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Quantum thermal equilibration from equipartition
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Abstract – The problem of mutual equilibration between two finite, identical quantum systems,
A and B, prepared initially at different temperatures is elucidated. We show that the process
of energy exchange between the two systems leads to accurate equipartition within energy shells
in the Hilbert space of the total non-interacting, composite system, A⊗B. This scenario occurs
under the general condition of a weak interaction between the systems. We predict that the sole
hypothesis of such equipartition is sufficient to obtain a relaxation of the peers, A and B, towards
a common thermal-like state. This conjecture is fully corroborated by an exact diagonalization of
several quantum models.

Copyright c© EPLA, 2012

Introduction. – The time evolution of an isolated
quantum system after applying a sudden change for one
of its parameters —i.e., a quench— has recently gained
considerable attention, both in the theoretical and experi-
mental physics communities [1]. State-of-the-art numerical
simulations [2–8], motivated by recent advances in manip-
ulations with ultracold atoms [9], have not only allowed
to validate a number of theoretical predictions [10–12],
but also produced several conceptually new research direc-
tions. One of these tracks refers to the exploration of the
quench machinery as an effective tool to drag the system of
interest into a new state. The latter can effectively mimic
the state of thermal equilibrium —without the need of
coupling the system to a heat bath [13]. “Mimic” means
here that the expectation values of relevant observables
are close to those following from the thermal Gibbs state,
�T ∝ exp(−βH), β = 1/kBT .
The equilibration between two identical, initially non-

interacting systems, A and B, can be considered as a
quench applied to the composite system,

Hλ =HA⊗1B +1A⊗HB +λ(t)H int, (1)

starting out from the non-interacting limit, λ= 0, to the
regime of interaction, λ= λint. It has been shown with
prior work [14] that for the initial product state, prepared
at different temperatures, TA and TB , �(0) = �

A
TA
⊗ �BTB ,

the step-like quench λ(t) = λintθ(t) evolved the composite
system into a new state, �(t), such that, for the times
t > teq, the reduced density matrices, �

A(t) and �B(t),

become quasistationary1 and mimic perfectly a thermal
equilibrium with a common temperature Teq. Although
this scenario seemingly is universal, in a sense that it
works equally well for very different physical systems, the
physical mechanism at work remained elusive.
With this study we address this open problem. We

show that mutual thermal relaxation of two finite quan-
tum systems follows from a generic hypothesis about the
asymptotic state of the composite system after applica-
tion of a weak interaction quench: namely, equipartition
inside energy shells E = εA+ εB of the identical spectra
of the composite system HA⊗HB constitutes a sufficient
condition for the emergence of the mutual thermal equili-
bration between the system’s halves. We corroborate this
conjecture by using four different types of models, includ-
ing synthesized Hamiltonians with different distributions
of energy levels and a system of two interacting spin clus-
ters.

Setup. – The model (1) consists of two identical
quantum systems, A and B, with identical finite spectra,
{εj}, j = 0, . . . , N − 1, of width ∆ε= εN−1− ε0, and a
set of eigenstates {|j〉}. The corresponding energy level
1In a mathematical sense, there is no unidirectional relaxation

towards a strict stationary state in a closed quantum system. For any
finite quantum system with a discrete energy spectrum, the evolution
of any observable is quasiperiodic, and, therefore, recurrences are
inevitable, see in ref. [15]. However, when the dimension of the
system Hilbert space is sufficiently large, the recurrences occur on
time scales which are much longer than any time scale of practical
relevance [11].
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distribution is encoded by the density of states,

n(ε) =

N−1∑
j=0

δ(ε− εj). (2)

The initial states of the systems are given by Gibbs density
matrices, �A(0) = �TA and �

B(0) = �TB , at the tempera-
tures TA and TB . The initial state of the total composite
system in the product basis, {|Ψ0m(i,j)〉= |j〉⊗ |k〉},
Em(j,k) = εj + εk, is represented by a diagonal density
matrix, ρtot(0) = ρtotjk,j′k′ = ρ

A
j,j′ρ

B
k,k′ = δj,j′δk,k′p

0
jk, p

0
jk =

exp(−εjβA− εkβB)Z−1A Z−1B , where ZA,B are the partition
functions, ZA,B =

∫∞
−∞ dε exp(−εβA,B)n(ε). Henceforth,

we set ε0 = 0 and use ∆ε as the energy unit if not specified
otherwise.

