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Abstract. The transport of slightly deformable chiral objects in a uniform
shear flow is investigated. Depending on the equilibrium configuration one finds
up to four different asymptotic states that can be distinguished by lateral drift
velocity of their center of mass, rotational motion about the center of mass and
deformations of the object. These deformations influence the magnitudes of the
principal axes of the second moment tensor of the considered object and also
modify a scalar index characterizing its chirality. Moreover, the deformations
induced by the shear flow are essential for the phenomenon of dynamical
symmetry breaking: objects that are achiral under equilibrium conditions may
dynamically acquire chirality and consequently experience a drift in the lateral
direction.
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1. Introduction

The idea of achieving enantiomer separation on the basis of specific transport properties of
chiral objects in flowing fluids [1–3] is very attractive because it opens the way to tackle this
also industrially relevant task by purely physical means without the need for specific chemical
agents.

Howard et al [4] were the first to suggest the use of transport properties of asymmetric
objects to separate differently crystallized enantiomers. Later, de Gennes [5] discussed a
mechanical way of separating chiral crystals. Only recently, a lateral drift of screw-like objects
in shear flows predicted by Brenner [6] was experimentally demonstrated for bodies with a
linear extension of the order of centimeters [7], millimeters [8] and micrometers [9]. The
direction of this drift, resulting from the coupling of the rotational and translational motions
of a chiral object in a fluid, differs for objects with opposite chirality. The mutual interactions
between flowing fluids and immersed chiral objects have recently been the subject of various
experimental studies. The generation of flow patterns by actively rotating chiral objects was
investigated in [10]. The control of actively moving nano-structured propellers was studied in
[11]. In [12], the formation of chiral assemblies made of achiral components in a vortex flow is
described.

Theoretical studies on the influence of the chirality of a macroscopic object on its transport
properties were conducted for sedimentation [13] and for shear flows [14]. Chiral planar three-
atomic molecules were studied in clover leaf vortex flows [1] and in flows in channels of various
geometries [15, 16]. In these two-dimensional (2D) studies, fluctuating forces were taken into
account in order to model the action of thermal fluctuations exerted on the molecules by the
surrounding fluid. All studies [1, 13–16], however, are restricted to rigid objects.

Watari and Larson [17] considered 3D, four-atomic molecules that, in equilibrium,
assume the form of a regular tetrahedron, which as such is achiral with respect to geometry.
When put into a shear flow these molecules are distorted in an asymmetric way owing to
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differently deformable bonds between the atoms. As a consequence these molecules experience
a lateral drift.

In this work, we study the motion of objects consisting of four mutually interacting spheres
with different equilibrium bond lengths but identical bond strengths, see equation (2), being
suspended in a uniform shear flow. The main mechanisms leading to a lateral drift of the
objects, i.e. to a motion perpendicular to the flow direction and to the direction in which the
flow speed changes, can be summarized as follows. The shear field of the flow leads to a
rotation of the object, which then, like a small propeller, moves in, or opposite to, the direction
of the vorticity of the flow. We demonstrate that the rotation is essentially determined by the
advection of the spheres with the fluid motion and only slightly influenced by hydrodynamic
interactions between the spheres. In a uniform shear flow, coupling between rotational and
translational motions, however, is only possible due to hydrodynamic interactions between the
spheres.

The direction of the lateral drift is difficult to predict, as is also the case for molecular
motors [2]. In general, it depends on all the parameters of the system and also on the initial
conditions with which the object is started. These initial conditions may belong to different
domains of attraction, eventually leading to different attractors, which may display different
forms of rotation of the object and consequently different drift behavior, even with opposite
signs.

Due to the deformability of the considered objects, chiral attractors may exist for objects
with achiral equilibrium configurations and consequently achiral objects may experience a
lateral drift displaying dynamical symmetry breaking. The lateral drift, however, vanishes on
average, because for an object with achiral equilibrium configuration chiral attractors can only
come in mutually mirror symmetric pairs.

This paper is organized as follows. In section 2, we introduce a class of ‘spiral’
objects, the geometry of which is described by only three parameters, and we specify their
equations of motion in terms of bond strengths and hydrodynamic interactions. Further, we
introduce the most important quantities needed for the analysis of numerical solutions to the
equations of motion (section 2.2). In section 3, we present the results on the center of mass
motion (section 3.1), the rotational motion (section 3.2) and the internal motion (section 3.3)
with particular emphasis on the dynamical symmetry breaking (section 3.3.1). The role of
hydrodynamic interactions is discussed in section 4. The paper closes with a summary and
an outlook in section 5.

2. The model

2.1. Spiral objects and the equation of motion

In the present case study, we consider objects consisting of four identical spheres of radius
a. The equilibrium configuration of a free object, i.e. a stable configuration with balanced
bonding forces between the spheres, is assumed to be of helical form. This form is constructed
by positioning the centers of the spheres on a cylinder mantle of radius ρ. Given the location of
the first sphere R1, the next one, R2, is found upon rotation by an angle ϕ about the cylinder
axis combined with a translation by h parallel to the cylinder axis, and so on with the third and
fourth spheres yielding the respective positions R3 and R4, as illustrated by figure 1(a). Hence,
if the cylinder axis coincides with the z-direction of a coordinate system and the first sphere
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Figure 1. (a) The configuration of a spiral object consisting of four spheres of
radius a positioned on a cylinder mantel of radius ρ. Positions of neighboring
spheres are distinguished by screw angle ϕ and rise h. (b) Uniform shear flow:
the velocity is independent of x , points in the z-direction and varies in magnitude
proportionally to y.

lies in the x-axis of the coordinate system, then the following vectors point to the centers of the
spheres sitting on a spiral:

Rn = ρex cos[(n − 1)ϕ] + ρey sin[(n − 1)ϕ] + h(n − 1)ez , n = 1, 2, 3, 4 . (1)

We model the bonding forces between the spheres of such a ‘spiral’ object by nonlinear, so-
called FENE-Fraenkel (finitely extensible nonlinear elastic) springs [18]. If r is the vector
connecting two spheres, then the force acting between these spheres is given by

f = k(r − l)
(r+ − l)(l − r−)

(r+ − r)(r − r−)

r

r
, for r− < r < r+, (2)

where r = |r| is the distance between the spheres, l the equilibrium length of the spring, k the
spring constant describing the Hookean behavior of the spring for small extensions about the
equilibrium length and s < 1 is a nonlinearity parameter of the spring. At the extensions

r± = (1 ± s)l, (3)

the force diverges so that the bond length between two spheres is restricted to the indicated,
finite range.

