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Abstract. Relativistic Brownian motion can be inexpensively demonstrated on a graphene chip. The inter-
play of stochastic and relativistic dynamics, governing the transport of charge carrier in graphene, induces
noise-controlled effects such as (i) a stochastic effective mass, detectable as a suppression of the particle
mobility with increasing the temperature; (ii) transverse harmonic mixing, whereby electron transport can
be controlled by two orthogonal, commensurate ac drives; (iii) a transverse ratchet effect, measurable as a
net current orthogonal to an ac drive on an asymmetric substrate, and (iv) chaotic stochastic resonance.
Such properties can be of practical applications in the emerging graphene technology.

1 Introduction

As astroparticle data often require a relativistic analy-
sis, the challenge of a consistent formulation of relativis-
tic statistical thermodynamics is so much intriguing as
timely [1]. Such a challenge encompasses the notion of
relativistic Brownian motion [2], as well. In particular, is-
sues like the relativistic generalization of inherently non-
local thermodynamic quantities, such as heat and work,
or the very concept of an equilibrium heat bath, have not
been unambiguously settled, yet [1,2]. The state of the
art in this field thus calls for experiments capable to as-
sess and validate the existing theoretical approaches. This
presently constitutes a nearly impossible task, due to the
scarcity of the available relativistic data sets, which often
also lack the necessary accurateness. Typically, such data
either are being obtained from cosmic rays [3] or could be,
in the future, from expensive high-energy experiments. To
overcome this difficulty, we propose here an alternative
and affordable route to demonstrate the physics of rel-
ativistic Brownian motion under controllable laboratory
conditions, namely on a suitable graphene chip.

Graphene is essentially a monolayer of carbon atoms
packed in a honeycomb lattice and isolated from the
bulk [4]. The fact that graphene has a 2D structure makes
its electronic properties unique. Charge carriers propagat-
ing through such a lattice are known to behave as relativis-
tic massless Dirac fermions [4–6]. On the quantum me-
chanical level, they are described by the 2D analog of the
Dirac equation with the Fermi velocity, vF = 106 cm/s,
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replacing the speed of light in the Dirac description. Close
to the so-called Dirac points, the energy-momentum rela-
tion of the elementary excitations, often associated with
quasi-particles, is linear: the velocity of the charge carriers
is thus always collinear with the momentum, its modulus
being constant and equal to vF .

Our proposal relies on the observation that for
strong applied electric fields or at high enough tempera-
tures, quantum transport effects, otherwise dominant in
graphene, are effectively suppressed and the motion of
charge carriers can be satisfactorily described by classical
(i.e., non-quantum) relativistic equations. Such a semiclas-
sical description has been invoked [7], for instance, to suc-
cessfully interpret graphene’s unusually broad cyclotron
resonance [8,9] and is consistent with the relativistic hy-
drodynamical approach proposed in reference [10,11].

As detailed with this paper, the combination of
stochastic and relativistic dynamical effects governing the
carrier motion in graphene results in some unexpected
transport phenomena. The source of stochasticity is pro-
vided by the finite temperature, whereby the charge car-
riers are being scattered by phonons, lattice defects and
buckling, and the sample boundaries, which leads to an
equilibrium redistribution of their energies. We emphasize,
however, that a noisy environment in the chip can also be
generated by external noise sources, controllable or not, in-
dependent of the temperature, e.g., in the form of current
or voltage fluctuations. Moreover, in graphene the Fermi
velocity, which plays the role of the light speed in the
relativistic equations for its charge carriers, is relatively
low; one can then analyze driven relativistic Brownian
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motion in the presence of electromagnetic fields by ignor-
ing otherwise hardly tractable relativistic retardation ef-
fects. Under these conditions, driven relativistic Brownian
particles become accessible to both theory and experi-
ment [12,13].