Equilibration induced by equipartition. – We
define the energy shells of the composite system in the
product basis {|Ψ0m〉} by using the condition |Em−E|<
δ [16]. The constant δ is chosen small with respect to
the spectral width, δ�∆ε, but still larger than the mean
level spacing of the composite system, δ� 2∆ε/(N − 1),
with N =N ×N energy levels. The last condition implies
that the every energy shell contains many eigenstates. The
switch-on of an interaction Hamiltonian, λintH

int, which
is non-diagonal in the product basis, generates a set of new
eigenstates, |Ψm〉:Hλ|Ψm〉=Eλm|Ψm〉. If we sort both sets
of eigenstates, {|Ψ0m〉} and {|Ψm〉}, with respect to their
energies, Em and E

λ
m, we obtain a bell-shaped overlap

function fm′(m) = |〈Ψ0m′ |Ψm′+m〉|2, centered at m′ [10],
with a width that grows with the strength of perturbation
λint [17,18]. Throughout this study we assume the weak-
coupling limit,

λint(ε
int
N−1− εint0 )�∆ε , (3)

obeying, in addition, the condition

λint‖H intρtot(0)‖> s̄tot = 2∆ε/(N − 1), (4)

where ‖ . . . ‖ is the operator norm in the Hilbert space of
the composite system and s̄tot is the mean level spacing.
The last condition means that the interaction should
not be too weak, otherwise the non-thermal scenario of
arithmetic-mean equilibration [14,19] would take place.
In common setups of quench studies the isolated system

is initially prepared in a m-th eigenstate (typically in its
ground state, |Ψ00〉 [2–5,13]) of the Hamiltonian Hλ=0. A
weak quench then results in a local smearing of the initial
wave function over the narrow set of new eigenstates, given
by the function fm′(m), so that “microcanonical thermal-
ization” can be expected [4,10,11,20,21]. Microcanonical
thermalization implies that a closed quantum system is
transformed into a new state, which satisfies Boltzmann’s
postulate of equal a priori probability [16], here applied
to the quantum states within an energy shell2. Evidence

2The microcanonical equipartition inside the energy shell, initi-
ated by coupling of a system to an environment of finite heat capac-
ity, has been considered in [15].

A

E = B + A

After equilibrationInitial

A

Σ = B − A

B B

Fig. 1: (Color online) Thermal equilibration between two finite,
identical quantum systems following the equipartition scenario.
Systems, initially prepared at different temperatures (left),
eventually arrive after relaxation at a quasi-equilibrium state
(right), characterized by distributions uniform along the Σ-axis
(equipartition). The color coding (decreasing in weight from
bright to dark) depicts the behavior of the pdf P [εA, εB ](t), see
eq. (5). Note that the equipotential lines in the left panel are
not horizontal but slightly inclined. The inclination is small due
to a large difference between the peer’s initial temperatures,
TA� TB .

that this may indeed be expected under quite general
conditions [8,22,23] is nowadays discussed under the label
“quantum typicality” [24,25].
We start by extending the concept of thermalization

to the case of the bipartite system initially prepared
in the product state �(0). At time t= 0 we turn on
the quench by setting λ �= 0. Then, after some elapsed
characteristic time trel, we switch off the perturbation and
investigate the state of the system with respect to the
product basis |Ψ0m〉. By representing the system Hilbert
space, sheared by energy shells of different energies E,
as having an onion-like structure, we conjecture that a
proper perturbation will initiate the population exchange
between the eigenstates within each shell —independently
of the remaining part of the system Hilbert space [26].
This exchange will lead finally to the equipartition of the
level populations within each energy shell.
In order to cast our hypothesis into a formal mathemat-

ical language we first introduce a two-dimensional proba-
bility density function (pdf):

P [εA, εB ](t) =

N−1∑
j,k=0

pkj(t)δ(ε
A− εj)δ(εB − εk), (5)

where the populations pjk(t) are governed by the diag-
onal elements of the total density matrix ρtotjk,j′k′(t).