In contrast to [17], here we choose identical force parameters k and s for the bonds; only the
equilibrium bond lengths l may differ. Hence, possible chirality of the equilibrium configuration
of an object is solely determined by its geometry: according to the standard definition, the
configuration of an object is achiral if a movement of the object, i.e. a combination of
translations and rotations in 3D space, exists such that it matches its mirror image; in any other
case the configuration is chiral.

When the object is suspended in a flowing fluid, advective forces act on the individual
spheres, which in addition mutually influence their motions by hydrodynamic interactions.
The total action of the fluid on the sphere will be described by a mobility tensor Hn,m

relating the forces acting on the mth particle to the velocity of the nth particle. The
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deterministic, overdamped motion of the object in a fluid flow with the velocity field v(r) is then
given by

ṙn = v(rn) +
4∑

m=1

Hn,m · fm, (4)

where f m is the total force acting on the mth sphere, i.e. the sum of the FENE-Fraenkel
forces (2) exerted by the other three spheres, and the dot denotes differentiation with respect
to time. For sufficiently small spheres, inertial terms can be neglected [19]. We shall describe
the mobility by the Rotne–Prager tensor which includes the hydrodynamical interactions up to
second order in the ratio a/rn,m of the sphere radius a and the distance rn,m between the nth and
the mth sphere. It is given by [20]

Hn,m =
1

6πηa

[
δn,m1 + (1 − δn,m)

3a

4rn,m
Hn,m

]
, (5)

with

Hn,m =


(

1 +
2a2

3r 2
n,m

)
1 +

(
1 −

2a2

r 2
n,m

)
rn,mrn,m

r 2
n,m

, for rn,m > 2a,

(
1 −

9rn,m

32a

)
1 +

3rn,mrn,m

32arn,m
, for rn,m < 2a,

(6)

where 1 denotes the unit tensor in 3D space, η the viscosity of the fluid and rn,m = rm − rn the
vector pointing from the position of the nth to that of the mth sphere.

In passing, we mention that thermal noise leads to additional random contributions in the
equations of motion, yielding [21]

ṙn = v(rn) +
4∑

m=1

Hn,mfm +
√

2kBT
∑

σ n,m · ξm(t), (7)

where ξ n(t) are mutually independent 3D Gaussian, white noise vectors satisfying

〈ξ n(t)ξm(s)〉 = δn,m1δ(t − s) . (8)

The fluctuation–dissipation theorem requires that the coupling to the noise, σ i, j , be related to
the Rotne–Prager tensor according to

Hn,m =

4∑
k=1

σ n,k · σ m,k. (9)

In this work however, we neglect all influences stemming from thermal noise. This requires
that the radius of the spheres, constituting objects with parameters as specified below, be at least
1 µm in order that thermal fluctuations can be neglected as compared to the hydrodynamic
interactions in water at room temperature flowing with a uniform shear rate κ = 1 s−1. In the
following, we restrict ourselves to a discussion of the deterministic equations of motion in (4).
We shall consider a uniform shear flow given by

vx = vy = 0, vz = κy, (10)

where κ denotes the shear rate; see figure 1(b). Even in this seemingly simple case the
deterministic equations of motion can only be solved by a numerical means. For that purpose,
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we employed an LSODA code of variable order and step length [22, 23] as available from the
open source SciPy package [24].

In the numerical treatment, we used dimensionless variables where lengths are measured
in units of the sphere radius a and times in units of the inverse shear rate κ−1. Apart from
six parameters that fix the equilibrium geometry of an object consisting of four spheres in
general, or three in the present case of a spiral object as defined by equation (1), two further
parameters are needed for the characterization of the forces. As such we will choose the
nonlinearity parameter s and the dimensionless spring constant kf = k/(6pgaj). With this
choice the deterministic equations of motion read

ẋn = Sxn + kf

4∑
m=1

Hn,m ·Fm, (11)

where S is the shear tensor, which has vanishing matrix elements apart from the z–y element,
being unity, and Fm denotes the dimensionless force exerted on the mth particle by the adjacent
particles, reading

Fm =

∑
n 6=m

xn,m − `n,m

1 − (1 − xn,m/`n,m)2/s2

xn,m

xn,m
for (1 − s)`n,m < xn,m < (1 + s)`n,m. (12)

Here xn = rn/a, xn,m = xn − xm , xn,m = |xn,m| and `n,m = |Rn − Rm|/a denote the dimension-
less positions, distance vectors, the actual distances and the equilibrium distances between
spheres n and m, respectively.

Possible initial conditions for the integration of the equation of motion (11) are given by
any set of sphere positions that obey the restrictions imposed by the FENE-Fraenkel forces (12).
Here we confine ourselves to equilibrium configurations of the free objects. For further details
of how the orientations are chosen, see section 3.

