i at an earlier time t � s time favors the initiation of a action
potential of the other cell at time t.

In addition to the delayed, bilinear coupling current we apply a
constant current stimulus Ii;ext on the neurons, mimicking the com-
mon stimulus of the neuronal environment on the so considered
two-neuron network. In absence of the bi-directional coupling
the dynamics of each neuron exhibits a bifurcation scenario exhib-
iting a subcritical Hopf bifurcation. As a consequence, the membra-
nal dynamics displays (i) a stable fix-point, i.e. the so-called rest
state for Ii;ext < I1 � 6:26 lA=cm2, (ii) a stable spiking solution for
Ii;ext > I2 � 9:763 lA=cm2 and (iii) a bistable regime for which the
stable rest state and a stable oscillatory spiking solution coexist,
i.e. for I1 < Ii;ext < I2 [32–36]. In particular, for Ii;ext ¼ 0 the mem-
brane potential is V rest ¼ �65:0 mV.

Throughout this work the membrane potentials are measured
in units of mV and time in units of ms. For a squid giant axon,
the parameters in Eq. (1) read VNa ¼ 50 mV, VK ¼ �77 mV,
VL ¼ �54:4 mV, and C ¼ 1 lF/cm2. Furthermore, the leakage con-
ductance is assumed to be constant, GL ¼ 0:3 mS/cm2. On the con-
trary, the sodium and potassium conductances are controlled by
the voltage-dependent gating dynamics of single ion channels
and are proportional to their respective numbers. In the
Hodgkin–Huxley model [30], the opening of the potassium ion
channel is governed by four identical activation gates, being
characterized by the opening probability n. The channel is open
when all four gates are open. In the case of sodium channel, the
dynamics is governed by a set of three independent and identical
fast activation gates (m) and an additional slow, so-termed inacti-
vation gate (h). The independence of the gates implies that the
probability of the occurrence of the conducting conformation is
PK ¼ n4 for a potassium channel and PNa ¼ m3 h for a sodium chan-
nel, respectively. In a mean field description, the macroscopic
potassium and sodium conductances then read:

GKðnÞ ¼ gmax
K n4; GNaðm; hÞ ¼ gmax

Na m3h; ð4Þ

where gmax
K ¼ 36 mS/cm2 and gmax

Na ¼ 120 mS/cm2 denote the maxi-
mal conductances (when all channels are open). The two-state,
opening–closing dynamics of the gates is governed by the voltage
dependent opening and closing rates axðVÞ and bxðVÞ ðx ¼ m;h;nÞ,
i.e. [30]

anðVÞ ¼
0:01ðV þ 55Þ

1� exp½�ðV þ 55Þ=10� ; ð5Þ

bnðVÞ ¼ 0:125 exp½�ðV þ 65Þ=80�; ð6Þ

amðVÞ ¼
0:1ðV þ 40Þ

1� exp½�ðV þ 40Þ=10� ; ð7Þ

bmðVÞ ¼ 4 exp½�ðV þ 65Þ=18�; ð8Þ
ahðVÞ ¼ 0:07 exp½�ðV þ 65Þ=20�; ð9Þ

bhðVÞ ¼
1

1þ exp½�ðV þ 35Þ=10� : ð10Þ

Hence, the dynamics of the opening probabilities for the gates read:

_x ¼ axðVÞ ð1� xÞ � bxðVÞx; x ¼ m;h;n: ð11Þ

The voltage Eq. (1), Eq. (4) and the rate equations of the gating
dynamics Eqs. (6)–(11) then constitute the original, strictly deter-
ministic Hodgkin–Huxley model for spiking activity of the squid
giant axon.

2.2. Modelling channel noise

In this study, however, each channel defines a bistable stochas-
tic element which fluctuates between its closed and open states. As
a consequence, the number of open channels undergoes a birth–
death stochastic process. Applying a diffusion approximation to
this discrete dynamics, the resulting Fokker–Planck equation can
be obtained from a Kramers–Moyal expansion [37,38]. The corre-
sponding Langevin dynamics, interpreted here in the stochastic
Itô calculus [39], reads:

d
dt

x ¼ axðVÞ ð1� xÞ � bxðVÞxþ nxðtÞ; x ¼ n;m; h: ð12Þ

It is driven by independent Gaussian white noise sources nxðtÞ of
vanishing mean which account for the fluctuations of the number
of open gates. The (multiplicative) noise strengths depend on both,
the membrane voltage and the gating variables. Explicitly, these
noise correlations assume the following form for a neuron consist-
ing of NNa sodium and NK potassium ion channels:

hnmðtÞnmðt0Þi ¼
ð1�mÞam þmbm

NNa
dðt � t0Þ; ð13Þ

hnhðtÞnhðt0Þi ¼
ð1� hÞah þ hbh

NNa
dðt � t0Þ; ð14Þ

hnnðtÞnnðt0Þi ¼
ð1� nÞan þ nbn

NK
dðt � t0Þ: ð15Þ

The fluctuations of the number of open ion channels result in
conductances fluctuations of the cell membrane eventually leading
to spontaneous action potentials. These spontaneous spiking
events occur even for sub-threshold, constant external current
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stimuli, i.e. for Ii;ext < I1. If the times of spike occurrences are given
by tn with n ¼ 0;1;2; . . . ;N, where N is the number of observed
spikes, the interspike interval between two succeeding spike is
Tn ¼ tn � tn�1 (n ¼ 1; ::;N). For the case of a single Hodgkin–Huxley
neuron the distribution of these interspike intervals exhibits a
peak-like structure with the peak located around the intrinsic time
T intrinsic, which is determined by the limit cycle of the deterministic
dynamics [22].

The strength of the channel noise scales inversely with the
number of ion channels. Consequently, the threshold for excitation
can be reached more easily with increasing the noise strength (i.e.
smaller system size). In order to characterize the spontaneous
spiking, we introduce the mean interspike interval

hTi :¼ lim
N!1

1
N

XN

n¼1

Tn: ð16Þ

With increasing number of ion channels, i.e. decreasing channel
noise level, the mean interspike interval increases exponentially
for a vanishing current stimulus Iext ¼ 0 [22].

In presence of a finite positive constant current stimulus Iext, the
mean interspike interval is always smaller than that for the undri-
ven case [40]. Moreover, for supra-threshold driving, i.e. Iext > I2,
noise-induced skipping of spikes is observed. Accordingly, the
channel noise does not only favor the generation of spikes, but
can as well suppress deterministic spiking. For intermediate con-
stant current driving, i.e. I1 6 Iext 6 I2, for which the Hodgkin–
Huxley model exhibits a bi-stability between a spiking and a
non-spiking solution, channel noise results in transitions between
these two states.

2.3. Numerical methods

Our numerical results are obtained via the numerical integra-
tion of the stochastic dynamical system given by Eqs. (1)–(12). Par-
ticularly, we apply the stochastic Euler-algorithm in order to
integrate the underlying stochastic dynamics [41]. An integration
step Dt ¼ 0:01 ms has been used in the simulations; for the gener-
ation of the Gaussian distributed random numbers, the Box–Muller
algorithm [42] has been employed. The occurrence of a spiking
event in the voltage signal ViðtÞ is obtained by upward-crossing
of a detection threshold value V0 ¼ 0. It turns out that this thresh-
old can be varied over a wide range with no influence on the result-
ing spike train dynamics.

To ensure that throughout all times the non-negative gating
variables take on values solely between 0 (all gates are closed)
and 1 (all gates are open), we implemented numerically reflecting
boundaries at 0 and 1. Throughout this work we assume a constant
ratio of the numbers of potassium and sodium channels which re-
sults from constant ion channel densities. For this work we have
assumed channel densities of 20 potassium channels and 60 so-
dium channels per lm2.

In performing the numerics we initially prepare each neuron in
the rest state voltage value V rest. By applying a short current pulse
on one of the two neurons, we initialize an action potential in this
neuron which later on can be echoed by the delay-coupling.

3. Synchronization

In order to investigate the temporal correlation between the
spiking statistics of the two neurons, we apply the linearly interpo-
lated, instantaneous time-dependent phase UiðtÞ of a stochastic
spiking process of neuron i (i ¼ 1;2) [17,18]; i.e. for t 2 ½ti;n; ti;nþ1�

UiðtÞ ¼ 2pnþ 2p t � ti;n

ti;nþ1 � ti;n
; n ¼ 0;1;2; . . . Ni � 1; ð17Þ
where ti;n denotes the n-th spiking of neuron i and Ni is the total
number of spike events in the dynamics of neuron i. Note, that each
spike occurrence contributes to the overall phase with 2p. Between
two succeeding spikes the phase is obtained by linear interpolation.

Note, that in accordance with this definition of the phase, the
angular spiking frequency xi is given by:

xi ¼ lim
t!1

UiðtÞ
t

: ð18Þ

This frequency xi and the mean spiking rate being the inverse of the
mean interspike interval hTii in Eq. (16) are equivalent up to a con-
stant factor; i.e. we obtain,

xi¼:
2p
hTii

: ð19Þ

Due to this equivalence we present our simulation results solely in
terms of the mean interspike interval hTi.