The initial pdf is given by P [εAi , ε
B
j ](0) = exp(−βAεAi −

βBε
B
j )Z−1A Z−1B , see fig. 1. It is useful to introduce the

auxiliary variables, E = εA+ εB and Σ= εA− εB , which
form a new coordinate axes. The first variable, E, defines
the above-mentioned energy shell, while the second one,
Σ, can be used to label the states within the shell. In
this representation the initial condition assumes the form
p0jk = P

0(Em,Σm) = exp(−Emβ+−Σmβ−)Z−1A Z−1B , with
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the two inverse temperatures β+ = (βA+βB)/2 and β
− =

(βB −βA)/2. The density of states in new variables,
n̄(E,Σ), does not generally factorize.
According to the proposed equipartition scenario, after

equilibration the diagonal elements of the total system
density matrix, P eq(E,Σ)≡ P eq(E), derive from the
equipartition of the probability over the corresponding
energy shells, reading

P eq(E) =
e−β

+E

ZAZB

∫ η(E)
−η(E) n̄(E,Σ)e

−β−ΣdΣ∫ η(E)
−η(E) n̄(E,Σ)dΣ

, (6)

where the integration limits are η(E) =E for 0�E �∆ε,
and η(E) = 2∆ε−E for ∆ε�E � 2∆ε, see fig. 1. Note
that the expression (6) conserves energy within a specific
shell. Then the energy level populations of a single peer
can be evaluated as

peqj =

∫ ∆ε
0

P eq(εj + ε)n(ε)dε. (7)

Note that the equilibrium distribution explicitly depends
on the density of states, n(ε), of the system Hamiltonian.
Below, by using three different classes of system Hamilto-
nians we demonstrate that i) the smearing along the Σ-axis
is sufficient in producing thermal equilibration between
the peers and in fact ii) such smearing indeed is achieved
in those systems after an interaction quench.
In order to validate our predictions we performed calcu-

lations for three different classes of synthesized Hamiltoni-
ans, with uniform, semicircular and a Gaussian density of
states, eq. (2). Finally, we investigated the thermal equi-
libration between two finite spin clusters.

Thermal equilibration between peers with
uniform distributions of energy levels. – We have
synthesized a Hamiltonian with N = 151 levels, distrib-
uted them randomly and uniformly in the interval [0,∆ε].
The interaction Hamiltonian is composed as the product
of two identical matrices, H int = YA⊗YB , where the
matrix Y = YA = YB has been drawn from a Gaussian
Orthogonal Ensemble (GOE). Namely, Y = (R+RT)/2,
where the matrix R in the product basis is given by its real
elements obeying standard normal distribution [27]. The
interaction between the peers is within the weak-coupling
limit, so that the interaction quench does not cause
appreciable heating of the composite system, but still is
strong enough as to guarantee the thermal-like equilibra-
tion scenario [14]. Here we use the dimensionless coupling
constant λint = 0.015(s/h), where s=∆ε/(N − 1) is the
mean level spacing, and h=

∑N
m,m′=1 |H intm,m′ |/N 2.

The initial and the equilibrium population pdf’s, as
obtained by the exact diagonalization of the composite
system with N =N ×N = 22801 states, are presented
with fig. 2. The equilibrium pdf P (E,Σ) shown in fig. 2(b)
assumes a stripe-like structure, being uniform along the
Σ-axis, in full agreement with the equipartition scenario,
see fig. 1. We also checked that the emerging equilibrium

log10 p0
jk log10 peq

jk

j j

j

k
peq j

(
)

(c)

(b)(a)

k

Fig. 2: (Color online) Equilibration between two identical finite
quantum systems with N = 151 uniformly distributed energy
levels. In panel (a) we depict the diagonal elements of the total
system density matrix before the interaction quench and in
panel (b) the result after equilibration occurred. Notice full
agreement with the equipartition scenario, see fig. 1. The initial
temperatures are kBTA = β−1A = 2∆ε and kBTB = β

−1
B = 0.1∆ε.