2.2. Characteristics of the mechanical state of an object

In the framework of the overdamped dynamics of equation (11) the mechanical state of the
object is uniquely described by the positions xn(t) of the four spheres. A reduced description
is provided by the center of mass of the object consisting of four spheres of equal mass,
consequently reading

X =
1

4

∑
n

xn. (13)

The spatial orientation of the object can conveniently be characterized by the three principal
axes of the symmetric tensor of second moments of the sphere positions, M, defined by its
elements

Mi, j =
1

4

∑
n

(xn
i − X i)(xn

j − X j), (14)

where xn
i denotes the i th Cartesian position component of the nth sphere. The orientations of

the principal axes are determined by the normalized eigenvectors ui and their magnitudes by
the corresponding eigenvalues λi of the tensor of second moments. Hence, they result from the
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eigenvalue problem

Mui = λiui , (15)

where M = (Mi, j).
The velocity vector ω of the instantaneous rotation of the object in the frame co-moving

with the object’s center of mass is determined by the orientation and velocity of any body-fixed
tripod. Here we use the principal axes of the second moments to obtain

ω = −
1

2

∑
i

u̇i ×ui , (16)

where the dot denotes a derivative with respect to time and u × v the vector product of the
vectors u and v. By means of the eigenvalue equation (15) one may express u̇i in terms of the
time derivative of M, to yield

ω =
1

2

∑
i 6= j

u j · Ṁui

λ j − λi
u j ×ui , (17)

where u · v denotes the scalar product of the vectors u and v.
As a measure of the deformation of an object, we consider the ratio of volumes taken in

the distorted state and the equilibrium shape. As object volume one may assign the square root
of the product of the magnitudes of the principal axes, i.e.

V = (λ1λ2λ3)
1/2. (18)

Whether an object is chiral cannot be decided on the basis of its second moments of
positions. For this purpose, we use the isotropic chirality index G0, which is invariant under
translations and rotations of the object [25], in its dilation invariant form. For an object
consisting of four spheres of equal mass and size it becomes

G0 =
1

3

∑
i, j,k,l

xi, j · (xk,l ×xi,l) (xi, j ·x j,k) (x j,k ·xk,l)

(xi, j x j,k xk,l)2xi,l
. (19)

The sum is extended over all sets i, j, k, l taken from the permutations of {1, 2, 3, 4}. This
index has the general property that it assumes the same absolute value but opposite signs for
enantiomers, i.e. pairs of configurations that are mirror images of each other. Hence, achiral
configurations have a vanishing chirality index.

For a spiral object, the chirality index is a function of the relative rise ρ/h and the screw
angle ϕ. It is an antisymmetric function about the line ϕ = π , see figure 2(a), and possesses
a singularity at ϕ = 2π/3 and h/ρ = 0. Along the lines h/ρ ≈ −(ϕ − 2π/3) for ϕ < 2π/3 and
h/ρ ≈ 0.95(ϕ − 2π/3) for ϕ > 2π/3 the chirality index forms a ridge and a valley, respectively.
Approaching the singularity along the ridge, the chirality index converges to the approximate
value 0.289, while it approaches the opposite value −0.289 along the bottom of the valley.

Since all configurations with h/ρ = 0 are planar and hence achiral, the chirality index
exactly vanishes on the line h/ρ = 0. In the remaining part of the ϕ–h/ρ-plane, the chirality
index has three extrema on each side of the symmetry line ϕ = π . Local extrema are located
at u ≈ 0.8908p, h/q ≈ 0.2073 and u ≈ 0.9291p, h/q ≈ 0.584. The absolute maximum is
at ϕ ≈ 0.656π , h/ρ ≈ 2.516; see figure 2(a). The chirality index vanishes on the solid and
dashed curves in figure 2(b). These curves result from constraints on the bond lengths (see
the appendix). Along the dashed curve emerging from ϕ = π/2, h/ρ = 0 and ending in ϕ = π ,
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Figure 2. The chirality index G0 defined in equation (19) is displayed for
spiral objects as a function of the screw angle ϕ and the relative rise h/ρ; see
equation (1). In panel (a) the symmetry G0 → −G0 upon a reflection on the
line ϕ = π is clearly visible. The four black lines labeled by A–D indicate four
cuts through the parameter plane; see the text in section 3 as well as figure 5.
The lines A and B are defined by local maxima of the chirality index. On C
and D the absolute maximum of G0 is located. Panel (b) represents a blow-
up of the region marked in panel (a) by the white lines. Note that for the
purpose of better visibility, different color scales are used in the two panels.
The black lines in panel (b) indicate those curves on which two of the three
edge lengths l(k), k = 1, 2, 3 between spheres with positions Rn and Rn+k are
equal; see the appendix. The solid line represents achiral configurations with
l(1) = l(2) which have five equally long edges. It starts at the singularity of
G0 at ϕ = 2π/3 and h/ρ = 0 and ends at ϕ = 4π/3 and h/ρ = 0. Along the
dashed line, l(1) = l(3) holds. These configurations have two and four equally
long edges and are also achiral. On the dashed-dotted line, where l(2) = l(3), the
configurations possess two triples of equally long edges, and the chirality index
is nonzero everywhere except at the points with h/ρ = 0 and at the crossing point
of the three lines which correspond to a regular tetrahedron. Note that there is
still a third curve recognizable by the green color on which the chirality index
vanishes in spite of the chirality of the corresponding configurations.

h/ρ = 0, the configurations possess a group of four and another one of two equally long
edges; see figure 3(b). Since the corresponding configurations exhibit a symmetry plane, they
are achiral. The faces of these tetrahedra are made of identical isosceles triangles. Also the
configurations on the curve starting at ϕ = 2π/3, h/ρ = 0 and reaching ϕ = π , h/ρ = 2/

√
3 are

achiral; the faces of these configurations consist of two identical equilateral and two identical
isoscele triangles; consequently, five of the six edges have the same length; see figure 3(c). The
analytic forms of the achiral curves are derived in the appendix. Examples of different types of

New Journal of Physics 14 (2012) 073006 (http://www.njp.org/)

http://www.njp.org/


9

(a)

(b)

(c)

