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We present a particle separation mechanism which induces the motion of particles of different sizes in

opposite directions. The mechanism is based on the combined action of a driving force and an entropic

rectification of the Brownian fluctuations caused by the asymmetric form of the channel along which

particles proceed. The entropic splitting effect shown could be controlled upon variation of the

geometrical parameters of the channel and could be implemented in narrow channels and microfluidic

devices.
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Matter very often manifests itself as divided into very
fine parts whose nature dictates the overall properties of the
system. Grains, conglomerates, or mesostructures dis-
persed in a liquid or liquidlike phase are basic structures
frequently found in many physicochemical and biological
problems. The dissimilarity of these units, resulting from
random fractionation or self-assembling processes giving
rise to a very disparate distribution of sizes, originates a
heterogeneous response of the system which makes its
typification difficult. To obtain pure substances by separat-
ing wanted from unwanted elements presents a major
challenge in basic research and industrial processing, and
in nanotechnology as well.

Particle separation techniques use the fact that the re-
sponse of the particles to external stimulus, such as gra-
dients or fields, depends on their size. Filtering particles of
different size is traditionally performed by means of cen-
trifugal fractionation [1], phoretic forces [2–4], or external
fields [5]. By means of these methods, the sorting of
particles proceeds either by size exclusion, as happens in
a sieve, or by migration through the host medium, a gel or
porous media. In these cases all particles move in the same
direction but at different speeds. Novel separation tech-
niques based on flashing [6–8], drift [9], ‘‘deterministic’’
[10], and geometric [11,12] ratchets have also been pro-
posed for sorting [13].

Here we present a novel splitting mechanism that sepa-
rates particles in different directions by purely entropic
means. The working principle relies on the combined
action of a static force and an entropic rectification
[14–17]. Small particles follow the force, whereas the
motion of big particles is rectified to proceed in the oppo-
site direction resulting in a faster splitting. This mechanism
could be readily implemented in microchannels or micro-
fluidic systems. The geometry of the channel can be tuned
to be very selective leading to an efficient separation of
particles of very similar radii.

The Brownian motion of particles in confined geome-
tries exhibits a very rich and striking phenomenology
[18–23]. The effects of confinement can be described by
means of an effective entropic potential resulting from the
variation of the space accessible to particles along the
transport direction [18,24,25]. The height of the entropic
barrier associated with the bottlenecks depends on particle
radius. In an asymmetric channel, the resulting entropic
potential becomes asymmetric, and rectification of a
zero-mean oscillating force can occur. The strength of
this rectification depends on the particle radius and is
stronger for large particles (for which the entropic barrier
is larger, see Fig. 1). Thus, in the presence of a small static
force directed in the opposite direction of rectification,
it is possible to separate particles of different sizes. The

FIG. 1 (color online). (top) Schematic illustration of the two-
dimensional channel confining the motion of the Brownian
particles. The structure is defined by Eq. (2). Brownian particles

are driven by a constant force ~f and a square wave force ~FðtÞ
along the longitudinal direction. The values of the chosen
parameters defined in Eq. (2) are: m1¼2, m2¼0:4, b=L¼0:1.
The dashed lines represent the limit for the positions of the
center of the particles within the channel. (bottom) Effective
entropic potential for the two particle sizes depicted above.
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trajectories of small particles mainly follow the force,
whereas large particles move in the opposite direction.
To illustrate this effect we have chosen the geometry
depicted in Fig. 1.