Panel (c) depicts the populations before and after equilibration.
The initial populations, pAi (0) and p

B
i (0), are denoted by

the thick solid (blue for system A and red for system B)
lines. The resulting equilibrium populations (thick dashed line)
agree (within line thickness) with the analytical prediction,
eq. (7), and are very close to the canonical thermal populations
obtained from the energy conservation condition, eq. (8) (thin
(green) line). Energy is measured in units of the spectral
width ∆ε.

populations P eq(E) follow closely the predicted result in
eq. (6).
The equilibrium values of peqj for a single peer obtained

by using eq. (7) are shown in fig. 2(c) by the dashed
thick line. The analytical prediction in eq. (7) are indistin-
guishable from the numerical data points obtained from
the direct diagonalization of the composite Hamiltonian
in eq. (1). Except for some small deviation in the high-
energy tail, both distributions fit almost perfectly the
thermal distribution with the equilibrium temperature Teq
extracted from the condition of energy conservation [14],

∑
k

εk
e−εk/kBTeq

Zeq
=
∑
k

[
εk
e−εk/kBTA

2ZA
+ εk
e−εk/kBTB

2ZB

]
,

(8)

see the thin solid (green) line in fig. 2(c).

Semicircular distribution of energy levels. –
In the present example we use spectra that are typical
for the class of Hamiltonians modeled by a random
matrix drawn from GOE [28]. In the limit of large
number of levels, the density of states of a single peer
can be approximated by the continuous semicircular

40011-p3



A. V. Ponomarev et al.
peq j

(
)

peq j
(

)

j

j

(a)
n
(

)
n
(

)

(b)

Fig. 3: (Color online) The same as in fig. 2 but here for
the equilibration scenario between two identical peers with a
semicircle (a) and Gaussian (b) density of states. The variance
of the Gaussian distribution is σ= 0.1833∆ε. The remaining
parameters are the same as in fig. 2(c). Insets: exact semicircle
and Gaussian distributions, dashed (black) lines, and the
density of states of the finite synthesized Hamiltonian with
N = 181 energy levels (histograms).

distribution, n(ε) = (4/π)
√
1/4− (ε− 1)2/4, see the

inset in fig. 3(a). Thus, for the total system we have
n̄(E,Σ)= 1/π

√
(E2−Σ2)2− 4(E2−Σ2)(E− 1). The

results of the exact diagonalization perfectly match the
prediction in eq. (7). As for the first example, the thin
solid (green) line indicates the distribution with the
equilibrium temperature given by eq. (8).

Model with Gaussian distribution of energy
levels. – This next class of Hamiltonians refers to quan-
tum systems possessing a finite number of interacting
particles or spins, as realized with fermionic [29] and
bosonic Hubbard models [30]. In the limit N →∞ the
corresponding density of states can be approximated
by the continuous Gaussian function n(ε)∝ exp[−(ε−
1/2)2/(2σ2)], wherein both the width σ and energies ε are
in units of the total width ∆ε.
In distinct contrast to the semicircle distribution,

the Gaussian density of states remains factorized after
the frame transformation, n̄(E,Σ)∝ exp[−(E− 1/2)2/
(2σ2)] exp[−Σ2/(2σ2)]. Therefore, eq. (6) reduces (up to
irrelevant normalization constant) to the form:

P eq(E)∝ e−β+E
∫ η(E)
−η(E) e

−(Σ2+σ2β−Σ/2)/(2σ2)dΣ∫ η(E)
−η(E) e

−Σ2/(2σ2)dΣ
. (9)

In the limit of a very broad Gaussian distribution, σ�∆ε,
the above expression approaches the foregoing result of
a uniform distribution, see fig. 2. In the opposite limit
of a very narrow distribution; i.e., σ�√∆ε/β−, the
integrals in the numerator and denominator of eq. (9)
yield approximately the same values, thus rendering the
Boltzmann-like distribution,

P eq(E)∝ e−β+E , (10)

0
0.5

1
0

0.5
1

10
−7

10
−5

10
−3

10
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j

|ρA,B
j,k |

k

Fig. 4: (Color online) The reduced density matrices of peers
with the uniform density of states after equilibration is
completed. Crosses (red) show the elements of the density
matrix of system A (initially “hot”), while open circles (blue)
show those for system B (initially “cold”). Both peers were
initially in canonical thermal states, with the corresponding
density matrices in diagonal form. The parameters are the same
as those in fig. 2.

for the composite system. This limit corresponds to a
“strong thermalization” numerically observed with two
coupled Bose-Hubbard models [31]. Accordingly, both
peers also relax to the thermal states of the same temper-
ature, Teq = (kBβ+)−1, see fig. 3(b). It is noteworthy that
the strong thermalization was absent in the previously
considered cases.
To conclude this section, we discuss the important issue

of off-diagonal elements of the reduced density matrices of
the peers after they reached the state of a joint thermal
equilibrium. With figs. 1–3, we addressed the diagonal
elements of the reduced density matrices only and showed
that they fit the thermal distributions with the equilibrium
temperature given by eq. (8). Remarkably, the off-diagonal
elements, although they appear during the equilibration
process, remain extremely small after equilibration is
completed. Therefore, the thermalized density matrices of
the peers preserve their diagonal forms and remain near
canonical, see fig. 4.