In the pursuit for a measure for the synchronization of spike
occurrences in the two coupled neurons, we consider the phase dif-
ference between the two spike trains, namely:

DUðtÞ ¼ ðU1ðtÞ �U2ðtÞÞ mod 2p: ð20Þ

It turns out that the phase difference DUðtÞ numerically tends, after
transient effects have faded away, for t !1 to a value that depends
on various parameters such as the coupling strength, the delay time,
the total integration time and to some extent (due to inherent irreg-
ular, chaotic behavior) even on the time step used in our integration
step. Accordingly, we observe in the long time limit that x1 ¼ x2

and hTi1 ¼ hTi2 ¼: hTi.

3.1. Deterministic limit

We consider first the deterministic limit by letting NNa !1 and
NK !1. In doing so, the occurrence of repetitive firing was sys-
tematically analyzed by varying the two coupling parameters, i.e.
the coupling strength j and the delay time s.

For Iext ¼ 0, i.e. for a subthreshold constant current driving, the
resulting mean interspike interval hTi is depicted in Fig. 1(a). For
the coupling parameters taken within the white region of
Fig. 1(b), the system relaxes to the non-spiking rest state. However,
in the regime of the spiking dynamics a spike in any of the two
neurons generates a subsequent spike in the other neuron. Conse-
quently, repetitive, but alternating, firing can be observed for both
neurons. The mean interspike interval hTi increases linearly with
increasing delay time s, cf. Fig. 1(a). In particular,

hTi � 2ðTact þ sÞ; ð21Þ

where Tact � 2ms is the activation time which is the time between
the time the stimulus of delayed coupling sets in and the occurrence
of the stimulated spiking. The factor ‘2’ in Eq. (21) is due to the
alternating spiking of the two neurons. Note, that the time between
succeeding spiking events of the network is the delay time plus the
activation time.

In Fig. 2 the steady-state phase difference DU is depicted as
function of the coupling strength j and the delay time s. For large
delay times s the neuronal dynamics of an individual neuron pos-
sesses after each spiking event sufficient time to relax back to its
rest state before the delayed stimulus caused by the spiking event
of the other neuron sets in. This results in an alternating firing
dynamics of the two neurons. The spiking of the two neurons
therefore exhibits a constant phase shift of p, i.e. the spiking event
of one neuron is almost perfectly located between two succeeding
spiking events in the other neuron. However, for delay times that
are of the order, or are even smaller than the refractory time, an
irregular behavior of the Hodgkin–Huxley dynamics emerges, as
it is to be expected in presence of finite delay. This in turn is



Fig. 1. The interspike interval hTi for the spiking of one of the two delay-coupled standard Hodgkin–Huxley neurons with no external constant current stimulus, i.e. Iext ¼ 0, as
function of the delay time s for different coupling strengths j in panel (a) and as function of both parameters of the delay-coupling, i.e. the coupling strength j and the delay
time s, in panel (b). The color encoding for the phase diagram in panel (b) is shown in the color bar: the darker the color the shorter is the interspike interval hTi. For white
regions, the mean interspike interval hTi tends to infinity and no repitive firing is observed.

Fig. 2. The phase difference DU, cf. Eq. (20), for two delay-coupled standard Hodgkin–Huxley neurons for Iext ¼ 0, cf. Eqs. (1)–(11), is depicted as function of the delay time s
in panel (a). In panel (b) the phase difference DU is depicted within a phase diagram upon varying the two coupling parameters j and s. In the white region, there is no
repetitive firing, cf. Fig. 1. In the red region the two neurons fire alternatingly, resulting in a phase difference of DU ’ p. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

52 X. Ao et al. / Mathematical Biosciences 245 (2013) 49–55
reflected in the numerically evaluated phase difference DU by a
noisy behavior that succeedingly smoothes for increasing large de-
lay times, yielding the afore mentioned asymptotic phase shift of p.
This result is corroborated with our numerics, as depicted with
Fig. 2.
3.2. Influence of channel noise

In Fig. 3 we depict the dependence of the mean interspike inter-
val hTi on the coupling parameter j and delay time s for three dif-
ferent levels of channel noise, i.e. different sets of ion channel
numbers NNa and NK. With increasing noise level, i.e. decreasing
number of ion channels, the sharp transition between the parame-
ter regime of repetitive spiking and non-repetitive spiking is
smeared out.