This paper is organized as follows. In Section 2 the
dynamics of charge carriers in a graphene chip is formu-
lated, in quasi-classical approximation, as a 2D relativistic
Langevin equation. A viscous damping force and a fluc-
tuating source have beed added so as to establish a high-
temperature relativistic equilibrium Jüttner distribution.
The phenomenological motivations for such a model and
certain restrictions to its validity are discussed in Sec-
tion 3. The combination of the stochastic and relativistic
properties of the model is numerically shown to induce un-
expected noise-controlled effects such as: (i) a temperature
dependent effective mass, responsible for the suppression
of the particle mobility at high temperatures (Sect. 4.1),
(ii) transverse harmonic mixing, with electron rectifica-
tion being sustained by two orthogonal, commensurate ac
drives (Sect. 4.2), (iii) transverse ratcheting, signaled by a
net current orthogonal to an ac drive applied on an asym-
metric substrate (Sect. 4.3), and (iv) a chaos controlled
manifestation of stochastic resonance (Sect. 4.4). All rel-
ativistic stochastic effects reported in this paper are then
summarized in Section 5, where, for reader’s convenience,
the different behaviors of relativistic (massless) and non-
relativistic (massive) Brownian particles confined to 2D
geometries, are compared case by case.

2 The model

The scheme of a simple graphene chip is sketched in Fig-
ure 1a. An undoped graphene sheet sits on a periodic se-
quence of parallel electrodes with alternate constant po-
tentials, respectively, U+ and U−, with U+ > U−. By
tuning the distance between electrode pairs within a fixed
spatial period, L, the ensuing staggered electric potential,
U(x), can be modulated at will, symmetrically or asym-
metrically, with amplitude U in the x direction, while
being identically zero in the y direction. An example of
the directed potential U(x) is drawn in Figure 1a. Ad-
ditionally, the charge carriers are driven by a spatially
homogeneous electric field, E(t) = (Ex(t), Ey(t)), with si-
nusoidal components Ex(t) and Ey(t) acting along the x
and the y axis, respectively.

The random dynamics of the charge carriers in a
graphene sheet can be described (see Sect. 3 for details)
by a set of coupled Langevin equations for the com-
ponents of the 2D momentum, p = (px, py), subject
to the relativistic dispersion relation ε = vF p0, where
p0 = (p2

x +p2
y)

1
2 , ε is the particle energy and vF the Fermi

velocity. The form of such phenomenological Langevin
equations is determined by the condition that the cho-
sen particle-reservoir coupling must lead to the same equi-
librium momentum distribution as predicted by the fully
microscopic (Hamiltonian) theory. At low temperatures,
the equilibrium distribution function of the quasiparti-
cle (electron) energy obeys the Fermi-Dirac statistics,

ρ(ε) = 1/(exp [ε/kT ] + 1), where T is the temperature.
However, the operation of the graphene chips considered
here typically requires carrier energies ε ∼ U , so that
for sufficiently high energies, kT <

∼ ε <
∼ U , ρ(ε) is con-

veniently approximated by the relativistic Jüttner dis-
tribution, ρ(p) ∼ exp(−ε(p)/kT ) [2,14]. A viable set of
Langevin equations proven to be consistent with a 2D
Jüttner distribution reads [2]

ṗx = −γvF px/p0 − dU(x)/dx + Ex(t) +
√

2γkTξx(t),

ṗy = −γvF py/p0 + Ey(t) +
√

2γkTξy(t),

V ≡ (ẋ, ẏ) = ∂ε/∂p = vF p/p0, (1)

where γ denotes the phenomenological constant damping
introduced in Section 3. The random forces ξx(t) and ξy(t)
are two white Gaussian noises with 〈ξi(t)〉 = 0 and
〈ξi(t)ξj(0)〉 = δijδ(t), for i, j = x, y, which ensures proper
thermalization at temperature T . We recall here that the
modulus of V is constant and equal to vF [7]. These equa-
tions describe a relativistic Brownian dynamics, thus sug-
gesting new settings for the experimental and theoretical
investigation of relativistic thermodynamics and relativis-
tic Brownian motion. In Section 4 we report results from
extensive numerical simulations we performed by integrat-
ing equations (1).

