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A novel scheme for the steady state solution of the standard Redfield quantum master equation is
developed which yields agreement with the exact result for the corresponding reduced density ma-
trix up to second order in the system-bath coupling strength. We achieve this objective by use of an
analytic continuation of the off-diagonal matrix elements of the Redfield solution towards its diago-
nal limit. Notably, our scheme does not require the provision of yet higher order relaxation tensors.
Testing this modified method for a heat bath consisting of a collection of harmonic oscillators we as-
sess that the system relaxes towards its correct coupling-dependent, generalized quantum Gibbs state
in second order. We numerically compare our formulation for a damped quantum harmonic system
with the nonequilibrium Green’s function formalism: we find good agreement at low temperatures for
coupling strengths that are even larger than expected from the very regime of validity of the second-
order Redfield quantum master equation. Yet another advantage of our method is that it markedly
reduces the numerical complexity of the problem; thus, allowing to study efficiently large-sized sys-
tem Hilbert spaces. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4718706]

I. INTRODUCTION

The application of canonical statistical mechanics inher-
ently assumes large environments interacting weakly with
a few relevant degrees of freedom, then yielding the well-
known canonical thermal state. The emergence of the thermal
steady state canonical Gibbs density matrix at very weak cou-
pling strength, or the generalized thermal Gibbs state at finite
coupling strengths, when starting from quantum dynamical
microscopic laws still presents a formidable problem. This
objective is known under the label of open system quantum
dynamics. The main goal is then to obtain the reduced sys-
tem dynamics in terms of the reduced density matrix, which
typically is approached using a wide variety of approximate
quantum master equations.

Formally exact generalized quantum master equations
yield the reduced system dynamics either within a time-
convolution (time-non-local) form1, 2 and equivalently also in
its time-convolutionless (time-local) form.3–8 The hierarchy
equations of motion approach9–12 yield yet another, formally
exact approach in terms of an infinite number of auxiliary re-
duced density operators. All these formally exact approaches
are computationally very demanding and, typically, can treat
systems possessing a small Hilbert space dimension only. For
these formally exact approaches it is only for specific se-
tups, such as the situation involving (i) a system of harmonic
oscillators,13–20 (ii) the intricate dissipative Landau-Zener dy-
namics at zero temperature,21 or (iii) the known cases with a
strictly pure dephasing dynamics,22–24 that the exact solutions
can be obtained.

a)juzar@nus.edu.sg.

Timely applications, however, call for a definite need to
study systems which span a rather large Hilbert space for its
underlying nonlinear dynamics. In absence of analytic exact
results the quantum master equations are typically evaluated
using perturbation theory in the system(S)-bath(B) coupling
strength. Commonly, the perturbation is truncated to second
order in system-bath coupling, resulting in a whole group
of approximate quantum master equations.25–29 Out of these
many existing approximation schemes the Redfield quantum
master equation (RQME) is the most generic one from which
the Pauli25 and the Lindblad26, 30 master equations can be de-
duced upon invoking further approximations.31 Sometimes
the RQME is also subjected to the secular approximation32–35

and/or one neglects the Lamb shift-type contributions,36–38

which cannot always be justified a priori. Generally, all these
diverse approximations, even within the weak coupling limit,
do fail at zero temperature. This is so because of the neglect
of algebraic long-time tail contributions stemming from zero-
temperature bath correlations.39 Even without invoking such
approximations, a question recently raised is the overall ac-
curacy of the Redfield formalism:40, 41 Therein these authors
demonstrated that the Redfield formalism is not correct for the
steady state within its commonly used second order form. The
discrepancy arises due to the second order diagonal elements,
which require contributions from the higher order relaxation
tensor for their correct evaluation. In view of these findings
it is not possible to capture correctly the effects of finite cou-
pling up to second order by use of the Redfield formalism—
this feature also corrects some inadequately stated claims con-
tained in the previous literature.42, 43

Our main goal with this study is to evaluate correctly the
steady state reduced density matrix up to second order in the
system-bath coupling without having to invoke higher order
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relaxation tensors. In order to successfully achieve this objec-
tive we put forward a modified solution of the Redfield quan-
tum master equation by a procedure that uses the off-diagonal
structure in second order to let approach its diagonal structure
via a unique analytic continuation.

Comparing this modified Redfield solution with rigorous
canonical perturbation theory,40, 42, 43 we show that the mod-
ified solution agrees with the exact reduced thermal equilib-
rium density operator, i.e., the generalized Gibbs state, read-
ing: ρ = TrB(e−βHtot )/Tr(e−βHtot ), up to second order in the
system-bath coupling strength. Our solution is not only ac-
curate as compared to the RQME, but is also numerically
efficient. This is because the inherent computational complex-
ity in our method is of O(N3), where N denotes the dimen-
sion of the system Hilbert space. Therefore, our technique
enables one to quantum mechanically investigate the small-to-
intermediate coupling strength regime for systems possessing
a large Hilbert space dimension.

The paper is organized as follows: In Sec. II we describe
our basic approach to model quantum dissipation and detail
the RQME. In Sec. III we elucidate the insufficient accu-
racy issue in the second-order steady state Redfield formal-
ism. This part is followed by the exposition of our modified
solution to the Redfield quantum master equation. In Sec. IV
we consider a general nonlinear system that is connected to a
harmonic bath and in the long-time limit show that it reaches
the generalized Gibbs distribution within canonical pertur-
bation theory carried out up to second order in system-bath
coupling. In Sec. V we present the numerical comparison be-
tween our modified Redfield solution with the exact solution
for a damped harmonic oscillator. We find a considerable im-
provement between exact results and modified solution over
extended regimes of weak-to-intermediate system-bath cou-
pling strengths for which both the Redfield solution and the
Lindblad solution fail. Section VI summarizes our main find-
ings while the Appendix details canonical perturbation theory.

