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Abstract
We investigate the time evolution of negativity and quantum discord for a
pair of non-interacting qubits with one being weakly coupled to a decohering
Davies-type Markovian environment. At initial time of preparation, the qubits
are prepared in one of the maximally entangled pure Bell states. In the
limiting case of pure decoherence (i.e. pure dephasing), both the quantum
discord and negativity decay to zero in the long time limit. In the presence
of a manifest dissipative dynamics, the entanglement negativity undergoes a
sudden death at finite time, while the quantum discord relaxes continuously
to zero with increasing time. We find that in dephasing environments, the
decay of the negativity is more propitious with increasing time; in contrast, the
evolving decay of the quantum discord proceeds more weakly for dissipative
environments. Particularly, the slowest decay of the quantum discord emerges
when the energy relaxation time matches the dephasing time.

PACS numbers: 03.65.Yz, 03.67.Mn, 03.67.−a

(Some figures may appear in colour only in the online journal)

1. Introduction

Establishing correlations is a sine qua non condition in effective communication. If two parties
are quantum correlated, one can attempt to conduct a quantum communication between them.
Quantum communication protocols [1] make use of certain properties of states of quantum
composite systems. The best known and most popular resource for quantum communication
is quantum entanglement [2], a widely studied property of composite systems. Quantum
entanglement [2], interesting per se, has been recognized as a powerful tool for quantum
information processing [1]. For example, let us mention the use of quantum communication
with dense coding and teleportation as most celebrated examples [1, 2].

If one presupposes that the history of quantum entanglement started out with the
work by Schrödinger [3], it took almost a century to discover that there are quantum
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correlations which are essentially non-classical and these can exist even in the absence of
entanglement [4, 5]. When compared to entanglement, these quantum correlations are, to
some extent, ‘more mysterious’, since their mathematical setting has not been uniquely
established. The well-known mathematical language for entanglement incorporating tensor
products of state spaces, Schmidt decomposition, etc, not only allows one to pose many
fundamental problems in purely algebraic context but also motivates the search for a
variety of entanglement quantifiers. The physical context of entanglement encoded, e.g.,
in Bell-type inequalities [2] can be (sometimes incorrectly) considered as a consequence of
mathematical theorems. Recent studies of quantum correlations have shown that a broad
class of composite systems carries correlations which can be described in the context
of information extracted from composite parties via a suitably formalized measurement
procedure. For example, the value of the quantum discord studied in this paper depends
on the results of the POVM measurements carried out on the system, see [5] for a recent
review.

Among several quantifiers of quantum correlations, the quantum discord attained recent
popularity [5]. Despite its fundamental meaning, exemplarily studied in the context of
approximating a reduced quantum dynamics within trace preserving completely positive
maps [6], quantum correlations quantified by the quantum discord can open new avenues
for quantum computations [7] and quantum communication schemes [8–10].

A salient obstruction in the implementation of both quantum computation and
communication protocols is quantum decoherence [1], induced by the influence of the
environment on the relevant ‘quantum hardware’. Studies of entanglement dynamics in the
presence of noise enjoy a long history [11, 12]; in contrast, similar studies on quantum discord
dynamics have been carried out only recently [13–16].

According to [17], the quantum discord and the entanglement present fundamentally
different resources. Here, we investigate if this difference manifests itself in their robustness
to environment-induced decoherence. In other words, we study whether it is possible to
assign an environment to two general classes, one of them more suitable for quantum
information processing using entanglement-based protocols, and the second preferring
quantum correlations as being quantified by the quantum discord. With this study we obtain
an affirmative answer to this question.

In doing so we consider a simple set-up: we investigate the time evolution of quantum
correlations between a pair of qubits with only one of them being coupled to a decohering
environment. We emphasize here that the exact reduced quantum dynamics for the two qubits
is typically neither completely positive [18, 19], nor is it generally even linear [20], not to
speak of undergoing a memoryless quantum Markovian dynamics [21]. Here, however, we
restrict ourselves to a quantum Markovian dynamics, having in mind quantum optics with
weak coupling at not too low temperatures. Then the time evolution can satisfactorily be
approximated with a trace preserving completely positive Markovian map of Davies type [22].