The dynamics of a Brownian particle in a 2D channel, as
the one depicted in Fig. 1, driven by a static force f and an
oscillating (square wave) force FðtÞ, both applied along the
principal axis of the channel, can be described by means of
the Langevin equation which, in the overdamped limit,
reads

�
d~r

dt
¼ �½fþ FðtÞ� ~ex þ

ffiffiffiffiffiffiffiffiffiffiffiffi
�kBT

p
~�ðtÞ; (1)

where ~r denotes the position of the particle, � is the friction

coefficient, ~ex is the unit vector along x direction, and ~�ðtÞ
is a Gaussian white noise with zero mean which obeys the
fluctuation-dissipation relation h�iðtÞ�jðt0Þi¼2�ij�ðt� t0Þ
for i, j ¼ x, y. The explicit form of the oscillating driving
force is FðtÞ ¼ A sgn½sinð�tÞ� where A is the amplitude,
sgn½t� represents the sign function, and � is the driving
frequency. This choice does not represent a restriction on
the particle splitting effect which could also be observed
for a sinusoidal driving force.

The Langevin equation (1) must be solved by imposing
vanishing outflow at the walls of the structure. For the 2D
structure depicted in Fig. 1, the walls are defined by

yuðxÞ ¼
�
bþm1 �x if �x < c
bþm2ðL� �xÞ otherwise

; (2)

where yuðxÞ and ylðxÞ ¼ �yuðxÞ correspond to the upper
and lower boundary functions, respectively, b is the
half-width of the bottleneck, m1 and m2 are the slopes
of the walls, L is the periodicity of the channel, c ¼
Lm2=ðm1 þm2Þ indicates the location of the point of
maximum width, and �x ¼ xmodL is the modulo function
(to create a periodic structure) cf. Fig. 1.

For a hard particle of radius r inside the channel, the
space available for its center is restricted by a distance r
from the walls, reading

wuðxÞ¼

8>>>>>>>><
>>>>>>>>:

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2� �x2

p
þb; 0� �x<op

bþm1 �x�r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þm2

1Þ
q

; op� �x<cp

bþm2ðL� �xÞ�r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þm2

2Þ
q

; cp� �x<Lp

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2�ð �x�LÞ2p þb; Lp� �x<L

; (3)

where op ¼ rm1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þm2

1Þ
q

, Lp ¼ L� rm2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þm2

2Þ
q

,

and cp ¼ cþ r½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þm2

1Þ
q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þm2

2Þ
q

�=ðm1 þm2Þ.
The lower parallel curve is just wlðxÞ ¼ �wuðxÞ.
Consequently, 2wðxÞ ¼ wuðxÞ � wlðxÞ gives the local
width of the structure accessible for the center of a hard
particle of radius r. Assuming throughout a dilute particle
density and a strong viscous, low Reynolds number

dynamics, all relevant hydrodynamic wall-particle interac-
tions are small and of repulsive character [26]. Effectively,
this results in a slightly increased effective particle radius;
i.e., reff * r. Such hydrodynamic interactions thus result
in somewhat larger average transport velocities, note
Figs. 2(a) and 2(b) below.
Also the friction depends on size, and using Stokes’

law as an approximation one obtains � ¼ �0r=b and
D ¼ D0b=r, where �0 and D0 ¼ kBT=�0 are the friction
and diffusion coefficients of a particle of radius equal to
the bottleneck half-width b. To mimic the particular case
of DNA electrophoresis, we will consider that the forces
depend linearly on the radius of the particles. Specifically,
we set

f ¼ f0r=b and A ¼ F0r=b; (4)

where f0 and F0 are the strengths of the static and periodic
forces for a particle of radius b.
For the sake of a dimensionless description, we scale

all variables using three characteristic parameters: the
characteristic length L, energy kBT, and diffusion coeffi-

cient D0. Particularly, ~x ¼ x=L, ~y ¼ y=L, ~b ¼ b=L, ~wl ¼
wl=L ¼ � ~wu, ~t ¼ t=�, and ~� ¼ ��, where � ¼ L2=D0 is

the characteristic diffusion time. The scaled forces are ~f ¼
fL=kBT and ~Fð~tÞ ¼ FðtÞL=kBT. In the following, we shall
omit the tilde symbols. In dimensionless form the
Langevin equation (1) reads:

FIG. 2 (color online). Average current vs the amplitude of the
periodic forcing F0 in the adiabatic limit (� ¼ �0 ¼ �=10) for
particles of different radii, for a channel with m1 ¼ 2, m2 ¼ 0:4,
and b=L¼0:1. The solid lines indicate the results of the simu-
lations, whereas the dashed line plots the prediction according to
the FJ equation for r ¼ 0:9b. For f0 < 0 small particles go to the
left, whereas big particles move to the right. The critical size that
divides these two behaviors can be tuned by the value of F0.
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d~r

dt
¼ �ðf0 þ F0 sgn½sinð�tÞ�Þ ~ex þ

ffiffiffiffiffiffiffiffi
b=r

p
~�ðtÞ: (5)

The description of this system alternatively can be given
by the concept of an entropic potential [18] and the corre-
sponding Fick-Jacobs (FJ) equation [18,19,24,25]

@Pðx; tÞ
@t

¼ @

@x

�
DðxÞ

�
@P

@x
þ V0ðxÞP

��
; (6)

where

VðxÞ ¼ U� TSðxÞ ¼ ½FðtÞ þ f�x� ln½2wðxÞ�; (7)

is the free energy including an entropic contribution

TSðxÞ ¼ ln½2wðxÞ�, DðxÞ ¼ b=fr½1þ w0ðxÞ2�1=3g is the
position-dependent diffusion coefficient, and the prime
refers to the derivative with respect to x. This approxima-
tion is expected to be very accurate for bias strengths
jf0j< 1, amplitudes F0 < 1, and for w0ðxÞ2 � 1 [21].

In the adiabatic limit, the average velocity can be calcu-
lated as

hvi ¼ JðF0Þ þ Jð�F0Þ
2

; (8)

where the current JðF0Þ is given by Stratonovich’s formula
[27–29];

JðF0Þ ¼ 1� e�ðF0þf0Þr=bR
x0þ1
x0

dz 1
DðzÞ e

VðzÞ Rz
z�1 dxe

�VðxÞ : (9)

Note that for very large driving strengths F0 � 1, while
keeping a finite bias strength jf0j, i.e., far beyond the
regime of validity of the Fick-Jacobs approximation, the
average velocity approaches the deterministic behavior
[14,19]. In this limit we then find that JðF0Þ � �Jð�F0Þ
so that an asymptotic vanishing net velocity hvi emerges.
Note that this asymptotic regime of very large amplitude
strength F0 is not yet reached in Fig. 2.

Figure 2 plots the average current vs the amplitude of the
periodic forcing F0, in the adiabatic limit (� ¼ �=10), for
particles of different radii. In absence of static forcing, this
asymmetric channel rectifies the oscillating force giving
rise to a net positive velocity; i.e., all particles move
towards the right [see Fig. 2(a)]. Its magnitude depends
on the strength of the rectification which is more intense
the larger the particle radius. If we apply a small static
force in the negative direction [see Fig. 2(b)], for inter-
mediate periodic forcing strengths F0, particles larger than
a given threshold radius move to the right, whereas parti-
cles smaller than that move to the left. In this way, one can
separate particles of different radii and make them move in
opposite directions. The splitting effect is illustrated sche-
matically with Fig. 3.

Figure 2 also represents the results for the average
velocity obtained from the FJ equation for the case
r ¼ 0:9b. The agreement with the simulation results is

very good at small values of the force (for F0 < 10). At
larger values of F0, the agreement is better when the radius
increases or equivalently when entropic effects are more
pronounced. In the domain of validity of the FJ description
the corresponding applied forces already yield a significant
entropic splitting.
The splitting effect can be tuned by the value of either

the amplitude of the periodic forcing or the static force.
Figure 4 represents the average value of the velocity vs f0
for the same geometry and F0 ¼ 20. One can see that by
tuning f0, one can control the separation of particles of
different sizes. For instance, by selecting f0 ¼ �1:5, small
particles of radius r ¼ 0:1b will move to the left with a
velocity �0:7, whereas large particles of radius r ¼ 0:9b
will drift to the right with velocity 0.5. More importantly,
the velocity depends almost linearly on f0, thus facilitating
an efficient control of the separation effect. In addition, by
progressively changing f0, one obtains a device that, with a
fixed geometry, can be used to continuously separate par-
ticles of any size.
We have also analyzed the effect of the frequency of the

