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A method is derived to solve the massless Dirac-Weyl equation describing electron transport in a

monolayer of graphene with a scalar potential barrier Uðx; tÞ, homogeneous in the y direction, of arbitrary

space and time dependence. Resonant enhancement of both electron backscattering and currents, across

and along the barrier, is predicted when the modulation frequencies satisfy certain resonance conditions.

These conditions resemble those for Shapiro steps of driven Josephson junctions. Surprisingly, we find a

nonzero y component of the current for carriers of zero momentum along the y-axis.
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Growing interest in graphene [1] is stimulated by many
unusual and sometimes counterintuitive properties of
this two-dimensional material. Indeed, graphene supplies
charge carriers exhibiting pseudorelativistic dynamics of
massless Dirac fermions. As one consequence, the Klein
tunneling phenomenon [2] occurs with unit probability
through arbitrarily high and thick barriers at perpendicular
incidence, irrespective of the particle energy, in accordance
with experiment [3]. The question of how to control the
electron motion in graphene arose, and hence boosted
detailed studies of Dirac fermions under the influence of
various forms of scalar [4–8] or vector [9] potentials.

Applying a time-dependent laser field to pristine gra-
phene opens an alternative and efficient way [10–12] to
control spectrum and transport properties. It was shown
[10] that Dirac fermions accross p-n junctions can acquire
an effective mass when driven by a laser field. This results
in an exponential suppression of chiral tunneling even
for perpendicular incidence upon the junction, if the ac-
electric field is directed parallel to the junction, in stark
contrast to Klein tunneling occurring in the absence of the
laser field. Actually, time-dependent laser fields can mimic
[12] the influence of any electrostatic and/or magnetostatic
graphene superlattice on the electron spectrum in gra-
phene. The question arises whether and under which con-
ditions time-dependent modulations of an electrostatic
barrier, where energy is not conserved, would affect elec-
tron transport and generate backscattering.

In this Letter we answer this question by solving the
problem for arbitrary space-time dependent scalar poten-
tials Uðx; tÞ. Our solution is based on expanding the wave
function as a power series with respect to the momentum ky
parallel to the barrier, and manifests a structure of left and
right moving waves. All terms appearing in the ky expan-

sion can be calculated analytically, despite the fact that
each term is described by a partial differential equation in
(x, t) space. At ky ¼ 0 (normal incidence upon the barrier)

we confirm complete Klein tunneling for anyUðx; tÞ, while
for finite ky backscattering resonances can occur at certain

angles of incidence, depending on the modulation fre-
quency of the barrier. As a counterintuitive result we find
a nonzero and oscillating current jy along the barrier, even

at ky ¼ 0 for valley-polarized fermions. At ky � 0 the

current jy arises also in valley-unpolarized situations, it

can be resonantly amplified and flow in either direction.
Interestingly, jy exhibits a nonzero dc component at certain

resonance frequencies, in full analogy to Shapiro steps of
driven Josephson junctions.
At low energies, the honeycomb lattice of graphene

engenders two copies, �z ¼ �1, of Dirac-Weyl
Hamiltonians [13],

H0 ¼ vF½�̂z�̂xp̂x þ �̂yp̂y�; (1)

centered about two inequivalent Dirac points (‘‘valleys’’)
K and K0 at corners of the hexagonal first Brillouin zone
where electron-hole symmetric bands touch; Pauli matri-
ces �̂x;y;z act on two-component spinors representing

sublattice amplitudes. Carriers near either of the Dirac
points exhibit opposite Fermion helicities, � � p=p ¼
�1. Proposals exist in literature of how to valley polarize
carriers in graphene, by means of nanoribbons terminated
by zigzag edges [14], by exploiting trigonal warping at
elevated energies [15], or by absorbing magnetic
textures [16].
Smooth electromagnetic or disorder potentials [17], con-

taining negligible Fourier components at large wave vec-

tors of the order of j ~Kj, will not cause scattering between
valleys so that calculations can be carried out for �z ¼ þ1
or �z ¼ �1 separately. Accordingly, time-dependent
potentials Uðx; tÞ should be slowly varying, without fre-
quency components that might induce excursions to ener-
gies where the band structure of graphene starts deviating
from the isotropic cone spectrum, i.e., below 0.6 eV [18].
Including Uðx; tÞ, the Dirac equation for the wave
function �kyðx; y; tÞ ¼ �ðx; tÞ expðikyyÞ can be written in