The structure of the work is as follows. In section 2, we describe our model set-up and
its dynamics in terms of a Davies map. Next, in section 3, we consider the time evolution of
the correlation quantifier negativity while in section 4, we analyse the quantum discord. In
section 5, we present our summary and conclusions.

2. Open quantum dynamics: quantum Markovian–Davies map

In this work, somewhat stimulated by prior work done in [13], we consider a pair of non-
interacting qubits A and B that initially are prepared in one of the maximally entangled pure
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Figure 1. The sketch of the system set-up studied in this work. The qubits A and B with level
separations ωA and ωB, respectively, do not physically interact; these are, however, initially prepared
in one of the maximally entangled Bell states, as indicated by the broken (green) line. Here, only the
qubit B is weakly coupled to an environment. The dynamics of the qubits is given by equation (6)
in the text.

Bell states, i.e.

ρi = (σ0 ⊗ σi) ρ0 (σ0 ⊗ σi) , i = 0, 1, 2, 3

σ0 = 1, σ1,2,3 = σx,y,z, (1)

where

ρ0 = 1
2 (|01〉 + |10〉) (〈01| + 〈10|) . (2)

The non-decohering part of the evolution of the qubits A and B is determined by the two
two-level Hamiltonians, i.e.

HA = ωA

2

(
1 0
0 −1

)
, HB = ωB

2

(
1 0
0 −1

)
. (3)

In the following, only qubit B is coupled at times t > 0 to an environment E at temperature
T (see figure 1). Then, in the presence of this environment coupling, the dynamics of the two
qubits, described by the reduced density matrix ρAB(t), no longer proceeds unitary. Because
the two qubits A and B are initially correlated, both the quantum entanglement and the quantum
discord will evolve in the course of evolving time t > 0, as these become influenced by a
non-zero system B-environment coupling.

A generic form of the Hamiltonian of the total system A + B + E reads

H = HA ⊗ (IB ⊗ IE ) + IA ⊗ (HB ⊗ IE ) + IA ⊗ H int
BE + IA ⊗ (IB ⊗ HE ), (4)

where IA, IB and IE are identity operators (matrices) in the corresponding Hilbert spaces of
the subsystems A, B and the environment E, respectively. The operator H int

BE describes the
interaction of the qubit B with its environment E and finally HE is the Hamiltonian of the
environment E.

In the presence of a very weak system–environment interaction H int
BE and not extremely

low temperatures, the reduced dynamics can satisfactorily be described [21] by a Markovian
dynamics of the Davies type [22]. The main advantage of this approach is that it recovers the
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well-established steady-state properties at assumed weak coupling, namely stationarity and
asymptotic stability in terms of the Gibbs state of the qubit B, reading

ρB(t) →
(

p 0
0 1 − p

)
for t → ∞. (5)

Here, the thermal weight is p = exp(−βωB/2)/Z , Z = exp(−βωB/2) + exp(βωB/2) and
β = 1/kT denotes the inverse temperature. Using Davies theory for the Hamiltonian (4),
one can explicitly construct the generator of a completely positive semigroup describing the
reduced dynamics (with respect to the environment) of the open quantum system in terms of
microscopic parameters in the Caldeira–Leggett-type Hamiltonian (4) of the full system. Such
modelling has recently been applied to studies of entanglement dynamics [23], properties
of dissipative geometric phases of qubits [24] and for some thermodynamic properties of
nano-scale systems [25], to name but a few.

Here, instead of using the most general scenario of Davies semigroups, we restrict
ourselves to a particular example of the completely positive Davies map [26]. The qubit–
qubit reduced dynamics is given by the map �B

t described in detail in [26]. It acts on the
Hilbert space B and is completed with the tensorized unitary time evolution for the uncoupled
qubit A, the latter acting solely on the Hilbert space of qubit A. Put differently, we have for the
reduced dynamics a (super-operator)-time evolution, reading

ρAB(t) = (
U

A
t ⊗ �B

t

)
ρi, i = 0, 1, 2, 3. (6)

This structure of evolution follows from the Hamiltonian (4) because the A-system Hamiltonian
HA commutes with all other remaining Hamiltonians of the system B and environment E.
Stated explicitly, for any linear combination of matrices in the form |iA〉〈 jA| ⊗ |i′B〉〈 j′B|,
we have

(
U

A
t ⊗ �B

t

) |iA〉〈 jA| ⊗ |i′B〉〈 j′B| = U
A
t (|iA〉〈 jA|) ⊗ �B

t (|i′B〉〈 j′B|). The part of the
super-operator U

A
t is the unitary evolution operator generated by the Hamiltonian HA, i.e.