We stress here that the validity of equations (1) for
electrons in graphene is restricted to the quasi-classical
limit, where quantum mechanical effects can be safely ne-
glected. In particular, as detailed in the forthcoming sec-
tion, the testing ground for relativistic phenomena on a
graphene chip is subject to the following physical restric-
tions: (i) the de Broglie wavelength across the barrier,
λx = �/px, must be much smaller than the period of sub-
strate potential, λx � L, so as to neglect either miniband
or discrete energy levels; (ii) the de Broglie wavelength
parallel to the barrier, λy = �/py, must be much smaller
than L, so as to suppress the probability of chiral tun-
neling (Klein’s paradox [12,15]). The condition λy � L
allows neglecting, in particular, the electron-hole tunnel-
ing; (iii) temperature (or noise strength) must be high
enough to further ensure that the chiral tunneling at the
top of the U(x) barriers is negligible with respect to the
competing noise-activated particle hopping, i.e.,

min
{
�vF /L; �ω2

yU
2/vF A2L

} � kT <
∼ U, (2)

where A is the amplitude of the field component parallel
to the barrier.

Condition (iii) on T is introduced because noiseless
carriers moving along the x-axis with λy � L would
still be subject to Klein’s mechanism (barrier trans-
parency) [16]. Note, however, that in 2D geometries with
smooth potentials U(x), the fraction of electrons undergo-
ing Klein’s tunneling is negligibly small, not only at high
temperatures [as guaranteed by condition (iii)], but also
in the presence of sufficiently strong transverse drives. In-
deed, drives oriented along the y axis produce an optical
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Fig. 1. (Color online) Panel (a): sketch of a graphene chip (carbon atoms arranged in a honeycomb lattice) with a set of several
electrodes placed parallel to the y-axes. The electrodes, kept at a constant potential, U+ (green) and U− (blue), create a local
asymmetric electric field along x, EU (x) = −dU(x)/dx, with the electric potential, U(x) (solid line). External ac electric fields,
Ey(t) and Ex(t), drive the charge carriers in the x and y directions, respectively. Panel (b): spectral peak, S (see text), for a
relativistic particle moving on a uniform substrate, U(x) ≡ 0, parallel to the ac drive E = (0, A cos (ωyt)): S/S0 vs. T/T0, with
S0 = (A/γωy)2, T0 = v2

F γ/2ωy and for different ωy. Simulation parameters are: A = 20, and vF = γ = k = 1. The dashed line
depicts the asymptotic decay law, T−2, discussed in the text.

gap in the energy spectrum proportional to the ac electric
field amplitude. This tends to suppress chiral tunneling
even for particles with py = 0 [17,18], thus corroborating
our quasiclassical model.

Conditions (i)–(iii) are formulated in Section 3; the
reader not interested in those technical details can jump
directly to Section 4.

3 Quasi-classical dynamics of charge carriers
in graphene

In the low-energy limit and in the absence of randomness
(fluctuations and disorder, alike), the graphene charge
carriers, electrons and holes, obey the Dirac equations,

(Px − iPy)ΨB +
U(x, y, t)

vF
ΨA =

i�

vF

∂ΨA

∂t
,

(Px + iPy)ΨA +
U(x, y, t)

vF
ΨB =

i�

vF

∂ΨB

∂t
, (3)

where U is a chip-dependent scalar potential, the two
spinor components of the carrier wave function, (ΨA, ΨB),
refer to the two triangular graphene sublattices and the
momentum operators are defined as

(Px,Py) = (−i�∂/∂x,−i�∂/∂y) ≡ −i�∇.

Applying the operators (Px − iPy) and (Px + iPy), re-
spectively, to the first and the second equation leads to

the coupled second-order partial differential equations,
[
−�

2∇2 +
�

2

v2
F

∂2

∂t2
+ 2

i�

v2
F

U ∂

∂t
− U2

v2
F

]
ΨB =

− i�

v2
F

ΨB
∂U
∂t

+
i�

vF
ΨA

(
∂U
∂x

+ i
∂U
∂y

)
,

[
−�

2∇2 +
�

2

v2
F

∂2

∂t2
+ 2

i�

v2
F

U ∂

∂t
− U2

v2
F

]
ΨA =

− i�

v2
F

ΨA
∂U
∂t

+
i�

vF
ΨB

(
∂U
∂x

− i
∂U
∂y

)
, (4)

where ∇2 ≡ ∂2/∂x2 + ∂2/∂y2. Equivalently, the
effective actions (SA,SB), defined as (ΨA, ΨB) =
(exp(iSA/�), exp(iSB/�))s, satisfy the coupled equations,

(∇SA)2 − 1
v2

F

(
∂SA

∂t
− U

)2

− i�∇2SA +
i�

v2
F

∂2SA

∂t2
=

− i�

v2
F

∂U

∂t
+

�

vF
e

i
�
(SA−SB)