II. REDFIELD QUANTUM MASTER EQUATION IN
PRESENCE OF ARCHETYPE QUANTUM DISSIPATION

The basic approach to model quantum dissipation has
been studied extensively before. The model Hamiltonian
for the bath and system-bath coupling has a long-standing
history39, 44–47 but goes under the label of Zwanzig-Caledira-
Leggett model,48–51

Htot = HS + HB + HRN + HSB, (1)

where

HS = p2

2M
+ V (q) (2)

denotes the generally nonlinear system Hamiltonian of a par-
ticle of mass M moving in a potential V (q). Here

HB =
∞∑

n=1

(
p2

n

2mn

+ mnω
2
n

2
x2

n

)
(3)

describes the thermal environment as an infinite collec-
tion of harmonic oscillators, each having a mass mn and a

frequency ωn.

HRN = S2

(
1

2

∞∑
n=1

c2
n

mnω2
n

)
(4)

is the potential renormalization in which the variable S de-
notes any function of the system variables p and q and

HSB = S ⊗ B

= S ⊗
(

−
∞∑

n=1

cnxn

)
(5)

is the system-bath coupling Hamiltonian, wherein cn de-
notes the system-bath coupling constant of the nth oscillator
with the system operator S. The collective bath operator is
B = −∑∞

n=1 cnxn. Throughout this work we use ¯ = 1 and
kB = 1.

Using correlation-free initial conditions, i.e., ρtot(to)
= ρS(to) ⊗ ρB(to), with ρB(to) being the canonical thermal state
of the bath, and assuming overall weak system-bath coupling,
we obtain the perturbative, 2nd order Redfield quantum mas-
ter equation in its time-local energy representation as27, 29, 31, 51

dρnm

dt
= −i �nmρnm +

∑
ij

Rij,(2)
nm ρij ,

Rij,(2)
nm = SniSjm

(
Wni + W ∗

mj

)
− δj,m

∑
l

SnlSliWli

−δn,i

∑
l

SjlSlmW ∗
lj , (6)

where the explicit time dependence in the reduced den-
sity matrix ρ(t) = TrB (ρtot(t)) has been suppressed, i.e., ρnm

= 〈n|ρ(t)|m〉; |n〉 being the energy eigenvector of the bare
system. Here, the matrix elements Sik are defined as Sik

= 〈i|S|k〉. Despite the apparent time-local form of Eq. (6) the
non-Markovian behavior is fully captured due to the time de-
pendence in the transition rates W̃ . These are given by

Wjk = W ′
jk + i W ′′

jk

= W̃ ′
jk + i

(γ0

2
+ W̃ ′′

jk

)
, (7)

W̃jk = W̃ ′
jk + i W̃ ′′

jk,

=
∫ t−to

0
dτ e−i �jkτ C(τ ), (8)

where W̃ ′
jk = W ′

jk and �jk = Ej − Ek is the energy differ-
ence between system energy levels. Above γ0/2 which arises
from HRN has been neglected from the uncoupled propagation
(Eq. (8)) and accounted in W .

Instead of specifying all the parameters of the bath we
now define the spectral density J(ω) as

J(ω) = π

∞∑
n=1

c2
n

2mnωn

δ(ω − ωn). (9)
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Using the spectral density we can calculate the damping ker-
nel at time t = 0, i.e., γ0, used in Eq. (7) as

γ0 = 1

M

∞∑
n=1

c2
n

mnω2
n

= 2

M

∫ ∞

0

dω

π

J(ω)

ω
, (10)

and the equilibrium bath-bath correlation function C(τ )
= 〈B̃(τ )B〉, where B̃(τ ) is evolving according to
exp (−i HBτ ), used in Eq. (8) as

C(τ ) =
∫ ∞

0

dω

π
J(ω)

[
coth

(
βω

2

)
cos (ωτ )

−i sin (ωτ )

]
. (11)

Although the bath-bath correlation defined above is specific
to a harmonic bath, the theory presented here can readily be
generalized to other bath models, e.g., spin baths as long as
the bath-bath correlation C(τ ) can be evaluated.

III. MODIFIED SOLUTION TO THE REDFIELD
QUANTUM MASTER EQUATION

A. Perturbative accuracy of steady state
Redfield solution

Recently, Mori and Miyashita40 and Fleming and
Cummings41 independently established that for a generic
“2n”-order quantum master equation the solution in the long-
time limit can be correct only up to order “2n − 2” be-
cause the diagonal elements loose their accuracy over evolv-
ing time. These authors suggest that in order to obtain a
steady state solution correct up to 2nd order a 4th order mas-
ter equation33, 52, 53 should be used, which can be numerically
accomplished for small system Hilbert spaces only.

We first corroborate this finding with a different method,
concentrating on the steady state accuracy of a 2nd order
RQME. We start out with the generic perturbation series ex-
pansion to all orders in the system-bath coupling of the time-
local, formally exact master equation, i.e.,

∂ρ

∂t
=

(
�̄ +

∞∑
n=2,4,6,···

λnR(n)(t − to)

)
ρ, (12)

and the reduced density matrix,

ρ =
∞∑

n=0,2,4,···
λnρ(n), (13)

where λ is a dimensionless parameter whose power indicates
the corresponding order of the perturbation expansion. Even-
tually, λ will be set to 1. �̄ above is a four tensor depending on
the system Hamiltonian. The operator R(n)(t − to) denotes the
Redfield superoperator of rank 4 which depends both on the
system operator and the bath correlators. Next, we rearrange
ρ into a column vector and split it into its diagonal part (ρd)
and off-diagonal part (ρod). Then, using the RQME (Eq. (6))
the 0th order tensor in Eq. (12) can be rewritten as a matrix

assuming the form,

�̄ ≡
(

0 0

0 �̄22

)
, (14)

where �̄22 is a diagonal matrix with �ij(i 	= j) forming the di-
agonal. The four tensors R(n)(t − to) are also split accordingly,
i.e.,

R(n)(t − to) ≡
(

R
(n)
11 (t − to) R

(n)
12 (t − to)

R
(n)
21 (t − to) R

(n)
22 (t − to)

)
, (15)

with no restrictions made for the form of the sub-matrices.
For the specific case of n = 2, R(2)(t − to) is the same as the
Redfield tensor given in Eq. (6).