U
A
t (|iA〉〈 jA|) = e−iHAt |iA〉〈 jA|eiHAt . Let us describe how the non-unitary map �B

t acts on
the density matrix ρB of the qubit B. Following [26], let us construct a super-operator �B

t
corresponding to �B

t acting on vectorized matrices

ρB =
(

ρ00 ρ01

ρ10 ρ11

)
→ ||ρB〉〉 =

⎛
⎜⎜⎝

ρ00

ρ01

ρ10

ρ11

⎞
⎟⎟⎠ , (7)

�B
t ρB → �B

t ||ρB〉〉. (8)

An explicit form of the super-operator �B
t reads [26]

�B
t =

⎛
⎜⎜⎝

1 − u(t) 0 0 r(t)
0 v(t) 0 0
0 0 v∗(t) 0

u(t) 0 0 1 − r(t)

⎞
⎟⎟⎠ (9)

with the corresponding relaxation functions reading

u(t) = (1 − p)[1 − exp(−Ft)], r(t) = p

1 − p
u(t) (10)

v(t) = exp(−iωBt − Gt). (11)

The parameters F = 1/τ1 and G = 1/τ2 are related to the energy relaxation time τ1 and the
dephasing time τ2, respectively. Given the fact that these relaxation times are subjected to obey
the physical inequalities [27]

G � F/2 � 0, i.e. 2τ1 � τ2, (12)
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it then follows that this map indeed is a trace-preserving, completely positive map. If it does
not hold true, the eigenvalues of the density matrix ρB(t) can take negative values and ρB(t)
cannot describe a physical state. According to the nomenclature used in [26], the above-
described map is named the Davies map. From the physical point of view, this map describes
the Bloch-type relaxation of the spin with the longitudinal and transverse relaxation times
τ1 and τ2, respectively. In other words, we take into account two mechanisms responsible
for decoherence: dissipation (exchange of energy between the qubit B and its environment)
and dephasing (exchange of information between the qubit and environment without energy
exchange).

Let us consider the limiting case of an infinite energy relaxation time, yielding F = 0.
This corresponds to pure dephasing without relaxation in energy taking place (no dissipation).
Such dephasing scenarios, including also non-Markovian dephasing models, have been applied
to studies of entanglement [28] and quantum discord [29] dynamics. The opposite case, i.e.
G = 0 and F 	= 0, cannot be physically realized: if there is dissipation of energy, then
necessarily finite dephasing accompanies this relaxation process. For p = 1/2 in equation (5),
i.e. in the case of an infinitely large temperature, the single-qubit B state becomes maximally
mixed: TrA(ρAB(t)) = 1

2 IB. Likewise, we have for qubit A that TrB(ρAB(t)) = 1
2 IA. Hence,

with p = 1/2 the quantum discord, being evaluated below, is symmetric with respect to A and
B labelling [5].

Because the explicit results below are robust with respect to any chosen value for the
Boltzmann weight p, we shall depict in our figures the case with p = 1/2 only, yielding a
symmetric quantum discord.

Assuming that at initial time the reduced two-qubit density matrix ρAB(0) = ρ0, where
ρ0 is the Bell state given by equation (2), the density matrix ρAB(t) evolving under the Davies
map (9) takes the following form (see the appendix for details):

ρAB(t) = 1

4

⎛
⎜⎜⎝

1 − e−Ft 0 0 0
0 1 + e−Ft 2 eiωt e−Gt 0
0 2 e−iωt e−Gt 1 + e−Ft 0
0 0 0 1 − e−Ft

⎞
⎟⎟⎠ , (13)

where ω = ωA − ωB and ρAB(t = 0) = ρ0. This density matrix assumes the form of a
so termed X-state [30, 17]. Note that the X-structure of the reduced density matrix (13) is
preserved during time evolution. This feature originates from both the symmetry of initial
preparation (1), here assumed to be given by equation (2), and the character of dynamics given
by a completely positive Davies map. Let us stress, however, that none of the physical results
reported below depend on the choice of the specifically chosen initial Bell state in equation (2);
put differently, the results remain robust for any of the four Bell states.