(
i
∂U
∂x

− ∂U
∂y

)
,

(∇SB)2 − 1
v2

F

(
∂SB

∂t
− U

)2

− i�∇2SB +
i�

v2
F

∂2SB

∂t2
=

− i�

v2
F

∂U

∂t
+

�

vF
e

i
�
(SB−SA)

(
i
∂U
∂x

− ∂U
∂y

)
. (5)

In the limit � → 0, SA and SB tend to the unique clas-
sical action, S, solution of the classical Hamilton-Jacobi
equation,

(
∂S
∂x

)2

+
(

∂S
∂y

)2

− 1
v2

F

(
∂S
∂t

− U
)2

= 0. (6)
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On making use of the well-known relation, H = ∂S/∂t,
one eventually derives from equation (6) the classical
Hamiltonian for a relativistic massless particle,

H = ±vF

√
p2

x + p2
y + U , (7)

where, in notation of Section 2, U(x, y, t) = U(x) −
Ey(t)y − Ex(t)x and ± referring respectively to electrons
and holes, whose densities are related by electroneutrality
and are controlled by the chemical potential.

Note that the lowest order corrections to the classical
limit, equation (6), are O(�), at variance with the stan-
dard WKB formalism for the Schrödinger equation. Such
corrections, for |SA−SB| ∼ �, are due to the electron-hole
transitions, so that a systematic quasiclassical treatment
would require a two particle species description [19,20].

Thus far, the interactions of a single charge carrier
with, e.g., phonons and impurities have been neglected.
If the relevant collision times are short compared with
the operation time constants of the graphene chip (peri-
ods of the ac-drives, carriers drift times across the sub-
strate potential cells, etc.), then such interactions can be
accounted for by adding to the potential function, U , an
appropriate fluctuating term [21], Uξ, namely, U(x, y, t) =
U(x) − Ey(t)y − Ex(t)x + Uξ, which corresponds to an
isotropic white noise force in the plane (x, y).

The same interactions are also responsible for the
damping term in the Langevin equations (1). The appro-
priate form of the damping and the fluctuating terms are
determined by the fluctuation-dissipation theorem. In Sec-
tion 2 we assumed a damping term of the viscous type,
−γV [22], and then determined the random forces ac-
cordingly [2]. The damping coefficient γ contains contri-
butions from all possible collision mechanisms a charge
carrier may undergo when moving through a graphene
chip. To determine the relative importance of such mech-
anisms would require a detailed quantum kinetic theory
(see, e.g. Ref. [23]), which rests beyond the purposes of
our semi-classical approach, and, more importantly, direct
access to experimental parameters, such as spatial disor-
der (impurities), internal lattice stress in the presence of
a substrate (phonon distribution), local temperature and
magnetic field fluctuations, which are hardly controllable.

The semiclassical approach outlined above provides a
meaningful phenomenological description of charge carrier
transport in a graphene chip as long as its characteristic
length scales (e.g., the chip size and the electrode spacings)
are much larger than the de Broglie wavelengths, (i) λx =
�/px and (ii) λy = �/py, with (px, py) = (∂S/∂x, ∂S/∂y).
Condition (i) states that for λx much shorter than the
characteristic length scale of the substrate potential along
the x-axis, L ∼ |U/(dU/dx)| for smooth functions U(x),
the mini-zone structure or discreteness of the carrier en-
ergy spectrum becomes negligible.

Condition (ii), λy = �/py � L, follows from requir-
ing that the probability of chiral tunneling is distinctly
smaller than unity, i.e., that the particle must be reflected
many times by the potential barrier before it may tun-
nel across. Chiral tunneling is exponentially suppressed
for non-zero transverse momenta, py 	= 0, and smooth

time-independent potentials, U(x). In this case, the clas-
sical action has the form S = pyy − Et + S0(x), where E
is the conserved energy and S0(x) can be readily de-
rived from the the Hamilton-Jacobi equation (6), that is,

S0 = ± ∫ √
(E − U)2/v2

F − p2
y dx. Chiral tunneling occurs

through the classically forbidden region, |E−U | < vF |py|;
therefore, the smoother the potential, the larger the size
of the forbidden region, 2vF |py|/|dU/dx|. As a conse-
quence, chiral tunneling is characterized by an exponen-
tially small probability, w = exp(−ζ0vF p2

y/�|dU/dx|) [16],
with ζ0 denoting a constant of the order of unity, which
is appreciable only for a small fraction of electrons with
py