Figure 3. Panel (a) illustrates a generic spiral object with three and two edges
of equal lengths and a sixth edge of a different length. The edges of equal
lengths are drawn correspondingly. Panel (b) presents a configuration on the
dashed curve displayed in figure 2(b) with two and four equally long edges,
while the configuration in panel (c) has five equally long edges representing a
configuration on the solid curve depicted in figure 2(b). The right part of the
figure represents the corresponding mirror images. The cases (b) and (c) are
achiral.

configurations are displayed in figure 3. There exists a third node line of G0 which, however,
does not correspond to achiral configurations. We could not find an analytic expression for this
line which emerges from ϕ ≈ 0.46π , h/ρ = 0 and ends in ϕ ≈ 0.88π , h/ρ = 0. The three node
lines of the chirality index meet in a single point which corresponds to a regular tetrahedron.
For the fact that a vanishing value of the chirality index does not necessarily correspond to an
achiral configuration, see [26].

3. Results

For our investigations, we selected configurations of spiral objects corresponding to four cuts
in the parameter plane displayed in figure 2(a). Three of these cuts (A, B and C) are taken at
constant relative rise h/ρ = 0.2073, 0.584 and 2.5162, respectively, each for ϕ ∈ (0, π). For
the two smaller values of h/ρ we chose a relatively large radius ρ = 7 in order to avoid any
collision of the spheres within an object, and the smaller radius ρ = 2 for the large relative rise.
The vertical cut D is determined by the screw angle ϕ = 2π/3, radius ρ = 3 and relative rise
h/ρ ∈ (0, 5).

As initial configurations we took the equilibrium configurations according to equation (1),
rigidly translated such that the center of mass falls at the origin. Finally, rigid rotations of the
object about its center of mass were performed. Between 500 and 5000 rotations were sampled
from the uniform distribution of the 3D rotation group2, i.e. from the Haar measure of SO(3).

2 In order to draw elements out of the Haar measure of SO(3), we first generate a random vector with
three independent Gaussian components about which a rotation with an angle α is performed. To guarantee a
uniform coverage of the rotation group, the rotation angle α ∈ [0, π] must be drawn from the probability density
(1/π)sin2(α/2) [27].
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Figure 4. The center of mass motion of a spiral object with an equilibrium
configuration on cut A specified by h/ρ = 0.2073, ρ = 7 and ϕ = 0.87π

asymptotically reaches one of the four different states depicted in panels (a)–(d)
depending on the initial orientation of the object. If this orientation is randomly
drawn from a uniform distribution, then one finds the cases (a) with a probability
of 0.19, (b) with 0.22, (c) with 0.50 and (d) with 0.09. The x-component of
the center of mass is displayed in black. It is shifted by its actual value taken
at time t = 3900; the y-component, which is either constant or periodically
oscillating, is depicted by the blue line; from the z-component (green) an
average uniform motion is subtracted. The configurations mirrored in the y–z-
plane starting from the corresponding mirror images of the initial orientations
of (a)–(d) result in the motion patterns displayed in panels (ma)–(md), which
obviously coincide with the mirror images of panels (a)–(d). The average
velocities 〈vx〉 in the x-direction, see equation (20), in the cases (a) and (ma)
are ±0.02974; correspondingly one finds that 〈vx〉 = ±0.02594 in (b) and (mb),
〈vx〉 = ∓0.00994 in (c) and (mc) and 〈vx〉 = ∓0.03044 in (d) and (md). In all
cases the mirrored patterns occur with the probabilities of the corresponding
original ones as specified above.

We typically let run each trajectory for 4000 time units [κ−1]. In the majority of the cases the
trajectories have relaxed toward an asymptotic regime long before the end of the time span of
4000. In this state, the center of mass acquires a finite velocity in the z-direction, depending
on the precise initial position of the object, and the y-component of the velocity may perform
small oscillations but vanishes on average. The lateral motion in the direction of the vorticity,
coinciding with the x-direction in the present case, is characterized by an average velocity
superimposed by bounded modulations, which were always periodic. Figure 4 displays the
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components of the center of mass for the same object and its mirror image in four different
asymptotic motional states.

3.1. Center of mass motion

The fact that the x-component of the center of mass moves at a finite average velocity is
apparently related to the chirality of the considered object: for any achiral object in the
considered shear flow the opposite x-directions are equivalent. This symmetry is broken by the
presence of a chiral object and, according to the Curie principle [28], the object will perform
a directed motion in either of the two directions. This argument is further corroborated if one
launches the chiral partner of a considered object into the shear flow with initial sphere positions
obtained from the original ones by mirroring on the y–z-plane. Then one indeed finds the object
moving in the opposite x-direction as illustrated by the panel pairs ((a), (ma)) and ((b), (mb)),
etc in figure 4 displaying the corresponding pairs of mirror images.

Inserting an object into the shear flow with randomly chosen orientations as described
above, one typically finds between one and four different motional states of the center of mass,
which are asymptotically reached at large times. We determined the corresponding average
velocities 〈vx〉 by a least-square fit of the x-components of the center of mass to a uniform
motion, yielding

〈vx〉 =
12

N (N + 1)(N + 2)τ

N∑
n=0

(
n −

N

2

)
X x(t0 + nτ). (20)

In most cases, we used t0 = 3000, N = 1000 and τ = 1. Since the different motional states
typically are distinguished by their average velocities, these velocities may be used to roughly
classify the asymptotic states as exemplified in figure 5. A precise classification would require
additional knowledge of the object’s orientation and six bond lengths and, hence, would be
difficult to visualize.

In addition to the average center of mass velocity, the behavior of the chirality index G0

of the initial configuration is depicted by the red line in figure 5 along the respective cuts. This
index correlates with the average velocities at best in a qualitative way. Of particular interest
here is the behavior of the average velocity in the vicinities of the zeros of the chirality index as
a function of the screw angle ϕ indicated by the blue lines.