Thermal equilibration of interacting spin clus-
ters. – Synthesized Hamiltonians, although very useful
for numerical studies [26], have a serious drawback.
Namely, they do not feature some nontrivial statistical
properties which may be present in spectra of actual
quantum systems. Therefore the equipartition scenario
needs to be tested with a realistic physical Hamiltonian.
As a last peer model we use a finite cluster of NS = 8

interacting (1/2)-spins. Two clusters are placed into a
constant magnetic field, pointing along the z-direction,
and brought into a local contact, see fig. 5(a). Each
cluster has N = 28 = 256 states, so that the overall
dimension of the Hilbert space of the composite system is
N = 22NS = 216 = 65536.
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Sz
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Sz
B = −3

Sz
A = 1Sz

A = 0

Spin cluster A

Spin cluster B

(b)

(a)

peq
j,kSz

A = −3
Sz

A = −2
Sz

A = 2 10−3

10−7
Sz

B = −1
Sz

B = −2Sz
B = 3

Sz
B = 2

Sz
B = 1

Sz
B = 0

10−5

Sz
A = −1

Fig. 5: (Color online) (a) Two locally interacting spin clus-
ters. (b) The diagonal elements of the density matrices corre-
sponding to the different magnetization subspaces after the
thermalization process is completed. The Hilbert space of a
single cluster splits into 2NS +1= 9 invariant subspaces, HSz

X
,

X =A,B, with a spin SzX taking integer values from −Ns/2 =
−4 to Ns/2 = 4. The interaction between clusters leaves the
total magnetization of the composite system, Sz, invariant.
Therefore, for the chosen initial conditions with subspaces
SzA,B = 0 only populated, the consecutive equilibration process
is restricted to the Sz = 0 subspace of the Hilbert space of the
composite system. As a result of the interaction, all possible
products of local subspaces, HSz

A
⊗HSz

B
, with opposite magne-

tization, SzA =−SzB , become populated. Note that the single-
state subspaces with SA,Bz =±4 are not shown. Initial temper-
atures of the clusters are the same as in fig. 2.

For two identical clusters, we employ here the spin
model that is also referred as to XXZ model with the
following Hamiltonian, HA =HB ≡H:

H = V
∑
〈ij〉
Szi S

z
j−J

∑
〈ij〉
(Sxi S

x
j+S

y
i S
y
j )+M

∑
i

Szi , (11)

where Sxi , S
y
i , S

z
i are spin-(1/2) operators on site i, V (J)

are the exchange constants in z (x, y) directions,M is the
external magnetic field, and 〈. . .〉 indicates here all pairs
of next-neighbor spins connected according to bonds of
a single spin cluster displayed in fig. 5(a). The coupling
term between the clusters, H int, assumes similar to the
Hamiltonian of the spin cluster form:

H int = V
∑
〈ij〉λ
Szi S

z
j −J

∑
〈ij〉λ
(Sxi S

x
j +S

y
i S
y
j ). (12)

Here the sum runs over the two bonds 〈ij〉λ that bind the
two spin clusters together upon the action of quench.
In distinct contrast to the synthesized model discussed

before, both single clusters and the entire composite
system possess integrals of motion additional to the
total energy. That are the total magnetization along
direction of the applied magnetic field, SzA,B =

∑
jA,B
Szj ,

for the clusters, and z-component of the total spin, Sz =∑
j S
z
j , for the composite system

3. As a consequence, the
Hamiltonian of a single X-cluster, X =A or B, factorizes
over the product space

⊗HSzX into 2NS +1 independent
blocks. So does the Hamiltonian of the composite system
over the product space