In order to obtain the steady state we set ∂ρ/∂t = 0 and
take the limits (t − to) → ∞. Because the stationary prob-
lem is not dependent on time we will drop the parenthe-
ses from the tensor, i.e., R(n)(∞) ≡ R(n). Therefore, using
Eqs. (12) and (13) we obtain the following:(

�̄ +
∞∑

n=2,4,6,···
λnR(n)

) ∞∑
m=0,2,4,···

λmρ(m) = 0. (16)

In order to obtain ρ correct up to 2nd order we equate
the coefficients of the different powers of λ to zero so that we
obtain independent equations to calculate ρ(0) and ρ(2). This
implies:

1. Setting the coefficient of λ0 equal to zero yields

ρ(0)
od = 0. (17)

2. Setting the coefficient of λ2 equal to zero implies

R
(2)
11 ρ(0)

d = 0, (18)

�̄22ρ
(2)
od = −R

(2)
21 ρ(0)

d . (19)

3. Setting the coefficient of λ4 equal to zero provides the
condition

R
(2)
11 ρ(2)

d = −R
(2)
12 ρ(2)

od − R
(4)
11 ρ(0)

d . (20)

Equation (19) shows that in order to obtain the 2nd order off-
diagonal elements we need only the 0th order and 2nd order
relaxation tensors which can be obtained from the RQME us-
ing Eq. (6). In contrast, in order to obtain the 2nd order diago-
nal elements from Eq. (20) one requires knowledge of the 4th
order relaxation tensor R

(4)
11 .

B. Analytic continuation procedure for diagonal
density matrix elements

In this section, we present the procedure to obtain the
stationary reduced density matrix that is correct up to 2nd
order in the system-bath coupling without the need to in-
voke the use of the 4th order relaxation tensor. The 0th order
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and the 2nd order off-diagonal elements can be obtained cor-
rectly from the RQME as described above. Therefore, we use
Eqs. (17) and (18) along with the Redfield tensor R(2) detailed
in Eq. (6) to arrive at the 0th order reduced density matrix

∑
i

(
SniSinW̃

′
ni − δn,i

∑
l

SnlSliW̃
′
li

)
ρ

(0)
ii = 0, (21)

ρ
(0)
ij = 0, (i 	= j ).

The 2nd order off-diagonal elements follow from
Eq. (19) as

ρ(2)
nm = 1

i �nm

∑
i

SniSim

[
(Wni + W ∗

mi)ρ
(0)
ii

−W ∗
inρ

(0)
nn − Wimρ(0)

mm

]
, (n 	= m). (22)

Note that if we next construct the diagonal elements by
merely substituting n = m in Eq. (22), then the equation
exhibits an indeterminate 0/0 singularity. This indicates that
even though we cannot substitute n = m directly, the limit
m → n might exist. If such a limit indeed exists and being
unique, then by use of the uniqueness theorem the 2nd order
diagonal elements can be obtained by this limiting procedure.
In order to perform this limit m → n we consider each ele-
ment of the 2nd order reduced density matrix to be a function
of the bare system energies Ei (i = 1, . . . , N). In the energy
parameter space we vary only one of the energies Em and let
it continuously approach the energy En, via a small complex
parameter z, i.e., we set Em → En − z.

In doing so, we start by splitting the transition rates in
Eq. (22) into its real and its imaginary parts, using Eq. (7) to
obtain

ρ(2)
nm = 1

i �nm

∑
i

SniSim

[
(W̃ ′

ni + W̃ ′
mi)ρ

(0)
ii

−W̃ ′
inρ

(0)
nn − W̃ ′

imρ(0)
mm

]

+ 1

�nm

∑
i

SniSim

[
(W̃ ′′

ni − W̃ ′′
mi)ρ

(0)
ii

+
(

W̃ ′′
in + γ0

2

)
ρ(0)

nn −
(

W̃ ′′
im + γ0

2

)
ρ(0)

mm

]
. (23)

We next let Em → En − z and perform the limit z → 0. There-
fore, Eq. (23) becomes

ρ(2)
nn = lim

z→0

{
1

i z

∑
i

SniSin

[
(W̃ ′

ni(0) + W̃ ′
ni(−z))ρ(0)

ii

−(W̃ ′
in(0) + W̃ ′

in(z))ρ(0)
nn

]

+1

z

∑
i

SniSin

[
(W̃ ′′

ni(0) − W̃ ′′
ni(−z))ρ(0)

ii

−(W̃ ′′
in(0) − W̃ ′′

in(−z))ρ(0)
nn

+
(
W̃ ′′

in(−z) + γ0

2

)
z
∂ρ(0)

nn

∂En

]}
, (24)

where

W̃ij (z) =
∫ ∞

0
dτ e−i (�ij +z)τ C(τ ),

W̃ ∗
ij (z) =

∫ ∞

0
dτ ei (�ij +z∗)τ C∗(τ ). (25)

Because ρ(0)
mm (being the un-normalized 0th order reduced den-

sity matrix) depends on the energy Em we made use of the
Taylor expansion of ρ(0)

mm around the energy En to retain up to
the first order:

lim
Em→En

ρ(0)
mm � ρ(0)

nn + z
∂ρ(0)

nn

∂En

. (26)