the form
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Uðx; tÞ �i�z
@
@x

�i�z
@
@x Uðx; tÞ

 !
�þ iky

0 �1

1 0

 !
� ¼ i

@

@t
�; (2)

where from now on we assume vF ¼ 1 and @ ¼ 1. This
equation has been solved analytically for time-independent
potentials either by matching [2] of wave functions for
rectangular barriers or by the WKB method [19] for
smooth barriers. Time-dependent harmonic oscillations
have been considered of gate voltages on either side of a
graphene rectangle [20], of an electric field parallel to
the barrier [10] or in resonance approximation [12], or
for some class of time-dependent barriers Uðx; tÞ at
ky ¼ 0 [21].

Our goal here is to construct the solution of Eq. (2) for
arbitrary Uðx; tÞ acting at positive times, Uðx; t < 0Þ ¼ 0.
From the ansatz

� ¼ X1
n¼0

ðikyÞn
1

�z

 !
�n;þ þ X1

n¼0

ðikyÞn
1

��z

 !
�n;� (3)

as a power series in ky we derive a recurrence relation for

the coefficients �n;� which obey the inhomogeneous first

order partial differential equations,

�
Uðx; tÞ � i

@

@x
� i

@

@t

�
�n;� � �z�n�1;� ¼ 0; (4)

with ��1;�ðx; t � 0Þ � 0. Initial conditions can be

chosen as �0;�ðx; t ¼ 0Þ ¼ a�ðxÞ ¼ ½�Aðx; t ¼ 0Þ�
�z�Bðx; t ¼ 0Þ�=2, �n>0;� ¼ 0, where �A, �B describe

electron amplitudes on either of the graphene sublattices.
The two functions a�ðxÞ, providing the initial conditions,
can be, e.g., a plane wave or a wave packet. We underline
here the general structure of (3) as a sum of right �þ and
left �� moving waves. Using the standard d’Alembert’s
ratio test, a sufficient criterion for convergence of
series (3) is jkyjlimn!1j�nþ1;�j=j�n;�j< 1 for all rele-

vant x and t.
Despite the fact that (4) are partial differential equations,

we can solve them exactly using the method of character-
istics [22]. The corresponding result reads

�n;�ðx; tÞ ¼ an;�ðx; tÞe�i
R

t

0
dt0Uðx�t�t0;t0Þ; (5)

with a0;� ¼ a�ðx� tÞ and

an>0;� ¼ �i�z
Z t

0
dt0�n�1;�ðx� t� t0; t0Þ

� ei
R

t0
0
dt00Uðx�t�t00;t00Þ:

Together with (3) the recursive solution for �n;� pro-

vides the exact wave function � to any desired accuracy.
To zeroth order approximation with respect to ky, we

obtain

c ðx; tÞ ¼ aþðx� tÞ 1

�z

 !
e�i

R
t

0
dt0Uðx�tþt0;t0Þ

þ a�ðxþ tÞ 1

��z

 !
e�i

R
t

0
dt0Uðxþt�t0;t0Þ: (6)

The first order corrections with respect to ky in (5) can be

written as

a1;� ¼ �i�zA1;� ¼ �i�z
Z t

0
dt0a�ðx� t� 2t0Þ

� ei
R

t0
0
dt00½Uðx�t�t00;t00Þ�Uðx�t�2t0�t00;t00Þ�; (7)

so that � ¼ �þð 1�zÞ þ��ð 1
��z

Þ as in (3), with

�� ¼ ½a0;� � ky�zA1��e�i
R

t

0
dt0Uðx�t�t0;t0Þ: (8)

When ky ¼ 0 and when the wave packet is initially purely

right moving, a� ¼ 0, Eq. (6) reveals that the electron
density distribution jaþðx� tÞj2 undistortedly continues
to propagate to the right without reflection: ��ðx; tÞ ¼ 0
for all times t > 0. This proves complete Klein tunneling
also in the presence of time-dependent barriers; wave
functions �� acquire only a phase factor by the potential
at ky ¼ 0.