As mentioned at the end of section 2, one has to distinguish between chiral and achiral
zeros of the chirality index G0. Indeed, close to chiral zeros, none of the three existing velocity
branches crosses the zero line. But also near the achiral zeroes, branches with finite velocities
may exist. They may coexist with a branch with vanishing average velocity, which, however,
may also be missing. The x ↔ −x-inversion symmetry however is restored on average since
there are always pairs of branches with opposite velocities which are populated with equal
probability. As we shall discuss in more detail below, the branches with finite average velocities
at achiral zeros of the chirality index represent states of dynamically broken symmetry.

3.2. Rotational motion

In the asymptotic state, when the center of mass undergoes a periodically modulated uniform
motion, the instantaneous rotation axis predominantly points in the x-direction, possibly
superimposed by small, oscillatory deviations orthogonal to this direction. Figure 6 depicts
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Figure 5. Asymptotic average velocities 〈vx〉 were estimated for objects with
equilibrium configurations along the four cuts A–D in the ϕ–h/ρ parameter
plane displayed in figure 2(a). The initial conditions were randomly oriented
according to the uniform measure on the 3D rotation group. Panels (a)–(c)
correspond to the horizontal cuts A, B, C along h/ρ = 0.2073 with ρ = 7
and h/ρ = 0.584 with ρ = 7 and h/ρ = 2.5162 with ρ = 3, respectively. Panel
(d) represents the vertical cut D for ϕ = 2π/3, ρ = 5 and h/ρ ∈ (0, 5). For
comparison, the chirality index G0 defined in equation (19) is depicted by
a red line with the corresponding scale at the right-hand side ordinate. The
vertical blue lines in panels (a) and (b) mark the respective values of the
screw angles at which the equilibrium configurations are achiral. In all panels,
black dots represent the result of the solution to the equations of motion (11)
with the full Rotne–Prager tensor (6). The average velocities group into up to
four well-defined branches at most parameter values. In panel (a), additionally
the numerical results obtained from equation (11) with the Oseen tensor (25)
are displayed as small green circles. The overall agreement between the two
approaches is very good; see also section 4.

the components of the instantaneous rotation axis for different asymptotic motional states of
the same object. This orientation of the instantaneous rotation axis appears as a rather natural
consequence of the considered flow geometry with uniform vorticity pointing in the x-direction.
Conspicuous tumbling behavior of the instantaneous rotation axis was found in the case of
dynamically broken symmetry; see figure 12(a). The rotation speed undergoes pronounced
oscillations in the majority of cases. In the asymptotic states in which the instantaneous rotation
axis points in the x-direction the object is typically found to be oriented such that one of its
principal axes is aligned with the direction of rotation. The transient behavior toward the specific
asymptotic states of the angle enclosed by the principal axes and the instantaneous rotation axis
is illustrated in figure 7.

Due to the lack of any symmetry plane in a chiral object, there are two distinct ways to
orient a principal axis along the instantaneous axis of rotation. However, we found different
velocity branches corresponding to opposite orientations only for alignments of the rotation
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Figure 6. The components of the instantaneous axis of rotation, ω, for the
configuration with ϕ = 0.87π , h/ρ = 0.2073 and ρ = 7 corresponding to the
maximum of G0 on cut A. The component ωx pointing in the vorticity direction
of the shear flow is marked in black and the y- and z-components in blue and
green, respectively. Panels are labeled as in figure 4. In all cases the rotation
about the vorticity direction is dominant. Only in panel (d) is a slight tumbling
of the axis noticeable.

axis with the middle principal axis and only if the skewness Sω of the object along the axis
of rotation vanishes within numerical precision. As a measure of the skewness of an object
relative to the vector of angular velocity ω, we take the third root of the third moment of the
sphere positions xn relative to the center of mass projected onto the direction of the rotation
axis, eω = ω/|ω|, hence reading

Sω =

(∑
n

(
(xn −X) · eω

)3
)1/3

. (21)

The maximum number of branches we detected was four. For η/ρ = 0.2073, ρ = 7 and screw
angles approximately ranging between ϕ = 0.8π and ϕ = 0.9π , one observes single alignments
to the small and the large axes and both orientations relative to the middle axis. Figure 8
represents the time evolution of the skewness for an object with initial orientations belonging to
different domains of attraction.

3.3. Internal motion and dynamical symmetry breaking

Also in the reference frame that moves with the center of mass and rotates with the instantaneous
angular velocity, the objects generally are not at rest but undergo internal motions characterized
by changing bond lengths and bond angles. These distortions then lead to modulations of the
magnitudes of the principal axes as illustrated in figure 9. The resulting periodic relative volume
changes of the object are presented in figure 10.
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Figure 7. The time evolution of the cosines of the angles between the
instantaneous vector of rotation and the eigenvectors of the second moments
of positions, cos θi = ω · ui/|ω|, for the configuration with ϕ = 0.87π , h/ρ =

0.2073 and ρ = 7 is depicted for different initial orientations. The asymptotic
motion of the center of mass as well as the motion of the axes of instantaneous
rotations are displayed in figures 4 and 6, respectively, with the panels
labeled consistently. The cosine of the eigenvector corresponding to the largest
eigenvalue is displayed in red, to the middle one in blue and to the smallest one
in green. In panels (a) and (b), the middle principal axis asymptotically aligns
with the rotation axis, while the initial orientations in panels (c) and (d) lead to
alignments with the largest and the shortest axis, respectively.

3.3.1. Dynamical symmetry breaking. A deformation of objects with achiral equilibrium
configurations, caused by shear forces, in general will break their mirror symmetry and hence
render the objects chiral. This mechanism is at the heart of the effect of dynamical symmetry
breaking that can be observed at achiral zeros of the chirality index G0.