We next define

Vni = ∂W̃ ′′
ni

∂�ni

= lim
z→0

W̃ ′′(0) − W̃ ′′(−z)

z
, (27)

and note that limz→0 W̃ ′′
in(−z) = W̃ ′′

in(0) = W̃ ′′
in. Eq. (24) can

thus be recast as

ρ(2)
nn =

∑
i

SniSin

[
Vniρ

(0)
ii − Vinρ

(0)
nn

] + W ′′
in

∂ρ(0)
nn

∂En

+ ρ̄(2)
nn ,

(28)

where

ρ̄(2)
nn = lim

z→0

1

i z

{∑
i

SniSin

[
(W̃ ′

ni(0) + W̃ ′
ni(−z))ρ(0)

ii

−(W̃ ′
in(0) + W̃ ′

in(z))ρ(0)
nn

]}
. (29)

In the limit z → 0 it follows from Eq. (25) that
limz→0 W̃ ′

ni(−z)= limz→0 W̃ ′
ni(z)=W̃ ′

ni(0)=W̃ ′
ni . Therefore,

in this limit the term in the curly brackets in Eq. (29) assumes
precisely the same form as Eq. (21), hence, it is equal to zero.
Consequently, Eq. (28) becomes

ρ(2)
nn =

∑
i

SniSin

[
Vniρ

(0)
ii − Vinρ

(0)
nn + W ′′

in

∂ρ(0)
nn

∂En

]
. (30)

Equation (30) is independent of the way in which the energy
Em approaches En and hence this limit procedure is unique.
The uniqueness of the limit is crucial to ensure that the result-
ing thermal steady state of the system is unique.

The diagonal elements of the density matrix obey the nor-
malization condition Tr(ρ) = 1. Since we performed an ana-
lytic continuation to obtain the 2nd order diagonal elements
there is no guarantee that the normalization condition is pre-
served. Therefore, we can write the normalization condition
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explicitly as

ρnn = ρ(0)
nn + ρ(2)

nn∑
i

(
ρ

(0)
ii + ρ

(2)
ii

)
� ρ(0)

nn + ρ(2)
nn − ρ(0)

nn

∑
i

ρ
(2)
ii , (31)

where we have ignored the 4th and higher order terms and
used the condition

∑
i ρ

(0)
ii = 1, which is required to deter-

mine ρ(0) uniquely. Therefore, upon normalizing Eq. (30)
with the help of Eq. (31) we obtain the first main result

ρ(2)
nn =

∑
i

SniSin

[
Vniρ

(0)
ii − Vinρ

(0)
nn + W ′′

in

∂ρ(0)
nn

∂En

]

−ρ(0)
nn

∑
i,j

SjiSijW
′′
ij

∂ρ
(0)
jj

∂Ej

. (32)

Using Eq. (32) to calculate the 2nd order diagonal elements
we need to know the derivative of the 0th order reduced den-
sity matrix, ∂ρ(0)

nn /∂En. This derivative derives from Eq. (21),
which is satisfied by ρ(0) and subsequently differentiates with
respect to the energy En to find

∂ρ(0)
nn

∂En

=
∑

i 	= n
SniSin

(
∂W̃ ′

ni

∂�ni
ρ

(0)
ii + ∂W̃ ′

in

∂�in
ρ(0)

nn

)
∑

i 	= n
SniSinW̃

′
in

. (33)

Therefore, we have all the ingredients at hand to calculate the
2nd order diagonal elements from Eq. (32): This constitutes
the first main result of our work. In our derivation we have
made no assumptions besides the validity of analytic contin-
uation. The above outlined theory can be readily generalized
to multiple heat baths; a topic to be addressed by us in future
work.54

The modified solution outlined above is correct not only
up to 2nd order in system-bath coupling, but additionally it
is well suited for numerical studies: Numerical simulations
with the RQME are very cumbersome because the relaxation
tensor R(2) in Eq. (6) scales as the fourth power51 of the sys-
tem Hilbert space dimension N. Therefore, in the steady state
the computational complexity of the problem typically scales
proportional to N6, assuming that the analytic forms of the
transition rates are known. On the other hand, in our modi-
fied Redfield solution all components of the reduced density
matrix can be obtained by reference to the transition rates W

only, which scale as N2. Thus, in the modified solution the
computational complexity becomes drastically reduced to be
of order N3. This fact is equivalent to solving the quantum
master equation with use of the continued fraction scheme;55

it thus enables us to study systems with much larger Hilbert
space dimension.

IV. COMPARING MODIFIED REDFIELD
SOLUTION WITH SECOND-ORDER CANONICAL
PERTURBATION THEORY

For a finite system-bath coupling the thermal equilibrium
density matrix is typically no longer of Gibbs type (strict
weak coupling limit) but rather of the generalized Gibbs

form, ρeq ∝ TrB(e−βHtot ), resulting in a quantum Hamiltonian
of mean force.56 It is interesting to know if this distribution
can be obtained from a full non-Markovian dynamical the-
ory of a system weakly coupled to a heat bath. Although this
seems reasonable there is no agreed consensus on this issue
from the viewpoint that the literature deals with a variety of
perturbative quantum (2nd order) master equations.42, 43, 57, 58

Since the Redfield formalism is rigorously valid only in
the λ → 0 limit it is expected that in this very limit the canoni-
cal form ρeq ∝ e−βHS emerges. In order to test the accuracy of
our novel modified Redfield solution we implement an order
by order comparison between canonical perturbation theory
(CPT), which perturbatively expands the generalized Gibbs
distribution, as detailed in the Appendix, with our modified
Redfield solution. According to CPT (Eqs. (A13)–(A15)) the
reduced density matrix up to 2nd order in the system-bath
coupling reads