In addition, for considerable strong channel noise, distinct syn-
chronization patterns emerge, indicating a frequency locking sim-
ilar to the one observed for the autaptic case discussed in Section 4
below. In order to analyze the observed synchronization patterns
in greater detail, we depict the mean interspike interval hTi as
function of the delay time s for a fixed coupling strength
j ¼ 0:7 mS=cm2 in Fig. 5(a). We find that the mean interspike
interval varies with the delay time in an almost piecewise linear
manner, displaying sharp, triangle-like textures.

The distinct peak locations of the mean interspike interval hTi
can be explained by the number of spikes that match in accordance
with the intrinsic time T intrinsic a full propagation time length, given
by twice the delay time. The mean interspike interval hTi hence-
forth is proportional to the ratio of twice the delay time and the
number of spikes fitting into this very delay time interval, cf. Eq.
(21). Accordingly, channel noise results in a stabilization of the
interspike interval to an interval around the intrinsic time scale
of the Hodgkin–Huxley oscillator.

3.3. Phase-flip bifurcation

Note, that this phenomenon complies with similar pattern
appearing in the diagram for the phase difference, cf. Fig. 4. Fur-
thermore, we depict the phase difference DU in Fig. 5(b). These
sharp transitions are accompanied by pronounced noise-induced
phase-flips. At the corresponding phase-flip values at 0 and p the
spiking of the basic network changes from an in-phase towards
an anti-phase spiking: For DU � 0, both neurons spike simulta-
neously, implying synchronous firing, cf. Fig. 6.
4. Retrospect: frequency locking by an autaptic feedback loop

The observed frequency stabilization in the dynamics of a net-
work of two delayed coupled neurons shares it’s origin with the
frequency locking phenomenon in noisy neurons with an autaptic
feedback-loop. When neuronal dendrites establish an autapse, i.e. a
connection to the neuron’s own axon, a delayed feedback loop is
induced to the neuron’s dynamics. Such autosynapses, described
originally by Van der Loos and Glaser in 1972 [3] are a common



Fig. 3. The interspike interval hTi for the spiking of one of the two delay-coupled standard Hodgkin–Huxley neurons with no external constant current stimulus, i.e. Iext ¼ 0, as
function of the coupling parameters j and the delay time s. The mean interspike interval hTi is depicted for three different strengths of the channel noise: (a) strong intrinsic
channel noise with NNa ¼ 360; NK ¼ 120, (b) moderate intrinsic channel noise with NNa ¼ 3600; NK ¼ 1200 and (c) weak intrinsic channel noise with
NNa ¼ 36000; NK ¼ 12000.

Fig. 4. The steady-state phase difference DU for two delay-coupled stochastic Hodgkin–Huxley neurons for Iext ¼ 0 is depicted as function of the delay coupling parameters j
and s for three different noise strengths: (a) strong intrinsic channel noise with NNa ¼ 360; NK ¼ 120, (b) moderate intrinsic channel noise with NNa ¼ 3600; NK ¼ 1200 and
(c) weak intrinsic channel noise with NNa ¼ 36000; NK ¼ 12000. The stripes in panel (a) indicate noise-induced phase-flips, see text.

Fig. 5. In panel (a) the mean interspike interval hTi is depicted as function of the coupling time s for constant coupling strength j, Iext ¼ 0 and channel noise level
corresponding to numbers of ion channel: NNa ¼ 360 and NK ¼ 120. For the same parameters, the phase difference DU as function of the delay time s is depicted in (b).
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phenomenon found in about 80% of all analyzed pyramidal cells in
the cerebral neocortex of human brain [4].

Auto-synapses establish a time-delayed feedback mechanism
on the cellular level [3]. From a mathematical point of view, autap-
tic connections introduce new time scales into the single neuron
dynamics which gives raise to peculiar frequency looking behavior
[29]. Our modelling, cf. Eqs. (1)–(12), captures the stochastic aut-
apse phenomena for i ¼ j and only one neuron.

In the limit of vanishing channel noise by letting NNa !1 and
NK !1, the spiking period is given by the delay time s plus the



Fig. 6. The simulated time-course of the membrane potentials for the two delayed coupled Hodgkin–Huxley neurons is depicted: (a) for the parameters j ¼ 0:7 mS=cm2 and
s ¼ 8 ms, the dynamics shows alternating, i.e. anti-phase, spiking, (b) for j ¼ 0:7 mS=cm2 and s ¼ 15 ms synchronous, in-phase firing of the two neurons is observed.