As a measurable quantity, we now evaluate the current
density in Cartesian components, jx ¼ �	�z�x� ¼
2�	þ�þ � 2�	��� ¼ j0x þ j1x and jy ¼ �	�y� ¼
2i�zð�	þ�� ��þ�	�Þ ¼ j0y þ j1y. Here, the last equals

signs refer to zeroth and first order contributions with
respect to ky, respectively, yielding

j0x ¼ 2ðja0þj2 � ja0�j2Þ; (9)

j0y ¼ 4�zja0þa0�j sinð’þ�0Þ; (10)

j1x ¼ 4ky�z<efa0þA	
1þ � a0�A	

1�g; (11)

j1y ¼ 4ky½jA1þa	0�j sinð’���Þ
� jA	

1�a0þj sinð’þ�þÞ�; (12)

with’ ¼ R
t
0½Uðxþ t� t0; t0Þ �Uðx� tþ t0; t0Þ�dt0,�0¼

argða0þa	0�Þ, and �� ¼ argða0�A	
1�Þ. We distinguish two

cases: (i) �z-independent contributions j0x and j1y which

can be observed for valley-unpolarized carriers and
(ii) �z-dependent contributions j1x and j0y where detection

calls for valley polarization.
Equations (9) and (10) describe the current density at

normal incidence, ky ¼ 0. Then jx stays unaffected by the

barrier, irrespective of �z which rephrases the above result
of complete Klein tunneling. Surprisingly, a current jy
flows perpendicular to the momentum in graphene, pro-
vided the sample is valley polarized [the total current
j ¼ jþ þ j�, where j�z originates from states near valley
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K (�z ¼ þ1) or K0 (�z ¼ �1), respectively]. This current
(10) results from interfering left and right moving waves,
which both need to have nonzero amplitudes, a0þa0� � 0.

Equations (11) and (12) describe corrections to the
current density at small but finite angles of incidence,
ky � 0. Thereby, j1x exhibits qualitatively similar proper-

ties to j0y; in particular, it stays nonvanishing at finite

valley polarization only. By contrast, the current density
j1y now exhibits striking current oscillations and current

reversals already in valley-unpolarized situations, as we
show in more detail below.

Next we turn to the question of how carriers are reflected
by Uðx; tÞ. Let us consider an initially right moving plane

wave, �ky ¼ eiðkxxþkyyÞð 1�zÞ at t ¼ 0 which produces a cur-

rent density j0x ¼ þ2 pointing to the right. Using Eqs. (3)
and (8), and assuming small ky, the leading contribution to

the reflected current density j2x ¼ �k2yjA1�j2 arises in

Oðk2yÞ under the action of the barrier at t > 0 and is

proportional to jj0xj, cf. Eqs. (7) and (9). This suggests to
employ the ratio

Rðx; tÞ :¼ �j2x=j0x ¼ k2yjA1�ðx; tÞj2=2 (13)

as a measure for the reflectivity at small ky. While the

quantity Rðx; tÞ evolves in time, together with Uðx; tÞ, it is
independent of �z and, thus, measurable without valley
polarization. Moreover, we also analyze the time averaged
reflectivity �RðxÞ :¼ limT!1

R
T
0 Rðx; tÞdt=T, which can be

measured just by means of dc equipment.

In the following, two specific examples Uðx; tÞ ¼
Uð1;2Þðx; tÞ are considered. As initial conditions we take
into account two cases: (i) a superposition of equal
amplitudes of right and left propagating plane waves,
a� ¼ expð�ikxxÞ and �z ¼ þ1 when calculating j0y,

and (ii) an incidently right moving wave aþ ¼
expðikxxÞ; a� ¼ 0 when calculating R and j1y for valley-

unpolarized systems. Our first example is Uð1Þðx; tÞ ¼
U0x sin!t. In view of (10), we derive for this case

j0yðx; tÞ ¼ sin 2

�
kxxþU0

�
t

!
� sin!t

!2

��
; (14)

which can be rewritten as a sum

j0yðx; tÞ ¼
X1

n¼�1
Jn

�
2U0

!2

�
sin

�
2kxxþ 2U0t

!
� n!t

�
; (15)

using Bessel functions Jn. This form (15) reveals a pecu-
liarity at ! ¼ !n with

!n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2U0=n

q
; n 2 N; (16)

similar to Shapiro steps [23] of a driven Josephson junc-
tion. As depicted in Fig. 1(a), frequencies ! ¼ !n gener-
ate periodic oscillations, which, again as in the case of
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FIG. 1 (color online). (a) Current j0y (10) perpendicular to k
versus time for Uð1Þðx; tÞ ¼ U0x sin!t, kxx ¼ �=8, and
U0=!