ρCPT
nm = ρ(0),CPT

nm + ρ(2),CPT
nm ,

ρ(0),CPT
nm = e−βEn

ZS

δn,m, (34)

ρ(2),CPT
nm = Dnm

ZS

− e−βEn
∑

i Dii

(ZS)2
δn,m, (35)

wherein the different contributions assume the following
form:

ZS =
∑

l

e−βEl ,

Dnm = 1

�mn

∑
l

(D̆nlSlm − D̆mlSln)(n 	= m),

D̆nl = Snl e−βEn

(∫ β

0
dxC(−i x) e−x�ln −γ0

2

)
. (36)

Dnn =
∑

l

D̄nlSln,

D̄nl = Snl e−βEn

[
β

(∫ β

0
dxC(−i x) e−x�ln −γ0

2

)

−
∫ β

0
dxC(−i x)x e−x�ln

]
. (37)

A. Comparing the 0th order result

Let us first compare the 0th order reduced density matrix.
For the harmonic baths described by Eq. (3) it can be shown
that the bath-bath correlator C(τ ) obeys the Kubo-Martin-
Schwinger condition58–60

C(−τ ) = C(τ − i β). (38)

This implies that the real part of the transition rates W̃ ′ obeys
the detailed balance condition61 given by

W̃ ′
ij = e−β�ij W̃ ′

ji . (39)
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The analytic form of the 0th order reduced density matrix can
be obtained upon using Eq. (21) as

ρ(0)
nm = e−βEn

ZS

δn,m, (40)

where ZS = ∑
l e−βEl . A direct comparison between

Eqs. (34) and (40) yields the expected result that at the 0th
order CPT agrees with our modified, 0th order Redfield
solution.

B. Comparing the 2nd order result

More intriguing is the comparison of the modified Red-
field solution with the 2nd order CPT result. The 2nd order
reduced density matrix obtained from CPT can be manipu-
lated further so that it indeed matches precisely our modified
Redfield solution. In order to demonstrate this fact we first
simplify the integral occurring in D̆, Eq. (36), by using the
definition of the bath-bath correlator C(τ ) in Eq. (11) to obtain∫ β

0
dxC(−i x) e−x�ij

= −
∫ ∞

0

dω

π
J(ω)

(
nω

ω − �ij

− (nω + 1)

ω + �ij

)

−e−β�ij

π

∫ ∞

0
dωJ(ω)

(
nω

ω + �ij

− (nω + 1)

ω − �ij

)
,

(41)

where we have interchanged the ω- (stemming from C(τ )) and
x-integration and performed the x-integral analytically. We
next express the right-hand side in terms of the transition rates
W̃ , which enter in our modified Redfield solution. In order to
do this we use the so-termed Sokhotskyi-Plemelj formula62∫ ∞

0
e±i �τ dτ = πδ(�) ± i P

(
1

�

)
. (42)

Here, P denotes the principal value. Therefore, using the
above identity along with Eqs. (8) and (11) we can express
the imaginary part of the transition rates W̃ ′′ in the form

W̃ ′′
ij = P

∫ ∞

0

dω

π
J(ω)

(
nω

ω − �ij

− (nω + 1)

ω + �ij

)
. (43)

Therefore, using the above equation, Eq. (41) can be
expressed as

−
∫ β

0
dx e−x�ij C(−i x) = W̃ ′′

ij + e−β�ij W̃ ′′
ji . (44)

1. Off-diagonal elements

Upon the use of Eq. (44) the 2nd order off-diagonal ele-
ments from CPT, i.e., Eq. (35), can be expressed in terms of
W̃ ′′ as

ρ(2),CPT
nm = 1

�nm

∑
i

SniSim

[
e−βEi

ZS

(W ′′
ni − W ′′

mi)

+ e−βEn

ZS

W ′′
in − e−βEm

ZS

W ′′
im

]
, (45)

where we have absorbed the γ0 into W ′′, according to Eq. (7).
Formally adding the real part of the transition rates W ′ into
Eq. (45), but noting that these so added contributions vanish
identically by virtue of detailed balance in Eq. (39), we find
the result

ρ(2),CPT
nm = 1

i �nm

∑
i

SniSim

[
(Wni + W ∗

mi)
e−βEi

ZS

−W ∗
in

e−βEn

ZS

− Wim

e−βEm

ZS

]
, (n 	= m). (46)

Upon comparing Eq. (22) with Eq. (46) we find that the CPT
and our modified Redfield solution are identical.

2. Diagonal elements

Most importantly, we next test the agreement between
the 2nd order diagonal elements from CPT with our modi-
fied Redfield solution. Noting that the integral occurring in
Eq. (35) is the derivative of Eq. (44) with respect to �ij we
obtain

ρ(2),CPT
nn =

∑
i

SniSin

(
e−βEi

ZS

Vni − e−βEn

ZS

Vin

)

−β
e−βEn

ZS

[∑
i

SniSinW̃
′′
in

−
∑
i,l

SliSil

e−βEl

ZS

W̃ ′′
il

]
, (47)

where Vij has been defined in Eq. (27). Because ∂ρ
(0)
ii /∂Ei

= −βρ
(0)
ii , Eq. (30) exactly matches Eq. (47). This constitutes

a second main result: Namely, CPT up to 2nd order and our
modified Redfield solution are indeed in perfect agreement.
This shows that in the weak, but finite coupling limit the long-
time thermal reduced density matrix stemming from a non-
Markovian theory is of the generalized Gibbs form.