⊗HSz , yielding 4NS +1 blocks.
Conservation of the total magnetization allows to study

the process of mutual quantum equilibration in a more
complex situation. For both clusters we choose initial
states with only invariant subspaces SzA,B = 0 thermally
populated. By resorting to the equipartition hypothesis,
we predict that a weak interaction quench that preserves
the magnetization of the composite system, Sz = SzA+
SzB = 0, but violates the separate conservation of the
magnetization of individual cluster, SzA,B , would not only
lead to the equilibration between the subspaces SzA,B =
0, but shall also initiate a population and consecutive
thermalization within subspaces SzA,B �= 0.
Our analytical calculations based on generalized form of

eqs. (6), (7) for the factorized space HSz=0 =
∑
SzA
HSzA ⊗

H−SzA perfectly agree with exact diagonalization of the
model Hamiltonian in the subspace of zero total magneti-
zation, Sz = 0, spanned by 12870 states, see figs. 5, 6. The
model parameters are J = 0.2∆ε, V = 0.1∆ε,M = 0.05∆ε,
λint = 0.095(s̄/h̄) = 1.
The equilibrium temperature Teq was calculated by

using eq. (8), which was applied to the initially populated
subspace, HSzA = 0⊗HSzB = 0, only. It is noteworthy that
the “equilibrium” distributions for different subspaces
perfectly match the thermal distributions with the same
equilibrium temperature, Teq, see in fig. 6 (top panels).

Summary and outlook. – In conclusion, using differ-
ent classes of Hamiltonians, we have unraveled the mech-
anism responsible for the thermal equilibration of two
identical quantum peers prepared initially in canonical
states at different temperatures. This mechanism, i.e.,
the equipartition within energy shells in the Hilbert
space of the composite system, may appear whenever
the interaction is small enough to satisfy the weak-
coupling condition, given by eqs. (3), (4). However, the
equipartition scenario is not universal: Quantum systems
that exhibit Anderson localization are expected to inval-
idate the equipartition scenario when coupled by a weak
local interaction, and the final equilibrium states of the
corresponding peers can differ substantially from being
thermal-like [32,33].
One should keep in mind that the time evolution of

any isolated quantum system with a finite number of
levels has a finite recurrence time, which depends on the
system spectrum and the system initial conditions. Thus,
the equilibration of the peers to a thermal “equilibrium”
after some interaction time t does not contradict the

3In addition, each cluster has also a mirror symmetry so that the
corresponding Hilbert space is shared by symmetric and antisym-
metric eigenstates. However, in the context of mutual thermalization
this parity can be safely left without paying further attention to it.
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Fig. 6: (Color online) Populations of different SzA,B subspaces
of the Hilbert space of a single cluster after the equilibration
process is completed. Top panels: equilibrium populations of
the energy levels in subspaces SzA, being marked by the (blue)
crosses, and SzB =−SzA, as marked by (red) circles, are shown
for the cluster A and for the cluster B, respectively. The solid
line for each subspace depicts the thermal energy level popula-
tions at the equilibrium temperature Teq, multiplied by the
total population of the corresponding subspace. The latter
subspace is marked by the filled grey symbol in each panel, as
shown in the bottom part. The equilibrium populations and
the thermal distributions agree (within line thickness) with
the analytical prediction. Bottom panel: individual population
values of the corresponding subspaces SzA =−SzB after equili-
bration. The parameters are the same as in fig. 5.

disappearance of the equilibration at some larger times,
trec > t, due to revivals. The revival time scales can be
very short when the interacting systems are small [34].
The equilibration process is governed by the Hamilto-

nians, HA, HB , and H
int, and its output is in one-to-

one correspondence with the initial states of the peers.
It means that initial states different from thermal Gibbs
states, generally would lead to a final quasi-equilibrium
which may not be thermal-like anymore. This compli-
cation, however, could be weakened by the increase of
the number of peers: interaction between M � 2 systems
would effectively mimic an environment for a single peer,
thus leading to the mutual equilibration of all peers to
nearly identical thermal states regardless of the shape of
their initial eigenstate distributions [35,36].
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[2] Kollath C., Läuchli A. M. andAltman E., Phys. Rev.
Lett., 98 (2007) 180601.

[3] Manmana S. R., Wessel S., Noack R. M. and
Muramatsu A., Phys. Rev. Lett., 98 (2007) 210405.

[4] Rigol M., Dunjko V. and Olshanii M., Nature, 452
(2008) 854.

[5] Eckstein M., Kollar M. and Werner P., Phys. Rev.
Lett., 103 (2009) 056403.
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