2 ¼ 1=� [dark gray (blue) line] and U0=!
2 ¼ 1=2 [light

gray (red) line], assuming a valley-polarized situation �z ¼ 1.
For ‘‘Shapiro-step’’ conditions [Eq. (16)] periodic oscillations
can be seen [light gray (red)], while away from this condition
aperiodic oscillations occur [dark gray (blue)]. (b) Same as (a)
but for potential Uð2Þðx; tÞ ¼ U0 cosðx=LÞ cos!t with x ¼
�L=2, kx ¼ 0, U0L ¼ 0:1, and frequencies ! ¼ ð�=2Þð1=LÞ
[light gray (red) line] and ! ¼ 1=L [dark gray (blue) line].
Both currents are aperiodic. For the matching condition ! ¼
1=L [dark gray (blue)] a considerable enhancement followed by
a saturation of the amplitude of the current oscillations occurs,
while away from this resonance no enhancement is seen versus
time. (c) Current j1y (12) for Uð1Þðx; tÞ at x ¼ 0, using kx ¼ 0.

At Shapiro resonance [U0=!
2 ¼ 1=2, dark gray (blue) line]

pronounced current enhancement occurs, cf. Eqs. (17) and (18),
while away from the resonance [U0=!

2 ¼ 3=�, light gray (red)
line] no enhancement is seen. (d) Time-dependent reflectivity
RðtÞ, calculated by numerical integration of Eq. (17), solid blue
line, and by using the approximation (19), red dashed line, near
resonance for kx=

ffiffiffiffiffiffi
U0

p ¼ 0 and !2=U0 ¼ 0:49. (e) RðtÞ at
resonance (dashed green line, kx=

ffiffiffiffiffiffi
U0

p ¼ 0, !2=U0 ¼ 1=2)
and near resonance (solid blue line, kx=

ffiffiffiffiffiffi
U0

p ¼ 0, !2=U0 ¼
0:49). At the resonance, RðtÞ increases with time 
t2, in
agreement with Eq. (19). (f) Time-averaged reflectivity �R as
a function of kx=

ffiffiffiffiffiffi
U0

p
for !=

ffiffiffiffiffiffi
U0

p ¼ 1. Equidistant resonances
occur at kx=

ffiffiffiffiffiffi
U0

p ¼ 1� n=2 (dashed blue vertical lines),
cf. Eq. (18). One of the resonance peaks is well fitted by the
resonance equation (20), as shown by short-dashed green line.
(g) �R as a function of the driving frequency !=

ffiffiffiffiffiffi
U0

p
for

kx=
ffiffiffiffiffiffi
U0

p ¼ 0: resonance peaks are clearly seen at Shapiro-step

conditions (18) !=
ffiffiffiffiffiffi
U0

p ¼ ffiffiffiffiffiffiffiffi
2=n

p
, indicated as dashed magenta

vertical lines.
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Shapiro steps, induce a nonzero dc component in the
current at given x. Modulating the potential with ! � !n

results in aperiodic oscillations and zero dc component.
Similar resonance effects can also be seen in both the

reflectivity R (13) and the current j1y (12). By inserting

Uð1Þðx; tÞ into Eq. (7), we derive

A1�¼eikxðxþtÞZ t

0
dt0e�2ikxt

0
e2iU0½!t0�sinð!t0Þ�=!2

¼eikxðxþtÞ X1
n¼�1

Jn

�
2U0

!2

�
eið2U0=!�2kx�n!Þt�1

ið2U0=!�2kx�n!Þ ; (17)

from which we read off a Shapiro step resonance condition

kn ¼ kx ¼ �n

2
!þU0

!
; n 2 N (18)

specifying now a directional dependence of the momentum
k. From (17) together with (12) we conclude that in valley-
unpolarized samples the current jy / ky parallel to the

barrier oscillates as a function of time and may take either
sign [despite the fixed ky, see Fig. 1(c)]. In addition, the

amplitude of these oscillations increases with time as the
Shapiro step resonance condition (18) is met [compare
light gray (red) and dark gray (blue) curves in Fig. 1(c)].