V. A TEST CASE: DAMPED HARMONIC
QUANTUM OSCILLATOR

In this section we compare our modified Redfield solu-
tion to the exact nonequilibrium Green’s function (NEGF)
results20 for a damped harmonic oscillator that is linearly cou-
pled to a thermal heat bath. This comparison will allow us
to estimate the system-bath coupling strengths that can be
probed safely by employing the presented modified scenario.
In order to do so we use a specific spectral density J(ω) of
the heat bath. Several phenomenological forms of the spectral
density are in use in the literature for the damped oscillator
quantum dynamics; sometimes a numerical decomposition is
employed to save computational costs.63, 64 Here we use the
common Lorentz-Drude spectral density,

J(ω) = Mγω

1 + (ω/ωD)2 , (48)

where ωD denotes the cutoff frequency and γ is the
phenomenological Stokesian damping coefficient which
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characterizes the system-bath coupling strength. Since
γ ∝ ∑∞

n=1 c2
n, the spectral density is of 2nd order in system-

bath coupling. Decomposing the hyperbolic cotangent in
Eq. (11) into its Matsubara frequencies, ν l = 2π lT, where T
denotes the temperature of the bath, and noting that the resul-
tant equation exhibits poles at ω = ±i ωD and ω = ±i ν l we
can calculate C(τ ) explicitly by use of the residue theorem to
obtain

C(τ ) = Mγ

2
ω2

Dcot

(
βωD

2

)
e−ωDτ −2Mγ

β

∞∑
l=1

νl e−νlτ

1 − (νl/ωD)2

−i
Mγ

2
ω2

D
e−ωDτ sgn(τ ). (49)

Therefore, the components of the transition rates W , defined
in Eq. (8), read

W̃ ′
ij = Mγω2

D

2(ω2
D + �2

ij )

[
ωDcot

(
βωD

2

)
− �ij

]

−2Mγ

β

∞∑
l=1

ν2
l

(1 − (νl/ωD)2)(ν2
l + �2

ij )
, (50)

W̃ ′′
ij = Mγω2

D�ji

2(ω2
D + �2

ij )

[
cot

(
βωD

2

)
+ ωD

�ij

]

+2Mγ�ij

β

∞∑
l=1

νl

[1 − (νl/ωD)2](ν2
l + �2

ij )
, (51)

with the relation that

γ0 = γωD. (52)

The system Hamiltonian is a single harmonic oscillator
reading

HS = p2

2M
+ 1

2
Mω2

0 x
2, (53)

where x, p, M, and ω0 are the position, momentum, mass,
and angular frequency of the oscillator, respectively. The har-
monic oscillator is linearly coupled to the bath via the x-
coordinate. This implies that S = x in Eq. (5). Through-
out this work the system-bath coupling will be measured in
a dimensionless parameter, defined by taking the ratio be-
tween the damping coefficient γ and the angular oscillator
frequency, i.e., γ /ω0. Since the Redfield formalism is formu-
lated in terms of eigenbasis of the system Hamiltonian of fi-
nite dimension, we choose a system Hilbert space that is suf-
ficiently large so that even at the highest temperatures the
occupation probability of finding the particle in the highest
available energy levels is practically zero. We do this by iter-
atively increasing the size of the system Hilbert space until at
least five largest energy levels possess a population less than
10−15: In our case of the damped harmonic oscillator this re-
sults in around 40 levels. Using these 40 levels we can cover
a temperature range up to five times the Debye temperature,
TD = (¯ω0)/kB.

The main goal in this work is to evaluate correctly the 2nd
order diagonal elements. At the 0th order level the RQME and
our modified Redfield solution give the canonical solution,
which matches the result obtained from the NEGF method by

0
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FIG. 1. Plot of the discrepancy error DEX of the ground state population
versus the dimensionless system-bath coupling strength (γ /ω0) for a damped
harmonic quantum oscillator. (Top) The (black) solid line depicts the rather
small discrepancy for our modified Redfield solution (X = MRS). (Bottom)
The (red) dashed line shows the large discrepancy obtained via the ordinary
Redfield quantum master equation (X = RQME). Our parameters used for the
calculation are M = 1 u, ω0 = 1.3 × 1014 Hz, and T = 50 K, and the cutoff
is chosen at ωD = 10 ω0.

taking the zero coupling limit. Therefore, in order to sensi-
tively compare the 2nd order elements we define a relative
discrepancy error DEX as follows:

DEX = ρNEGF − ρX

(γ /ω0)
, (54)

where ρNEGF denotes the exact reduced density matrix obtained
from NEGF method, ρX is the reduced density matrix ob-
tained from the perturbative method; being either our mod-
ified Redfield solution (X = MRS) or the Redfield quantum
master equation (X = RQME), and the ratio γ /ω0 specifies
the overall system-bath coupling strength. Since the 4th order
term of the reduced density matrix is of the order of (γ /ω0)2,
it is expected that the discrepancy error is one order lower,
i.e., O(γ /ω0) if and only if the 2nd order elements are cal-
culated correctly. In order to check this behavior we plot the
discrepancy error versus γ /ω0 for the ground state population
at T = 50K in Fig. 1.