<
∼

√
�|dU/dx|/vF . By introducing the estimate py ∼

U/vF for the transverse momentum, we derived condi-
tion (ii). It is important to stress that a time dependent
electric field acting along the barrier, Ey(t), tends to ex-
ponentially suppress also the chiral tunneling of electrons
moving perpendicularly to the barrier, py = 0, that is,
w = exp[−πe2vF A2/(4�|dU/dx|ω2

y)] [17,18]. This remark
further corroborates our quasiclassical approach in the
presence of strong enough drives. As an additional con-
sistency requirement for our semiclassical description of
graphene charge carrier transport over the substrate po-
tential, we must further ensure that chiral barrier tun-
neling is negligible with respect to the thermal barrier
hopping, that is, w � exp(−U/kT ); hence, the inequali-
ties (2) of condition (iii). Correspondingly, the lowest tem-
perature, Tc, where the semiclassical approach applies, can
be set to Tc ∼ �vF /L. For the standard estimates of the
Fermi velocity, vF ∼ 106 m/s, and of the characteristic
length of graphene superlattices, L > 1 μm (Ref. [24]),
Tc

<
∼ 50 K.
Accordingly, the frequencies E(t) in equations (1) are

required to satisfy the condition �ω < U ∼ kBTc, namely,
to fall below the THz range. All these estimates suggest
that the effects presented in the next section rest well
within the reach of present nano-technology [24].

4 Relativistic stochastic effects

The interplay of stochastic and relativistic dynamics, gov-
erning the transport of charge carrier in graphene, induces
unexpected noise-controlled effects. In this section we fo-
cus on the most remarkable differences between relativistic
and nonrelativistic Brownian motion in 2D.

4.1 Stochastic effective mass

The momentum components px and py in equations (1)
are coupled via the dispersion relation, ε = vF p0, even
in the absence of a substrate potential, U(x) ≡ 0. This
gives rise to a peculiar phenomenon, which characterizes
the relativistic Brownian motion with respect to its non-
relativistic counterpart (Fig. 1b). By numerically solving
equations (1) for electrons driven, say, along the y axis
by E = (0, A cos (ωyt)), we determined the strength, S,
of the delta-like peak of the y power spectral density
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at the driving frequency, ωy, that is, S = 4M2
1 , where

limt→∞〈y(t)〉 
 M1 cos(ωyt − φy) for an appropriate
phase-lag, φy (not shown) [25]. Contrary to the non-
relativistic limit, where it is T independent, for relativis-
tic particles at high temperatures S decreases according to
the approximate power law T−2. This result can be quanti-
tatively explained by noticing that according to the high-T
Jüttner distribution, the particle energy distribution is
ρ(ε) ∼ ε exp(−ε/kT ); hence, 〈ε〉 = vF 〈p0〉 = 2kT . Upon
replacing p0 by 2kT/vF , equation (1) is reduced to a set of
decoupled Langevin equations describing a non-relativistic
particle of effective mass meff = 2kT/v2

F . Accordingly,
S/S0 = 1/[1 + (ωy/ω0)2] with S0 = (A/γωy)2 and ω0 =
γ/meff = v2

F γ/2kT (dashed line in Fig. 1b). Stochastic
mass renormalization provides a simple validation check
for our phenomenological model in equation (1).