Analogous resonances also show up in both reflectiv-
ities, R and �R. The latter allows experimental observation
of the here predicted behavior without time-domain mea-
surements. Indeed, near the Shapiro step resonance (18) we
can keep only one summand in the expansion (17), yielding

RðtÞ ¼ 1

2
k2yJ

2
n

�
2U0

!2

�
sin2½ðU0 � kx � n!=2Þt�
ðU0=!� kx � n!=2Þ2 : (19)

This equation is in a good agreement with numerical
integration of (17); see Figs. 1(d) and 1(e). Averaging
(19) with respect to time results in

�R ¼ 1

4
k2yJ

2
n

�
2U0

!2

�
1

ðU0=!� kx � n!=2Þ2 ; (20)

so that the barrier will become intransparent near momenta
kx ¼ kn [see Fig. 1(f)], already for smallU0. This produces
strong anomalies in transport properties at angles
arctanðkn=kyÞ of the incidence. Instead of sweeping the

directions of k one may alternatively sweep ! at fixed k,
cf. (18); ensuing resonance peaks are clearly observed in
Fig. 1(g). The constraint R< 1 determines the maximum
value

jkyj & jU0 � kx � n!=2j
jJnð2U0=!

2Þj ; (21)

where second and higher order terms in the expansion (3)
can be ignored.

As a second example, we consider Uð2Þðx; tÞ ¼
U0 cosðx=LÞ cos!t to demonstrate how even more intrigu-
ing resonance features can arise from the interplay between

spatial and temporal periodicities. Given again the initial
condition of left and right moving plane waves of equal
amplitudes, and assuming valley polarization, we find

j0y¼sin

�
2kxx�

4U0LsinðxLÞ
!2L2�1

sin

�
!Lþ1

2L
t

�
sin

�
!L�1

2L
t

��
:

(22)

Now, oscillations of j0y persist even when! ! 0, since the

spatial periodicity 2�L of the potential induces a fre-
quency component vF=L to waves moving at the uniform
Fermi velocity (restoring here vF). This is reminiscent of
the ac-Josephson effect [23] where ac-current oscillations
are generated by a time-independent voltage.
On the other hand, if the barrier modulation frequency

! ! �vF=L, the argument of the sine in the curly brack-
ets (22) varies proportional to t as 2kxx� tU0 sinðx=LÞ�
sin!t. For small U0 the oscillations of j0y thus grow

resonantly with time, before they saturate at t * 2�=U0,
cf. Fig. 1(b). We mention the analogy to resonant excita-
tions of plasmonic oscillations by spatiotemporal mode
matching of the incident light with the grating period
(Wood’s anomaly [24]). Similar effects also occur for
valley-unpolarized currents (e.g., j1y) and the reflectivity

Rðx; tÞ, but calculations become considerably more cum-
bersome and will be published elsewhere.
In conclusion, we present the analytical solution of the

Dirac equation for Fermions in graphene moving in a
scalar potential barrier Uðx; tÞ of arbitrary x and time
dependence. Unit transmission probability, referred to as
Klein tunneling, is found for normal incidence upon the
barrier, rendering at most a phase to the wave function. On
the other hand, under certain angles with respect to the
barrier (ky � 0), we predict strong reflection, even for

weak potentials. Further, also the current parallel to the
barrier, jy, may exhibit oscillations, despite a constant

electron momentum ky. The amplitude of these oscillations

grows linearly in time when Uðx; tÞ meets certain reso-
nance frequencies. In valley-polarized samples jy does not

vanish even for zero momentum parallel to the barrier
(ky ¼ 0), provided left and right moving waves both inter-

fere with finite amplitudes. For graphene nanostructures
driven by oscillating potentials, the predicted resonances in
current and reflectivity can be seen, for example, in elec-
tron transport properties (e.g., in ac and dc electrical con-
ductivity) through suitably arranged quantum point
contacts. The new nonstationary phenomena in graphene
calculated here within the single-particle approximation
can promote development of a more elaborate many-
electron nonstationary theory of ac-driven graphene nano-
structures which is crucial for future graphene-based
electronics.
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