Since the temperature is chosen low the population ρ11

presents an appropriate quantifier for the complete reduced
density matrix. The figure depicts that the discrepancy er-
ror for our modified Redfield solution (solid black line) in-
deed stays throughout of the order of (γ /ω0) for all coupling
strengths γ /ω0; in contrast, for the RQME (dashed red line)
the discrepancy error grows in absolute value  O(γ /ω0), in-
dicating the inaccuracy in the 2nd order elements. In the limit
(γ /ω0 → 0) the discrepancy error should vanish: This holds
true only for our modified Redfield solution whereas the Red-
field solution depicts a finite value which indicates that this
2nd order (i.e., being proportional c2

n) solution indeed is not
correct to leading 2nd order. The temperature does not play
a major role, since all the features in the discrepancy error
remain the same up to temperatures of ∼3000 K. Therefore,
for all values of the weak-to-moderate system-bath coupling
strengths, our modified Redfield solution is able to predict the
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FIG. 2. Graph of the populations for the first four lowest lying energy levels
versus the dimensionless system-bath coupling strength γ /ω0 for a damped
quantum harmonic oscillator. The (black) solid lines correspond to our mod-
ified Redfield solution, the (red) dashed lines present the results for the Red-
field quantum master equation, the (green) dotted-dashed lines depict the re-
sults for the Lindblad solution, while the (blue) crosses represent the exact
result using NEGF. Panel (a) is for the temperature of T = 50 K and panel (b)
corresponds to a temperature of T = 1000 K. The remaining parameters used
for the calculation are M = 1 u, ω0 = 1.3 × 1014 Hz, and ωD = 10 ω0.

2nd order elements correctly, whereas the RQME fails to do
so already for small values of (γ /ω0).

In Fig. 2 we study the actual population values for
the first few levels as a function of γ /ω0 for two differ-
ent temperature. Figure 2(a) corresponds to a temperature of
T = 50 K and Fig. 2(b) is for T = 1000 K. We have opted
to plot these two extreme temperatures because for all inter-
mediate temperatures the features of the plot remain practi-
cally the same. We compare our modified Redfield solution
(black solid line) with the RQME (dashed red line), NEGF
results (blue crosses), and the Lindblad master equation (dot-
ted green line). The Lindblad master equation is extensively
used in the literature31, 51 due to its ease in computation and its
preservation of positivity. Although positivity is an essential
criteria, the Lindblad solution for the damped quantum har-
monic oscillator case is the canonical distribution65 with no
explicit dependence on coupling strength. Put differently, the
Lindblad solution always fails to capture the effects of finite
system-bath coupling. On the other hand the RQME depicts
severe deviations from the exact result for small, but finite
coupling strengths.

In the extreme low temperature regime the RQME yields
negative populations, note the results for (ρ22, ρ44) in panel
(a) of Fig. 2 already for weak coupling strengths, indicating
that the validity of the solution holds only in the zero cou-
pling limit. The steady state solution of the RQME has been
critiqued before66, 67 for producing unphysical, negative pop-
ulations. We can now assess that the reason for its breakdown
is rooted in the incorrect 2nd order diagonal elements. The
modified Redfield solution matches the exact solution quite
well for system-bath couplings γ /ω0 as strong as 0.2, even
at low temperatures. At high temperatures our modified so-
lution yields the most impressive agreement with the exact
results, extending over sizable regimes of coupling strengths
up to γ /ω0 � 0.6. Beyond a coupling strength γ /ω0 ∼ 0.6
the modified Redfield density matrix is no longer positive
definite, which is determined upon examining the eigenval-
ues of the reduced density matrix; this indicates a breakdown
of the 2nd order perturbation theory beyond this value. Nev-
ertheless, the presented modified Redfield solution provides
a decisive and salient improvement over the RQME in that
the coupling strengths that can be probed accurately becomes
sizable.

VI. CONCLUDING REMARKS AND OUTLOOK

In this paper we have demonstrated via the exact com-
parison with canonical perturbation theory and extensive nu-
merics that the Redfield quantum master equation is inaccu-
rate for the steady state. This failure is the result of incorrect
second-order diagonal elements. This is in the spirit of re-
marks made before by Fleming and Cummings.41 Their sug-
gestion in overcoming this flaw by the use of the fourth
order tensor to improve the second order accuracy is numeri-
cally extremely cumbersome. Their suggestion to use instead
the Davies approximation68–71 in order to obtain the thermal
steady state reduced density matrix correct up to 2nd order
is not appropriate either. This is so because in case of the
Davies approximation the long-time limit can be taken only
if we take λ → 0, so that the product λ2t remains constant.71

This, in turn, immediately implies that the Davies approxi-
mation is precise only to 0th order accuracy in the long-time
limit, where it agrees with the Lindblad solution. Attempts
have been made to correctly evaluate the second order diag-
onal elements using the Dyson expansion:72 In this context
it must be noted that, however, because the Dyson series is
asymptotically divergent,73 and although the off-diagonals in
fact agree, the second order diagonal elements are found not
to match the exact result of Dhar et al.20 for the damped har-
monic oscillator problem.

Therefore, since most of the perturbative methods fail to
capture the effects of finite system-bath coupling in the long-
time limit, we put forward a modified solution to the Redfield
quantum master equation which reproduces the second order
elements exactly. The derivation is based on obtaining the sec-
ond order diagonal elements from the off-diagonal ones using
an analytic continuation procedure as detailed in Sec. III B.
The result of this scheme uniquely indicates a unique steady
state for the reduced density matrix. In order to test the valid-
ity of our solution, we have compared our modified Redfield
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solution to canonical perturbation theory and demonstrated
that our modified solution agrees with the generalized Gibbs
distribution up to second order in the system-bath coupling
strength for a general system that is coupled to a harmonic
oscillator bath. This indicates that even in the weak, but finite,
system-bath coupling limit, the system thermalizes to a gener-
alized Gibbs distribution. As will be elaborated elsewhere our
method is also applicable to systems connected with multiple
baths, thus exhibiting nonequilibrium steady state transport.54

As an illustrative example we tested and compared in
Sec. V the reduced density matrix obtained by our modified
solution, the Redfield formalism, and the Lindblad master
equation against the exact NEGF results for a damped har-
monic oscillator. We find that our modified solution agrees
quite well with the exact result for coupling strengths as
strong as γ /ω0 = 0.2, showing a major improvement over
the RQME which matches the exact result only in the limit
γ /ω0 → 0. On the other hand, the Lindblad solution for the
damped oscillator case always yields the canonical distribu-
tion, wrongly indicating that the solution is not affected by
the system-bath coupling strength.