4.2 Relativistic harmonic mixing

Consider next the case of a relativistic particle driven
by two orthogonal harmonic electric fields in a sym-
metric periodic potential U(x). In the non-relativistic
limit, two harmonic drives with commensurate frequen-
cies can induce rectification (i.e., a net electron drift or
directed current) only if both drives are applied along
the x-axis [26–28]. For the relativistic Langevin equa-
tion (1), the coupling between the x and y degrees of
freedom produces an unusual manifestation of harmonic
mixing, whereby rectification occurs even if the two har-
monic drives are orthogonal. To demonstrate this genuine
relativistic effect we integrated equations (1) for the ac
electric field E = (B cos (ωxt + φ), A cos (ωyt)) and the
symmetric substrate potential U(x) = − sin(2πx). The x
and y displacements for a non-relativistic particle sub-
jected to such force fields are statistically uncorrelated,
thus yielding zero average currents in both direction. In
distinct contrast, for a relativistic particle the coupling
between px and py causes a mixing of the orthogonal
components of the ac electric field E, and, as a result,
a net current in the x-direction. By inspecting Figure 2,
we concluded that the net current J̄x = 〈ẋ〉/L is non-
zero only for certain ratios of the two drive frequencies,
namely, for ωy/ωx = (2p − 1)/2q with p, q integer num-
bers. As expected [27,28], for fixed frequencies J̄x depends
sinusoidally on the phase φ (see inset of Fig. 2). This in-
triguing effect yields a measure of the degree of coupling
between particle diffusion in the x and y directions and,
therefore, a simple criterion to assess the validity of the
relativistic Langevin equations (1) to model charge carri-
ers in graphene.

4.3 Relativistic ratcheting

We consider next charge carrier transport due to the rec-
tification of non-equilibrium perturbations on a substrate
with asymmetric potential U(x) (ratchet or Brownian mo-
tor effect [29]). The working principle of a Brownian mo-
tor is that, under certain conditions, asymmetric devices
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Fig. 2. (Color online) Relativistic harmonic mixing: average
current J̄x versus ωy/ωx, for different ωx, as in the legend.
Two orthogonal harmonic signals, Ey(t) = A cos (ωyt) acting
along y and Ex(t) = B cos (ωxt + φ) acting along x, are mixed
by the nonlinear symmetric potential U(x) = − sin (2πx).
Other parameters are vF = 1, γ = 1, A = 20, B = 10, φ = 0,
and kT = 0.4. Inset: J̄x versus φ for ωx = 4, ωy = 2; all other
parameters as in the main panel.

are capable of rectifying random (i.e. noisy) and/or de-
terministic (periodic) modulations. In the non-relativistic
regime, ratcheting occurs only in the x direction, as a mere
effect of the x component of the periodic drive, Ex(t). The
rectification current weakens if E(t) is rotated at an angle
with the x-axis, until it drops to zero for ac drives parallel
to the substrate valleys. Indeed, the component Ey(t) of
the ac-field does keep the system out of equilibrium, but
cannot be rectified, since the substrate potential is uni-
form in the y direction. Stated otherwise, the x and y dy-
namics keep being decoupled. In the relativistic Langevin
equations (1), instead, the orthogonal ac-drive compo-
nents, Ex(t) and Ey(t), are nonlinearly coupled through
the dispersion relation, so that both can be rectified by
the asymmetric potential U(x). Most remarkably, apart
from a special parameter range dominated by relativis-
tic chaotic effects (see Sect. 4.4), transverse rectification
induced by Ey(t) in the x direction only occurs at finite
temperatures, thus implying a bona fide noise-sustained
Brownian ratchet [29]. Noise is required to force parti-
cle fluctuations in the x-direction, around the asymmetric
minima of U(x); as py is driven by Ey(t) toward values of
the order of

√
T , or smaller, correspondingly vx jumps to

a maximum, vx ≈ vF px/|px| = ±vF , so that the particle
is kicked in the x direction, either to the right or to the
left; this is how spatial asymmetry comes into play. Nat-
urally, such a rectification mechanism becomes ineffective
when the particle sits at a potential minimum with px = 0,
which only occurs in the absence of noise, i.e., for T ≡ 0.

To demonstrate the relativistic transverse ratchet ef-
fect, it suffices to arrange the electrodes on the graphene
chip so as to generate an asymmetric periodic potential,
U(x), directed along x and ac drive forcing the charge
carriers along y with E(t) = (0, A cosωyt). By numeri-
cally integrating the corresponding equations (1), we ob-
served that a relativistic particle tends, indeed, to drift in
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Fig. 3. (Color online) Relativistic ratcheting in an asymmet-
ric, periodic potential U(x) = sin (2πx)+0.25 sin (4πx), driven
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parameters as in (a). Here, D0 = kT/γ and ΔU � 2.20 (height
of the substrate barriers). Other parameters are A = 20 and
vF = γ = k = 1.

