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We consider
noise.

a nonequilibrium, bistable

a potential well) is evaluated in the

electronic circuit which accurately mimics the bistable system has been constructed.

measurements on this circuit

theory, which indicate an exponential increase of the MST with increasing noise
is the clear

This observed exponential dependence
process of escape from the well.

Recent years have witnessed an increasing

interest in the stochastic behaviour of non-

equilibrium systems coupled to a fluctuating

1

external environment. The influence of these

fluctuations on nonlinear systems is not triv-

ial,2 For example, it has recently been real-

ized that the usual Fokker—Planck descriptions
are generally beset with difficulties for col-
ored noise problems (or systems with state space
dimension d > 2).3

studied the bistable

We have system defined

by
X = ax - b¥ +E(t) (1)

with the time correlated noise

system exposed - to external, additive,
A new approximate theory, which results in a nonlinear Fokker-Planck type equation capable
of accurately modeling the long time dynamics 1s constructed, and the mean sojourn time

Gaussian, colored

(MST) (in

limits of weak noise and small correlation time. An
Experimental

are in good quantitative agreement with the predictions of the

correlation time.

signature that an Arrhenius law governs the

D
E(t) E(s)> = Jexp - jt-s|h 2)

both experimentally, as described below, and
theoretically, using a new approximate procedure
suggested by previous work.* The rate of change

of the single event probability py(x) of the
bistable, colored dynamics obeys the exact equa-
tion®

pe(x) o bx3)
X) = - (ax - bx
Pt ?dx Pt

D 32
+;6—7@-J<£> ds exp - (t-s)/t
(3)
& (x(t) - %) i) 5
. x - x) ——=2
8 (8)
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where the functional derivative (8x(t)/8E(s))

obeys the integral equation

8x(t) 8x(t)

_——l = - 1 - ———

TS 6(t-s){ +£d1: (a - 362 (x)) 5;(5)}
(4)

Upon repeated use of (4) we can rewrite the

average in (3) in the form

<Bx(t) =) 1 + ftdtl(a -3bx2 (t1)
o]

T (5
(1 +} drp(a = 3622 (t2)) 1 + ...1].l 1>
8

If we now neglect transients (t»>»), and make use
of a decoupling ansatz, thereby neglecting in-
duced correlations among the successive func~-
tionals in (5), we end up with an effective,

"nonlinear" Fokker-Planck dynamics

5}
pe(x) = = — (ax = bx® )p (x)
ox

(6)
D a2

002> ~ ] o Pe(x),

where <x?> depends itself on the (unknown)
solution pg(x). This causes no trouble, because
the stationary 2-nd moment varies only weakly
with D in this bistable. (Indeed, <x2> = a/b,
which insures that the effective diffusion con-
stant in (6) 1is always > 0). This approximation
will clearly work best for small t and converges

for T + o .to the proper white noise 1limit (the

Smoluchowski equation).

We have used this theory to calculate‘the
mean sojourn time (MST), a quantity which is
gsensitive to the wings of the stationary distri-
bution.d An example (measured) time trajectory
is shown in Fig. 1(b), where a clear time
separation ﬁetween the time spent in the well
(sojourn time) and the time in transit between
wells 1s evident. Thus transitions between
wells can be considered as 1independent random

events. The sojourn times are thus exponential-

ly distributed
p(T) = (1/<T>)exp-T/<T> (7

The MST now depends only on the ratio of the
stationary density evaluated at either of its
maxima at xj/2 = % (a/b¥/2 to the unstable

point at x = 0,
<T> = pge(X)/2) /pge(x = 0) (8)

Because (6) accurately models the long-time
dynamics of x(t), one obtains for the leading
behavior of the MST (by the method of steepest

descent)
Ty = —n (9)
TP
where
Ay = (/4] 1 +1(3b <> - a)].  (10)

thus the approximation scheme in (6) predicts an

exponential increase of <T> with noise correla-
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tion time.

We found (9) and (10) to be in quite good
agreement with measurements of <T> using an
analog glectronic circuit similar to one used
previously to study noise induced phase transi-

7

tions’ and other bistable systems.B The circuit

is shown din Fig. 1(a). It was designed to obey
(to an accuracy of a few percent) the integral
of equation (1) with a =b =1, and with an
integrating time constant which scales the time
and noise intensity in the\ experiment as ex-

plained in Ref. 7, A measured time trajectory

x(t) 1is shown in Fig. 1(b). Typically 5000 such’

trajectorles. were digitized by the computer from
which the mean time. between zero crossings (the

MST) and fhe distribution of these times were

assembled.
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Figure 1. (a) the circuit, and (b) an example

trajectory

Measurements of <T> were obtained for four
different noise intensities, held constant as
the noise correlation time was varied.

Equation (9) was then used to obtain the
Arrhenius facto? (Ad), and the results are shown
in Fig. 2. The theory, as given by (9) and (10)
1s represented by the solid lines for the two
values of <&> shown. Arrhenius behavior
(straight 1ines on this plot) i1s clearly in-

dicated by the agreement evident over a surpris-

ingly wide range of t.
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Figure 2, Data derived from MST measurements
via Eq. (9). Triangles, squares, solid and open
circles are dimensionless noise Iintensities:
0.21, 0.15, 0.11 and 0.083 respectively.
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