periodic forcing on the particles current. For small fre-
quencies the results agree with those obtained in the
adiabatic limit. As the frequency increases, the velocity
becomes progressively smaller. Eventually, at very high
frequencies, the change in the oscillating force is so fast
that the particle cannot follow it and as a result there is a
vanishing effect of the oscillating force.
The fact that particles of different sizes travel in opposite

directions leads to an efficient separation that can be
improved further by increasing the number of periodic
cavities. A way to quantify this is to calculate the proba-
bility that a large particle with an average positive velocity
v > 0 reaches the ‘‘wrong’’ collector, i.e., the left
boundary of the device placed at x ¼ nL, where n is a
negative integer (see Fig. 3). This probability is Pðx <
nL; tÞ ¼ 0:5þ 0:5erf½ðnL� vtÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffi

4Defft
p � where we have

assumed that the process can be described as a driven-
diffusion process with an average velocity v and an effec-
tive diffusion coefficient Deff . This probability peaks in
time at tmax ¼ �n=v, and its maximum value is at

Pðx < nL; tmaxÞ ¼ 0:5þ 0:5erfð� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vjnj=Deff

p Þ. We use

FIG. 3 (color online). Schematic illustration of the functioning
of the entropic splitter. A mixture of particles of different radii is
placed initially in the center. Under the combined presence of the
static and periodic forcing, large particles move towards the
right, whereas small particles follow the bias, i.e., are moving
towards the left.
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this maximum probability as a measure of the purity of the
sample collected at the end of the device. For typical values
of the velocity v� 0:2 (cf. Fig. 4) and Deff & 1, one can
achieve 99.9968% of purity after only 40 periods.

Note, that the entropic splitting effect can be used
for separation of DNA fragments of different size using
typical values as for DNA electrophoresis. The DNA
fragments are considered as randomly coiled polymers

with radius R ¼ dðM=M0Þ1=2 where M is the number of
base pairs, d ¼ 100 nm is the Kuhn length, andM0 ¼ 300
is the number of base pairs per Kuhn length [11]. Assuming
Stokes’ law and the Sutherland-Einstein relation, (i) the
friction coefficient for the dynamics of such a DNA frag-

ment in water is � � 2� 10�9 kg=s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M=M0

p
and (ii) the

diffusion coefficient is D � 2� 10�8 cm2=s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M0=M

p
.

For a device with L ¼ 3 �m and the same geometry
and parameters as in Fig. 1, typical values of the
velocities are L=� ¼ D0=L� 0:9 �m=s, achievable by
electrophoresis with an electric field of 7 V=cm. For
DNA chains of R� 250 nm differing in radius by
�25%, a purity of separation of 99.997% results after 40
periods. These values compare favorably with commonly
used techniques. Much larger velocities and efficiencies
are possible with smaller DNA chains, or nanosized
particles.

The effectiveness of the entropic splitting can be tuned
by choosing the geometry of the channel. In particular, the
entropic splitting effect becomes more important upon
increasing the asymmetry of the walls, the slopes of the
channel or by decreasing the bottleneck width b. Altering
the design of the channel geometry it is feasible to separate
particles of very similar radii, e.g., by choosing b close to r.
Yet another advantage of this set up is that it works in a
time-continuous mode.

In summary, we have presented a novel, purely entropic
particle splitting mechanism which is able to separate
particles of different sizes. The mechanism is based on
the presence of an entropic rectification of fluctuations
caused by the asymmetric form of the channel. This rec-
tification may overcome the effect of an applied force by
reversing the motion of the particles. The mechanism is
very efficient and can be controlled by tuning the geomet-
ric parameters of the channel leading to both different
velocities and directions. This idea could be implemented
in constrained structures with narrow channels and pores
where entropic effects are important.
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