the x direction with net current J̄x = 〈ẋ〉/L and diffusion
coefficient Dx = limt→∞[〈x(t)2〉− 〈x(t)〉2]/2t. The depen-
dence of J̄x and Dx on the temperature and the driving
frequency are displayed in Figure 3. In panel (a) it is ap-
parent that at constant ωy the absolute value of the cur-
rent, | J̄x |, hits a maximum for an optimal T and tends to
zero in the limits T → 0 and T → ∞, thus underscoring
the key role played by noise. This result supports our con-
clusion that we deal with a new category of noise-sustained
(no current at zero noise) and relativistic (no ratchet phe-
nomenon in the non-relativistic limit) Brownian motors.
The direction of the net rectification current depends on
both the driving frequency and the temperature; its sign
can be (multiply) reversed by changing either T , panel (a),
or ωy (not shown). Most remarkably, in panel (b) one can
locate a finite temperature interval, where, for a given ωy,
the scaled diffusion coefficient Dx/D0 decreases with in-
creasing T ; indeed, Dx approaches the expected asymp-
totic value D0 = kT/γ only after going through a min-
imum. This T -interval approximately coincides with the
T -interval in panel (a), where the absolute value of the
current and, therefore, the mobility of the charge carriers
is the largest. Analogously, we checked that the absolute
maximum of Dx as a function of ωy corresponds to a local
minimum of J̄x versus ωy. This observation suggests that
for appropriate system parameters, elementary charge ex-
citations in graphene can be regarded as Brownian parti-
cles with large mobility and low diffusivity.

4.4 Chaos and stochastic resonance

To investigate the role of anomalous signal amplification
we consider relativistic Brownian motion driven along y

by the time-periodic electric field E(t) = (0, A cos(ωyt)),
and confined along x by the double-well potential U(x) =
x4/4 − x2/2, sketched in Figure 4a. In the deterministic,
or noiseless regime, T ≡ 0, the motion of a classical par-
ticle in the x-direction would be frozen, i.e. the particle
would sit in one of the two U(x) minima, regardless of
the drive applied in the y direction. In clear contrast, the
response of the relativistic particle in the x-direction is
strongly affected by the nonlinear coupling of the x- and
y-dynamics, controlled, respectively, by U(x) and Ey(t).
In fact, by appropriately tuning the drive parameters A
and ωy, the relativistic particle can execute either small
amplitude intra-well oscillations within one confining well,
or large-amplitude inter-well oscillations between the two
confining wells, or even exhibit chaotic-like switching be-
tween the two wells. The phase diagram of these three
different dynamical regimes is depicted in Figure 4b with
samples of the corresponding x-trajectories reported in the
insets.

Our numerical simulations showed that in the chaotic
regime a relativistic particle performs small amplitude os-
cillations around one U(x) minimum for an unpredictable
time interval (residence time) before switching over into
the other minimum, where it resumes its small amplitude
oscillations until the next switching event. These switch-
ings are due to the intrinsic instability of the particle dy-
namics and not to thermal fluctuations, as in our simula-
tions the temperature was initially set to zero.

On raising the temperature, the inter-well dynamics in-
duced by the transverse field, Ey(t), becomes increasingly
noise dominated. In Figure 4c we display the normalized
distribution density of the residence times in either U(x)
well, τ , at different T . The peak split structure, charac-
teristic of the noiseless chaotic dynamics, merges into a
single broad peak centered at around τ = 2π/ωy. The
corresponding peak strength, S, defined here as the area
encircled by the peak, attains a maximum for kT smaller
than, but close to the barrier height of U(x), ΔU = 0.25.
Such a behavior can be regarded as an instance of stochas-
tic resonance, a phenomenon well established for bistable
non-relativistic Brownian motion [25], with two additional
peculiarities: here the periodic drive acts perpendicularly
to the hopping direction and the resonance is related with
chaotic rather than periodic switches between potential
wells.