3. Entanglement dynamics

In this section, we investigate the entanglement of the two-qubit state ρAB(t) given in (6). As
a proper measure of entanglement, we use the quantifier of negativity N(t) [2], being defined
as

N(t) = 1

2

∑
i

(|λi| − λi), (14)

where the λi are the eigenvalues of the partially transposed density matrix ρAB(t), at fixed time
t, of a composite system [2].

Let us next evaluate this negativity of the state (13). It explicitly reads

8N(t) = 2 e−Gt + e−Ft − 1 + |2 e−Gt + e−Ft − 1|. (15)
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Figure 2. Upper panel: the entanglement quantifier for negativity N(t) (see equation (15)) at
temperature T = ∞, i.e. p = 1/2, as a function of the dimensionless time Gt for several values
of the ratio a = F/G = τ2/τ1, where τ2 and τ1 are the dephasing and the energy relation times,
respectively. The inset depicts the non-exponential decay of negativity N(t) for a dissipative
environment, implying that F > 0 (yielding a > 0). The negativity N(t) versus the dimensionless
time Gt is depicted on the semi-logarithmic plot with the vertical axis scaled logarithmically. Lower
panel: time evolution of the quantum discord D(t) (see equations (23) and (24)). The inset shows
the difference between discord in the dissipative case (i.e. F > 0) and for pure dephasing (i.e.
F = 0) for several values of the ratio a. The slowest decay of the quantum discord D(t) is observed
when τ1 = τ2.

N(t) does not depend on ω, i.e. it is not affected by the individual single-qubit level spacings
in equation (3). The time evolution of the negativity N(t) is depicted with the upper panel
in figure 2 for T → ∞. For pure dephasing, i.e. for F = 0, the negativity exhibits a strictly
exponential decay, reading

N(t) = 1
2 e−G t, (16)

with the characteristic dephasing rate G = 1/τ2. For a dissipative environment with F > 0, the
entanglement undergoes a sudden death [12] occurring at finite death time tc. Put differently,
for time t > tc, the entanglement vanishes identically. From equation (15) it follows that tc is
determined by the relation

2 e−Gtc + e−Ftc − 1 = 0. (17)
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Upon increasing the relaxation rate F , the death time tc monotonically decreases from tc = ∞
for F = 0 to the minimal value tmin

c = ln(
√

2 + 1)/G, which occurs when F/G = τ2/τ1 = 2.
In the case of finite dissipation, F > 0, the negativity N(t)-decay proceeds faster than
exponentially; see the inset in the upper panel of figure 2, where N(t) versus the dimensionless
time Gt is depicted on the semi-logarithmic plot with the vertical axis scaled logarithmically.

4. Quantum discord

Next let us investigate a quantum correlation measure as encoded with the quantum discord. We
again consider a composite system consisting of the two qubits A and B. The full (classical and
quantum) correlations in the composite system are encoded with quantum mutual information,
defined as

I(ρAB) = S(ρA) + S(ρB) − S(ρAB), (18)

where S(ρ) = −Tr (ρ ln ρ) denotes the von Neumann information entropy and ρAB is the
density operator of the composite bipartite system AB. The part ρA refers to the reduced
density operator of system part A, while, likewise, ρB is the reduced density operator for
system part B.

The classical part of the total correlations is defined as the maximum information about
one subsystem A that can be obtained by performing a measurement on the other subsystem B,
as defined by a complete set of projectors {	B

k }. Let us recall that for p = 1/2, see section 2,
an independence of the chosen A, B-labelling is granted. The label k distinguishes different
outcomes of this measurement. The quantifier of the classical part of correlations is defined
by the set of the following relations:

C(ρAB) = S(ρA) − max
{	B

k }
S(ρAB|{	B

k }), (19)

S(ρAB|{	B
k }) =

1∑
k=0

qkS(ρk
A),

ρk
A = 1

qk
TrB

[(
IA ⊗ 	B

k

)
ρAB

(
IA ⊗ 	B

k

)]
,

qk = TrAB
[(

IA ⊗ 	B
k

)
ρAB

]
. (20)

The quantity C(ρAB) characterizes the reduction in the entropy of the subsystem A after a
measurement on the subsystem B, when maximized over a class of measurements {	B

k }. The
difference between the total amount of correlation and the classical part of correlation thus
reads