For spiral objects the 3D achiral configurations are found on two curves in the ϕ–h/ρ-
parameter plane, reading

(h/ρ)1 =
[

2
3(cos(2ϕ) − cos(ϕ))

]1/2
, 2π/3 < ϕ < 4π/3, (22)

(h/ρ)2 =
1
2 [(cos(3ϕ) − cos(ϕ))]1/2 , π/2 < ϕ < 3π/2. (23)

For a derivation see the appendix. The branch (h/ρ)1 corresponds to the solid line and
(h/ρ)2 to the dashed line in figure 2(b). Figure 11(a) displays the asymptotic average
velocities in the x-direction and the corresponding average values of the chirality index for
the achiral configuration at ϕ = 0.727 1607π and ρ = 7 on the curve (h/ρ)1. As for all achiral
configurations on this curve, it possesses five equally long edges. In the present case, the
sixth edge is shorter than the others. This object is initially oriented in such a way that the
symmetry plane containing both the short edge and the z-axis encloses an angle α with the y-
axis; see figure 11(b). Depending on this angle α, two different pairs of asymptotic states with
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Figure 8. For those initial orientations of the configuration with ϕ = 0.87π ,
h/ρ = 0.2073 and ρ = 7 which finally approach two different states both rotating
about the middle axis, see figures 7(a) and (b), the third moments of the positions
projected onto the instantaneous axis of rotation, Sω, defined in equation (21),
relax to zero. For other initial orientations the skewness Sω asymptotically
undergoes rotations; see panels (c) and (d).

non-vanishing velocities and chirality indices of opposite signs are approached with time. The
average chirality index was obtained as an algebraic mean over a time window of length 1000
in the asymptotic regime. Because a rotation about the z-axis by α = π leaves any of these
initial configurations invariant, the resulting pattern of average velocities and chirality indices
is periodic with period π . The rotational motion and the orientation of the principal axes are
presented in figure 12 for two of the chiral attractors of an achiral object.

The average asymptotic velocities were determined on a part of the achiral curve (h/ρ)1

given by equation (22) for ρ = 5. Similarly as on the other cuts, equilibrium configurations
were obtained from equation (1) at 2001 equally spaced angular values for ϕ ∈ [0.67π, π];
subsequently, their centers of mass were translated into the origin and randomly rotated about
the center of mass. With these initial conditions the equations of motion were integrated
up to t = 8000. The average velocity 〈vx〉 was calculated according to equation (20) for
t0 = 7000, N = 1000 and τ = 1. Figure 13 presents the resulting averaged velocities in the
x-direction. The emerging pattern is essentially symmetric about 〈vx〉 = 0 and consists of
different branches and a region with a cloud of apparently random points. The deviations from
symmetry are insignificant within statistical uncertainty. Whereas, on the branches, the center
of mass approaches an average motion with constant velocity 〈vx〉, superimposed by short
oscillations, in the cloud region it asymptotically oscillates with a period which is larger than the
width of the averaging window; see figure 14. Hence, the resulting averages over a window that
is shorter than a period are randomly distributed within an upper and a lower bound. The true
averages extended over a full period are zero within numerical precision.
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Figure 9. The magnitude of the principal axes of the second moments of
position for the configuration with ϕ = 0.87π , h/ρ = 0.2073 and ρ = 7. In
the four different asymptotic states, which are labeled in the same way as in
the previous figures, the magnitudes of the principal axes undergo periodic
modifications. In the two cases with positive asymptotic velocities, (a) and (b),
these modifications are almost identical. Noticeable differences occur between
the states characterized by rotations about the large and the short principal axes,
displayed in panels (c) and (d), respectively.
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Figure 10. The ratio of the actual to the equilibrium volume for different initial
orientations of the configuration with ϕ = 0.87π , h/ρ = 0.2073 and ρ = 7 in the
same order as in figures 6–9. For the two asymptotic states (a) and (b) moving
in the positive x-direction, the volume variations are essentially identical but
different from both states (c) and (d).
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Figure 11. In panel (a), different chiral-symmetry breaking attractors for the
achiral equilibrium configuration at ϕ = 0.727 1607π , h/ρ = 0.584 and ρ = 7
are characterized by their average velocities 〈vx〉 (blue) and average chirality
indices 〈G0〉 (red). The attractors are approached from different orientations
of the object. The angle α specifying the initial orientation is enclosed by the
y-axis and the object’s symmetry plane containing the short edge of the object
as exemplified in panel (b), which presents a view with the z-axis perpendicular
to the plane of projection. For α = 0 the y–z-plane coincides with the symmetry
plane of the object.

As in the case of chiral equilibrium configurations, in the case of achiral equilibrium
configurations the number of branches varies from one up to four in the present investigation. In
the limiting cases of ϕ = 2/3π and ϕ = π the configurations on the achiral curve are planar and
only a single branch with 〈vx〉 = 0 exists. Additional branches appear for intermediate values of
ϕ always in pairs with positive and negative velocities and opposite chirality indices, while the
zero-velocity and zero-chirality-index branches may become unstable. Branches with opposite
velocities and chirality indices always occur with equal weight such that the mirror symmetry
of the initial achiral configuration is restored. For ϕ = arccos(−2/3) ≈ 0.732π , corresponding
to a regular tetrahedron, four velocity branches cross each other at 〈vx〉 = 0; see figure 13.

The present phenomenon of dynamical symmetry breaking is different from that reported
in [17], where objects with initially achiral geometric configurations but with different bond
strengths were considered. Hence those objects were chiral from the outset with respect to
their mechanical properties. We emphasize here that the effect of dynamical symmetry breaking
occurs for achiral objects with respect to both geometry and bond strengths.