The presented modified Redfield solution further is nu-
merically very efficient; this is mainly so because with our
scenario the computational complexity scales as N3, where N
is the system Hilbert space dimension, as compared to N6 for
the Redfield formalism. This fact allows us to describe accu-
rately not only the effects of finite system-bath coupling, but
as well as to explore systems with rather large Hilbert space
dimensions. A yet unsolved challenge consists in the exten-
sion of our scheme to the time-dependent relaxation of the re-
duced density matrix ρ(t) and, in this context, also the exten-
sion to study the differing relaxation processes that stem from
different initial preparation schemes away from the typically
used case of a correlation-free initial preparation. Assuming
bath spectral densities that assure an ergodic behavior, the
long-time limit is not affected by the initial preparation, be-
ing in distinct contrast to its temporal relaxation. Yet another
unsolved objective presents the perturbative, accurate study
of multi-time correlations of open system observables, both
time-homogeneous thermal and time-dependent nonequilib-
rium correlations beyond the weak coupling limit.
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APPENDIX: CANONICAL PERTURBATION THEORY

With this appendix we outline the basic reasoning under-
lying canonical perturbation theory.40, 42, 43 This will assist us
in determining the correct equilibrium reduced density matrix

up to second order in coupling strength for a harmonic bath
which is coupled bilinearly to a general system. The basic idea
dates back to the works of Peierls74 and Landau and Lifshitz75

who calculated the free energy of the full system using a sim-
ilar expansion. Here we employ similar techniques for the re-
duced density matrix, which in case of the equilibrium prob-
lem is well defined by the generalized Gibbs distribution56

ρeq = TrB e−βHtot

Tr e−βHtot
, (A1)

where Htot is defined in Eq. (1). We now use the Kubo
identity58

eβ(A+B) = eβA

[
I +

∫ β

0
dλ e−λA B eλ(A+B)

]
, (A2)

which is exact. Upon expanding e−βHtot up to second order
in the coupling strength and taking the trace over the bath
degrees of freedom we obtain

TrB (e−βHtot )

= e−βHS

[
I − γ0

2

∫ β

0
dβ1S̃(−i β1)S̃(−i β1)

+
∫ β

0
dβ1

∫ β1

0
dβ2S̃(−i β1)S̃(−i β2)C(−i (β1 − β2))

]
,

(A3)

where S̃(−i β1) = eβ1HS S e−β1HS is the free evolving sys-
tem operator in imaginary time and C(−i (β1 − β2)) is the
imaginary-time bath correlator as defined in Sec. II. Using
Eq. (A3) in Eq. (A1) the CPT reduced density matrix thus
reads

ρCPT = e−βHS

ZS

+ D

ZS

− e−βHS TrS(D)

(ZS)2
, (A4)

where

D =
∫ β

0
dβ1

∫ β1

0
dβ2S̃(−i β1)S̃(−i β2)C(−i (β1 − β2))

−γ0

2

∫ β

0
dβ1S̃(−i β1)S̃(−i β1), (A5)

ZS = TrS(e
−βHS ). (A6)

Next writing Eq. (A4) in the basis of the system Hamiltonian
we obtain

ρCPT
nm = e−βEn

ZS

δn,m + Dnm

ZS

− e−βEn
∑

i Dii

(ZS)2
δn,m,

(A7)

wherein

Dnm =
∑

l

SnlSlm e−βEn

[∫ β

0
dβ1 eβ1�nl

∫ β1

0
dβ2 eβ2�lm C(−i (β1 − β2))

−γ0

2

∫ β

0
dβ1 eβ1�nm

]
. (A8)
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In Eq. (A8) �nm = En − Em has the same definition as in
Eq. (8).

The main task in CPT is to evaluate the elements of the
matrix D, Eq. (A8). In order to do this we split the matrix D
into its diagonal and off-diagonal elements and deal with each
part separately, as detailed below.

1. Off-diagonal elements of the matrix Dnm

In order to obtain the off-diagonal elements of the matrix
D we make the following change of variables: x = β1 − β2, y
= β1 + β2, and then we perform the y integral analytically to
find

Dnm = 1

�mn

∑
l

(D̆nlSlm − D̆mlSln), (A9)

where

D̆nl = Snl e−βEn

(∫ β

0
dxC(−i x) e−x�ln −γ0

2

)
.

(A10)

2. Diagonal elements of the matrix Dnn

For the diagonal elements of D, by using the same set
of transformations as before, the integrals simplify and the
diagonal elements of matrix D emerge as

Dnn =
∑

l

D̄nlSln, (A11)

where

D̄nl = Snl e−βEn

[
β

(∫ β

0
dxC(−i x) e−x�ln −γ0

2

)

−
∫ β

0
dxC(−i x)x e−x�ln

]
. (A12)

In summary, the thermal equilibrium reduced density ma-
trix obtain via CPT is given, up to second order, by the gener-
alized Gibbs state, reading

ρCPT
nm = ρ(0),CPT

nm + ρ(2),CPT
nm (A13)

where

ρ(0),CPT
nm = e−βEn

ZS

δn,m, (A14)

ρ(2),CPT
nm = Dnm

ZS

− e−βEn
∑

i Dii

(ZS)2
δn,m. (A15)

Here, the off-diagonal elements of Dnm are given by Eq. (A9)
and the diagonal elements are given by Eqs. (A11) and (A12).
Equation (A13) exhibits that the equilibrium reduced den-
sity matrix obtained via CPT is hermitian and is normalized
properly with trace over the system degrees of freedom equal
to 1.
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