D(ρAB) = I(ρAB) − C(ρAB). (21)

This relation defines the quantum discord. Being so, it provides a measure for manifest
quantum correlations [5]. Let us remark that, generally, this quantum discord (21) presents
neither a unique nor the most optimal quantifier for quantum correlation [5]. However, for the
case of bipartite systems one can summarize that the states can be divided into two groups [6],
namely entangled (quantum correlated) and separable states. In turn, the separable states can
either be classically correlated or quantum correlated (but not entangled). This classification is
non-trivial, as e.g. classically correlated states always lead to completely positive maps while
states with quantum correlations may give rise to non-completely positive maps [6]. For our
set-up here, classically correlated states exhibit a zero quantum discord D(t) = 0, while states
with quantum correlations exhibit a non-zero discord D(t) � 0.
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There occurs a natural computational difficulty in evaluating the quantum discord,
stemming from the maximization procedure in equation (19). Fortunately, this task becomes
feasible for two-qubit systems: it is sufficient to consider projective measurements of the form
[31, 5]

	B
0 =

(
cos2(θ/2) sin(θ ) exp(iφ)

sin(θ ) exp(−iφ) sin2(θ/2)

)
,

	B
1 = IB − 	B

0 , (22)

where {θ, φ} is a standard parameterization of a single-qubit Bloch sphere. This simplification
is helpful in considering the quantum discord for models which can be effectively described
in terms of two qubits [13, 16, 17].

The calculation of quantum discord requires, in general, a careful optimization with respect
to (being sufficient for us) projective measurements (22). Fortunately, here the problem is even
more tractable. Due to the symmetry of the system, finding the optimum in (19) does not
involve the non-trivial φ-dependence, i.e. the measuring process (22) can be simplified to a
single-parameter family of projectors. The quantum discord therefore is φ-independent. In
addition, it exhibits extrema, depending on the value of the dissipation parameter F . For
F � G, the maximum in equation (19) occurs at θ = 0 in equation (22). The quantum discord
D(t) consequently reads

4D(t) = (e−Ft + 1 + 2 e−Gt ) ln(e−Ft + 1 + 2 e−Gt )

+(e−Ft + 1 − 2 e−Gt ) ln(e−Ft + 1 − 2 e−Gt )

−2(1 + e−Ft ) ln(1 + e−Ft ), F � G. (23)

To optimize quantum discord within the required regime G < F � 2G (see (12)) in turn
implies for consistency that θ = π/2 in equation (19). The final result for D(t) thus reads

4D(t) = (e−Ft + 1 + 2 e−Gt ) ln(e−Ft + 1 + 2 e−Gt ) + 2(1 − e−Ft ) ln(1 − e−Ft )

−2(1 − e−Gt ) ln(1 − e−Gt ) + (e−Ft + 1 − 2 e−Gt ) ln(e−Ft + 1 − 2 e−Gt )

− 2(1 + e−Gt ) ln(1 + e−Gt ), G < F � 2G. (24)

It follows from equations (23) and (24) that the discord D(t) monotonically approaches 0
as t → ∞ and stays positive for finite time; see the lower panel in figure 2. In contrast to the
negativity N(t), which is most robust in the absence of energy relaxation F = 0, the slowest
decay relaxation of the quantum discord is obtained for the case when F = G, i.e. when the
two characteristic relaxation times match, i.e. τ1 = τ2. To clarify this behaviour, let us note that
for pure dephasing F = 0 classical correlations (19) remain constant without further decay;
put differently, Markovian dephasing does not affect the dynamics of classical correlations.

The difference between the quantum discord and the entanglement becomes best visible
in the asymptotic long-time regime when t � τ1 or t � τ2. Here, one obtains the limiting
behaviour

D(t) � e−2Gt

1 + e−Ft
, for F � G;

D(t) � 1

2
[e−2Gt + e−2Ft], for G < F � 2G. (25)

Therefore, for t → ∞ and F � G the decay rate of quantum discord is determined solely by
the dephasing time 1/G = τ2 and is independent of the energy relaxation time τ1. However,
the entanglement N(t) vanishes identically in this time regime if finite energy relaxation with
F > 0 is at work. On the other hand, for a pure dephasing F = 0 one finds the asymptotic
relation

D(t) � e−2Gt/2 = 2N2(t). (26)

8
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Although this very kind of relation between the quantum discord D(t) and the
entanglement N(t) likely may not be generic [17, 32], it nicely illustrates the critical role of
an environment for the asymptotic behaviour of both quantifiers. Notably, the ratio N(t)/D(t)
exhibits for t → ∞ a divergence for a pure dephasing, while it vanishes identically in the
presence of finite energy relaxation.