4. Role of hydrodynamic interactions

In order to clarify the role of hydrodynamic interactions for the transport of chiral objects in
a shear flow, we compared the motion of a spiral object with screw angle ϕ = π/2, relative
rise h/ρ = 0.584 and radius ρ = 7 in the presence of three different vector fields describing the
action of the fluid on the object at different levels of accuracy. In the crudest approximation,
the forces contribute to the velocity in terms of the Stokes law, for which the mobility tensor
simplifies to

HStokes
i, j =

1

6πηa
1δi, j . (24)
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Figure 12. Different modes of the rotational motion of an object with ϕ =

0.727 1607π , h/ρ = 0.584 and ρ = 7 corresponding to an achiral equilibrium
configuration on the (h/ρ)1-curve. In the upper row the components ωx (black),
ωy (blue) and ωz (green) of the instantaneous rotation axis are displayed; the
lower row presents the cosines of angles between the large (red), middle (blue)
and small (green) principal axes and the x-axis. The left column corresponds to
the asymptotic state with larger positive velocity in the x-direction 〈vx〉 = 0.0025
and the right column to the asymptotic state with smaller positive velocity in the
x-direction, 〈vx〉 = 0.000 083. In the case of the large positive velocity, the object
performs a tumbling but periodic motion as can be seen both from the oscillatory
behavior of the instantaneous rotation axis (a) and from the alignment of the
instantaneous axis with the x-axis (c). In the asymptotic state of slow motion, the
instantaneous rotation axis exactly points in the x-direction (b). Asymptotically
(for times t > 2360), the large principal axis strictly lies in the x-direction (d). In
a transient period at earlier times the object orientation switches between perfect
x-alignments with the large and the middle principal axis (d).

Leading corrections in the ratios of the sphere radius to intra-object distances are contained
within the Oseen approximation, yielding

HOseen
i, j =HStokes

i, j +
1 − δi, j

8πηri, j

[
1 +
ri, jri, j

r 2
i, j

]
. (25)

Finally, we compared the Stokes and Oseen results with those following from the full
Rotne–Prager tensor (6). Since we found only minor differences between the outcomes of the
Oseen and the Rotne–Prager treatments (see figure 5(a)), we only present the results of the
comparison between the Stokes and the Rotne–Prager results. It is interesting to note that
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Figure 13. Average velocities in the x-direction for 2000 randomly rotated initial
conditions taken along the achiral curve (h/ρ)1 given by equation (22) are
displayed for ρ = 5 and ϕ ∈ [0.67π, 0.8π ] in steps of 1ϕ = 1.65 × 10−4π . The
equations of motion (11) were numerically solved with these initial conditions up
to time t = 8000 and the average 〈vx〉 was estimated by means of equation (20)
for t0 = 7000, τ = 1 and N = 1000. Apart from the region ϕ ∈ (0.68π, 0.7066π)

where the average velocities seemingly are random, they form up to four
branches. Coming in pairs of opposite average velocities they maintain the
achiral symmetry at each point along the achiral curve. In a part of the achiral
curve with ϕ ∈ [0.8π, π], which is not shown, the lateral average velocity forms
a single branch with 〈vx〉 = 0 within numerical precision.
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Figure 14. The center of mass motion on the achiral curve, equation (22), (a)
for ϕ = 0.7π and (b) ϕ = 0.710 92π , both for ρ = 5. The long period T ≈ 2730
in panel (a) leads to under-sampling of the average 〈vx〉 displayed in figure 13
and, as a consequence, to the cloud of random points in the screw angle region
between 0.66π and 0.7066π . In contrast, the case in panel (b) approaches
uniform motion in the positive x-direction after a short transient.

the rotational motion and the internal motion of the object are qualitatively quite similar
for the Stokes and the Rotne–Prager treatments. Figure 15 illustrates the qualitative agreement
of the two approximations by comparing the alignment of (a) the middle principal axis with the
instantaneous rotation axis and (b) the x-component of the instantaneous rotation axis.

Also the deformational motion of the object is quite similar see figure 16 displaying
a comparison of the magnitudes of the principal axes and the relative volume for the two
approximations. Hence the rotational and internal motions of an object are mainly determined
by the action of the Stokes forces.
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Figure 15. A comparison of the rotational motion of an object under the sole
action of the Stokes forces (blue) and the full Rotne–Prager tensor (red) is
presented for a spiral object with ϕ = 0.87, h/ρ = 0.2073 and ρ = 7 with an
initial orientation that leads to the uppermost velocity branch (see figure 5(a))
within the Rotne–Prager treatment. Panel (a) displays the approach of the
angle between the instantaneous rotation axis and the middle principal axis,
showing good agreement between the Stokes and the Rotne–Prager treatment.
(b) The oscillations of the x-component of the instantaneous rotation axis follow
the same pattern with the same amplitude and slightly smaller period under the
influence of the Rotne–Prager mobility as in the case of the Stokes forces.
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Figure 16. For the parameter values detailed in figure 15, the hydrodynamic
interactions contained in the full Rotne–Prager mobility tensor (red) have little
influence on the magnitudes of the principal axes displayed in panel (a) compared
to the sole action of the Stokes forces (blue). Also the chirality index presented
in panel (b) differs in a small shift of the period, which is slightly shorter, and in
the amplitude, which is larger in the case of the Rotne–Prager treatment.

In the present case of uniform shear flow the sole action of the Stokes forces cannot lead
to a translational motion in the vorticity direction. This rigorously follows from the fact that
the internal forces exerted by the FENE-Fraenkel springs do not contribute to the motion of the
center of mass for a uniform shear flow within the Stokes approximation,

∑
i, jH

Stokes
i, j F j = 0,

and hence the center of mass motion is determined by

Ẋ =
1

4

∑
n

v(xn). (26)
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Therefore, in a uniform shear flow, as given by equation (10), the center of mass cannot move
perpendicularly to the flow direction within the Stokes approximation and the lateral drift
consequently vanishes. Only the small, non-diagonal terms of the mobility tensor implied by
both the Oseen and the Rotne–Prager treatments lead to a coupling between the translational
and the rotational motion and, in this way, facilitate a center of mass motion perpendicular to
the flow direction. For more complicated flow fields with non-uniform vorticity, such a coupling
becomes possible and may lead to chiral separation even within the Stokes approximation [1].