Fig. 7. The interspike interval hTi for the standard Hodgkin–Huxley neuron with an autaptic feedback loop, cf. Eqs. (1)–(11). In panel (a) the dependence of the interspike
interval hTi on the delay time s is depicted for different coupling strengths j. In the regime of repetitive firing the mean interspike interval hTi grows linearly with the delay
time s. In the phase diagram shown in panel (b) the dependence of the interspike interval hTi on the coupling strength j and the delay time s is depicted. The color bar next to
panel (b) gives the color encoding for the values of the interspike intervals. The white region corresponds to the situation for which the externally initialized spike is not
echoing itself and, formally, hTi ! 1.

Fig. 8. The mean interspike interval hTi for the stochastic Hodgkin–Huxley neuron with an autaptic feedback loop, cf. Eqs. (1)–(14). The channel noise level corresponds to
NNa ¼ 360 and NK ¼ 120. Similarly to Fig. 7, hTi is shown as function of the delay time s in panel (a), and the corresponding phase diagram is depicted in panel (b). The color
bar gives the color encoding of the mean interspike intervals hTi.
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activation time Tact, being the time needed for creating the next
spike event after the delayed stimulus did set in, cf. Fig. 7(a). Note,
that in presence of the autaptic delay, the fixed-point solution of
the unperturbed Hodgkin–Huxley dynamics remains stable and
the delayed stimulus is excitatory.

In presence of finite channel noise, however, there are two com-
petitive mechanisms at work: (i) there are spiking repetitions due
to the delay-coupling and (ii) noise-induced generation of spikes or
(iii) noise-induced skipping of spikes. The interplay between these
mechanisms becomes evident when the distribution of the inters-
pike intervals is considered. In particular, the interspike interval
histogram (ISIH) exhibits a bimodal structure, exhibiting two
peaks, see in Fig. 6 in Ref. [29]. Upon specific values of the noise
strength determined by the number of ion channels and the
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coupling parameters j and s the bimodal structure shows distinct
differences: Due to first mechanism the delay coupling leads to a
significant peak around the delay time s. Via the noise-induced
mechanisms, the channel noise results in a broad peak around
the intrinsic time scale T intrinsic.

However, for considerable strong coupling strengths the bimo-
dal structure collapses to an unimodal one and a frequency-locking
phenomena takes place. The mean interspike interval hTi becomes
bounded by a finite range of values around the intrinsic time scale,
but still shows a striking dependence on the delay time s, cf. Fig. 8.
In particular, the mean interspike interval hTi varies with the delay
time s in an almost piecewise linear manner, displaying sharp tri-
angle-like textures, cf. Fig. 8(a) for j ¼ 0:7 mS=cm2 and s > 10 ms.

5. Conclusions

With this work we have investigated the effects of intrinsic
channel noise on the spiking dynamics of an elementary neuronal
network consisting of two stochastic Hodgkin–Huxley neurons. In
doing so, we invoked some idealistic simplifications such as the
use of bilinear coupling with identical time delays and equal cou-
pling strengths. The finite transmission time of an action potential
traveling along the neuronal axon to the dendrites is the cause for
the delay-coupling to the other neuron. Physically this transmis-
sion time derives from the finite length to the connecting dendrites
and the finite propagation speed.

A Pyragas-like delayed feedback mechanism has been employed
to model the delayed coupling. The two basic parameters for the
delay-coupling are the coupling strength j and the delay time s.
In terms of these two parameters the delayed feedback mechanism
results in a periodic, repetitive firing events of the neurons.

Apart from this repetitive firing, the delay-coupling introduces
intriguing time scales. Particularly, we detect a noise-induced lock-
ing of the spiking rate to the intrinsic frequency of the system. Con-
sequently, the delayed feedback mechanism serves as a control
option for adjusting the interspike intervals; this feature may be
of importance for memory storage [43] and stimulus locked
short-term dynamics in neuronal systems [44]. One may therefore
speculate whether ubiquitous intrinsic channel noise in combina-
tion with the autapse phenomenon is constructively harvested by
nature for efficient frequency filtering.

Moreover, the emergence of a correlation between the firing
dynamics of the two delayed coupled neurons has been studied
in terms of stochastic phase synchronization. The dynamics of
two coupled Hodgkin–Huxley neurons exhibits noise-induced
phase-flip bifurcations. At these phase-flip bifurcations the phase
difference changes abruptly and the spiking of the neuron switches
from an in-phase spiking to an anti-phase spiking, or vice versa.
These phase-flips are the direct result of the influence of channel
noise. The observed phase-flips thus may possibly assist the fact
of a coexistence of various frequency rhythms and oscillation pat-
terns in different parts of extended neuronal networks, as for
example it is the case for the brain.
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