5. Conclusions

In this work, we have investigated the time evolution of the entanglement negativity N(t)
and quantum discord D(t) for a pair of qubits, with one qubit (B) weakly coupled to a
decohering environment. The decoherence dynamics for this subsystem has been approximated
by a Markovian, completely positive Davies semigroup dynamics. We identified two classes
of environments that impact differently the quantum correlations as quantified by the
entanglement and quantum discord. (i) In the limiting case of the pure decoherence (i.e. strict
dephasing), both the quantum discord D(t) and the negativity N(t) decay exponentially toward
zero in the asymptotic long-time regime. Moreover, there exists an appealing functional relation
between these two measures, being detailed in (26). (ii) In the case of a dissipative dynamics,
the entanglement undergoes a sudden death at a finite time tc, while the quantum discord D(t)
smoothly relaxes toward zero at long times. The slowest decay of the quantum discord occurs
when the energy relaxation time τ1 matches the dephasing time τ2. Our findings may serve
as a potential guideline for the implementation of quantum information, e.g. communication
protocols. We have elucidated which of the two types of correlation measures, namely the
quantum entanglement N(t) or the one encoded by the quantum discord D(t), can provide an
advantageous and/or more suitable quantifier for quantum information processing occurring
in an open quantum system undergoing an ubiquitous decoherence dynamics.
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Appendix

In this appendix, we want to present a way to obtain the reduced density matrix (13). Any
density matrix of two qubits can be presented in the form

ρAB =
∑

i, j,k,n

ai jkn|iA〉〈 jA| ⊗ |kB〉〈nB|, (A.1)

where i, j, k, n = 0, 1. Equation (6) takes the form

ρAB(t) = (
U

A
t ⊗ �B

t

)
ρAB =

∑
i, j,k,n

ai jkn U
A
t (|iA〉〈 jA|) ⊗ �B

t (|kB〉〈nB|). (A.2)

In particular, we rewrite the Bell state (2) in the similar form:

ρ0 = 1
2 (|0A〉〈0A| ⊗ |1B〉〈1B| + |0A〉〈1A| ⊗ |1B〉〈0B|

+ |1A〉〈0A| ⊗ |0B〉〈1B| + |1A〉〈1A| ⊗ |0B〉〈0B|). (A.3)
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Then the unitary evolution of the qubit A is determined by the relations

U
A
t |0A〉〈0A| = |0A〉〈0A|, U

A
t |1A〉〈1A| = |1A〉〈1A|,

U
A
t |0A〉〈1A| = eiωAt |0A〉〈1A|, U

A
t |1A〉〈0A| = e−iωAt |1A〉〈0A|. (A.4)

From equations (7)–(9), it follows that

�B
t |0B〉〈0B| = [1 − u(t)]|0B〉〈0B| + r(t)|1B〉〈1B|,

�B
t |0B〉〈1B| = v(t)|0B〉〈1B|,

�B
t |1B〉〈0B| = v∗(t)|1B〉〈0B|,

�B
t |1B〉〈1B| = u(t)|0B〉〈0B| + [1 − r(t)]|1B〉〈1B|. (A.5)

Therefore, the time evolution of the Bell state ρ0 reads

ρAB(t) = (
U

A
t ⊗ �B

t

)
ρ0 = u(t)|A〉〈A| + [1 − r(t)]|B〉〈B| + v∗(t) eiωAt |B〉〈C|

+v(t)e−iωAt |C〉〈B| + [1 − u(t)]|C〉〈C| + r(t)|D〉〈D|, (A.6)

where the two-qubit basis is denoted in the following way:

|A〉 = |0A〉 ⊗ |0B〉, |B〉 = |0A〉 ⊗ |1B〉,
|C〉 = |1A〉 ⊗ |0B〉, |D〉 = |1A〉 ⊗ |1B〉. (A.7)

In this basis, the density matrix ρAB(t) for the considered case p = 1/2 takes the form presented
by equation (13).
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