5. Conclusions

We presented a case study of the dynamics of deformable chiral objects consisting of four
spheres in a uniform shear flow. Internal forces due to relative position changes of the spheres
were modeled by FENE-Fraenkel forces such that the bond lengths may only vary within
a prescribed range. In the equilibrium configuration, the internal forces balance each other.
Forces exerted by the fluid on the object drive the object out of this equilibrium state. Due
to the small size and mass of the spheres, inertia terms in the equations of motion could
be neglected and a purely overdamped motion was studied. The influence of the flowing
fluid on the objects was described by means of the Rotne–Prager mobility tensor; this tensor
includes the Stokes force and hydrodynamic interactions (up to second order in the sphere
radius to the intra-object distance ratio) between the spheres constituting an object. If only the
Stokes forces are considered and hydrodynamic interactions are neglected, then, in a uniform
shear flow, the object moves with its center of mass strictly in the direction of the flow field.
Moreover, it also performs a rotational motion about the center of mass with an instantaneous
rotation axis pointing in the direction of vorticity. However, the hydrodynamic interactions cause
a coupling between the translational and the rotational motion of the object. These interactions
let the rotating object act as a propeller which drives the object transversely to the flow field in
or against the direction of its vorticity. The direction of this component of motion is opposite for
an object and its mirror images, thus leading to different transport properties of enantiomers.

In general, one finds different asymptotic forms of motion for objects with the same
equilibrium configuration. These motional states correspond to different attractors of the
equations of motion. They can be distinguished by the magnitude of their average velocities
in the vorticity direction and the orientation of the object relative to the instantaneous rotation
axis which typically points in the vorticity direction. The maximum number of attractors that
we identified in the present study was four; this corresponds to (i) two alignments of the
instantaneous axis of rotation with the large and the small principal axes and (ii) two alignments
with the middle axis. We documented the typical translational, rotational and deformational
motions in detail with the example of an object with a particular equilibrium configuration. The
same qualitative motion patterns were observed for numerous other equilibrium configurations
but are not presented here.

The reason why we studied deformable rather than rigid objects was not only to obtain
a more realistic modeling but also because the numerical implementation of the constraints
defining rigid objects in three dimensions is more difficult than allowing for deformations.
Moreover, we found that the flexibility of the objects may lead to dynamical symmetry breaking
for objects with achiral equilibrium configurations. We demonstrated that the deformations of
achiral objects may lead to chiral configurations with a finite chirality index G0 accompanied by
a finite average lateral velocity in or opposite to the vorticity direction. If the initial conditions
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are sampled from a symmetric distribution, containing mirror-symmetry-related orientations
with equal weight, then motional states with opposite chirality emerge with equal probability.
In this way, the mirror symmetry of the total state space is recovered.

The effects of chirality on the transport properties are relatively weak in the present case of
a uniform shear flow. This finding is also in agreement with the results of [17] for bond-strength-
induced chirality. The situation however is expected to drastically change for non-uniform shear
flows, which already induce a coupling between translational and rotational motion within
the Stokes approximation. It is plausible to assume that there, locally, the same principal
mechanisms are still at work: the local vorticity leads to a rotation of the object, which then
acts via hydrodynamic interactions as a propeller pushing itself in or opposite to the direction of
the instantaneous rotation axis depending on its chirality. In non-uniform shear flows, objects of
different chirality, however, will be moved to different regions of the flow field where they then
are advected with different velocities. This effect can significantly enhance the influence of the
chirality on transport properties and, hence, may form the basis of effective, purely physical
enantiomer-separation mechanisms. Promising experimental candidates are surface acoustic
wave-driven vortex flows in fluids confined to micro-chambers [29, 30] or flows through micro-
or nanofluidic channels [31].

Before such practical applications can be envisaged, however, the so far neglected
influences of thermal noise, hydrodynamic interactions between different objects of the same
and different chiralities, as well as between objects and walls confining the fluid should all be
taken into account and investigated.
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Appendix. Achiral configurations

By the construction of the spiral objects, the length dn,m of the edge connecting the nth
with the mth sphere only depends on the absolute value of the difference between n and m,
dn,m = l(|n − m|). In the general case, a spiral object hence has three equal edges of length l(1),
two of length l(2) and one of length l(3), where

l(n) =
[
2ρ2(1 − cos(nϕ)) + n2 h2

]1/2
. (A.1)

One branch of achiral configurations possesses two equilateral and two isosceles faces; see
figure 3(c). They have five equally long edges with l(1) = l(2). This condition determines the
relative rise as a function of the screw angle to be

(h/ρ)2
1 =

2
3(cos(2ϕ) − cos(ϕ)), (A.2)

where the screw angle is restricted to 2π/3 < ϕ < 4π/3 in order that the right-hand side stays
positive. On this curve the maximal value of the relative rise is reached at ϕ = π and there takes
the value h/ρ = 2/

√
3.

Achiral configurations with four identical isosceles faces result from the requirement
l(1) = l(3). The relative rise as a function of the screw angle then becomes

(h/ρ)2
2 =

1
4(cos(3ϕ) − cos(ϕ)), (A.3)

New Journal of Physics 14 (2012) 073006 (http://www.njp.org/)

http://www.njp.org/


23

with π/2 < ϕ < 3π/2. This function vanishes at ϕ = π as well as at the borders of the indicated
interval, and has a maximum at ϕ ≈ 0.696π , h/ρ ≈ 0.620.

The two achiral branches cross at the special angle at which cos ϕ = −2/3, yielding
h/ρ =

√
10/27, where all three edge lengths agree with each other, resulting in a regular

tetrahedron.
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