5 Conclusions

The relativistic stochastic effects reported in this paper
are summarized in Table 1, where for reader’s convenience
we compare case by case the different behaviors of rela-
tivistic (massless) and non-relativistic (massive, or over-
damped) Brownian particles in 2D. One has to bear in
mind that the orthogonal coordinates of the relativistic
particle in equations (1) are dynamically coupled even in
the absence of a nonlinear substrate or external gradients.
Such a coupling vanishes in the non-relativistic limit. As a
consequence, first, the response of graphene charge carri-
ers to a time-periodic drive is temperature dependent, see
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Fig. 4. (Color online) Relativistic stochastic resonance. (a) The confining potential, U(x) = x4/4 − x2/2, bistable in the
x-direction and uniform in the transverse direction y; (b) corresponding phase diagram for E = (0, A cos (ωyt)). Insets: trajec-
tory samples for points in the plane (A,ωy) (denoted by arrows) belonging to different dynamical phases. (c) Residence time
distributions, ρ(τ ), for different T (as indicated) and constant drive, A = 15 and ωy = 0.5. Relevant simulation parameters:
integration step, 1.2 × 10−3; run time length, 5 × 105; distribution time bin, 2.5 × 10−2. Inset: integrated distribution peak,
S =

∫ τ=14

τ=11
ρ(τ )dτ , vs. T (SR signature). Other simulation parameters are: vF = γ = k = 1.

Table 1. Driven stochastic dynamics of relativistic and non-relativistic particles: a comparison.

Relativistic massless particles Classical massive or
overdamped particles

Experimental data sources Cosmic rays, graphene chip Nano-particles in liquids
and nano-channels,

Vortices in superconductors,
bio-molecules in bio-systems etc.

Possible applications THz graphene-based electronics Nanotechnology,
Noise-driven nano-robots,

Drug delivery etc.

Current state of the art Conflicting formulations Well established working tool
limited applicability

Coupling between orthogonal coordinates Yes No

Rectification in a spatially symmetric Occurs if the signals are Occurs only if the two signals are
periodic potential U(x), induced applied in the same as well as applied in the same direction

by mixing of two harmonic signals in the orthogonal directions

Rectification in a spatially asymmetric Occurs if the signal is applied along Occurs only if the signal
periodic potential U(x) induced by the x, as well as along the y direction is applied along the x direction

a single center-symmetric unbiased signal

Motion in a double-well potential Zero temperature lateral response No zero temperature lateral response
with orthogonal harmonic drive; can be constant, periodic or chaotic

chaos and resonance in time.
Finite temperature response in the Finite temperature response: random

chaotic regime: non-exponential switchings with exponential distribution
double-peak distribution of the of the residence times

residence times; stochastic resonance

http://www.epj.org
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Figure 1b, whereas the response of a classical free particle
only depends on the drive. Second, on applying a peri-
odic symmetric spatial modulation in a given direction, a
relativistic massless particle can be rectified in that direc-
tion, when driven by two center-symmetric unbiased time
periodic fields acting in orthogonal directions (transverse
harmonic mixing, Fig. 2). Rectification occurs only for a
certain combination of the relevant driving frequencies. In
the case of a classical particle, harmonic mixing would re-
quire that both harmonic signals act in the direction of the
spatial modulation. Third, in the presence of a spatially
asymmetric ratchet-like potential, U(x) (Fig. 3), the rel-
ativistic particle can be rectified along x by periodically
forcing it along y, contrary to classical ratchets, where
rectification of transverse signals was never observed. Fi-
nally, if the motion of a noiseless relativistic particle is
confined to a double-well potential (Fig. 4) along x, in the
presence of a transverse harmonic drive, Ey(t), its coordi-
nate x(t) can be either constant, or periodic, or chaotic,
depending on the Ey(t) parameters. Adding noise causes
an unusual manifestation of stochastic resonance with no
counterpart in the non-relativistic regime: At finite tem-
perature, particle switchings between U(x) minima can
be optimally synchronized even by means of a transverse
periodic modulation.

We conclude by stressing once more that, irrespective
of the phenomenological details of equations (1), the spa-
tial coordinates of a relativistic particle in 2D are nonlin-
early coupled via a non-separable energy-momentum dis-
persion relation. In this regard our approach may apply
not only to graphene but also to other materials, like cer-
tain types of semiconductors. Moreover, the results dis-
cussed in this work, besides suggesting an inexpensive
technique to assess the current stochastic formalisms for
relativistic particles, might well find application in ultra-
fast electronics. Indeed, the implementation of the effects
reported above is expected to become a viable technology,
should one eventually succeed in replacing GaAs- with
graphene-based electronics [30,31].
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Technology (ACIT) of the University of Augsburg.
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