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The Arnold diffusion constitutes a dynamical phenomenon which may occur in the phase space of a

non-integrable Hamiltonian system whenever the number of the system degrees of freedom is M � 3.

The diffusion is mediated by a web-like structure of resonance channels, which penetrates the phase

space and allows the system to explore the whole energy shell. The Arnold diffusion is a slow pro-

cess; consequently, the mapping of the web presents a very time-consuming task. We demonstrate

that the exploration of the Arnold web by use of a graphic processing unit-supercomputer can result

in distinct speedups of two orders of magnitude as compared with standard CPU-based simulations.
VC 2011 American Institute of Physics. [doi:10.1063/1.3658622]

Several archetype results of dynamical chaos theory can

unambiguously be attributed to unforeseen outcomes of

numerical experiments. Two such examples are the ab-

sence of thermalization in the Fermi-Pasta-Ulam (FPU)

chain1 and the discovery of the Lorenz attractor.2 In

some cases, the use of numerical simulations presents the

only method to obtain insight into the behavior and evo-

lution of the system of interest. There are several

branches of modern physics, which are computational by

their own nature, with Computational Cosmology3 being

such a paradigm. Nowadays, computational cosmologists

perform simulations with more than 1010 particles.4 The

main driving force underpinning this advance is the high

parallelization of simulations that allows one to run an ar-

tificial Universe on thousands of processors simultane-

ously. On the other hand, one may benefit as well from a

high parallelization on the scale of much smaller systems.

For example, the averaging over many realizations of a

stochastic force or of quenched disorder to arrive at scal-

ing exponents, the Monte-Carlo sampling etc., present

typical routines in many areas of computational physics.

It is evident that by running N different realizations on N
processors in parallel, one can speed up the statistical col-

lection process by a factor of N. One of the possibilities is

then to use a computational cluster by sending the pro-

gram to run on many CPUs simultaneously, collecting

the output data and finally sample them. This “sending-

collecting-sampling” process is cumbersome work, which,

however, could be avoided by using special designed

scripts. The advent of graphics processing units (GPUs)

has brought such numerical experiments into a new level

of performance.5 Originally used as hardware chips,

designed as graphic data-pipelines, GPUs were soon rec-

ognized as an additional beneficial tool: researchers from

such areas as medical imaging, computational electro-

magnetics, and hydrodynamics, have successfully imple-

mented them for data processing.6 Nowadays,

computational physics is marked by an impressive boost

of the “General Purpose Computing on GPU” (GPC–-

GPU) ideology.
7

With this work, we attempt to demon-

strate how the use of a GPU-supercomputer can provide

useful insight for complex problems of nonlinear dynam-

ics such as Arnold diffusion.8

I. INTRODUCTION

The Arnold diffusion is not that kind of phenomenon

that involves the time evolution of billions of particles. In

fact, it can appear in the phase space dynamics of a Hamilto-

nian system whenever the number of system degrees of free-

dom is M � 3. The Arnold diffusion is relevant in celestial

mechanics and astronomy,9 plasma dynamics in stellarators

and tokamaks.10,11 It also influences the evolution of a Ryd-

berg atom placed in crossed magnetic and electric fields12 or

it might explain experimentally observed effects of emittance

growth in the TeVatron colliders.13 Moreover, Arnold diffu-

sion may be a mechanism of the ultraviolet cut-off in statisti-

cal mechanics.14 Except some specially designed models,

where the presence of the diffusion can be rigorously proved

and the diffusion timescales can theoretically be estimated,

only little work is generally analytically possible. Therefore,

numerical experiments play an prominent role in the studies

of Arnold diffusion.15–18 However, conclusive numerical out-

put then requires extremely large time scales; because the

actual rate of the process is not known ab initio. With this

study, we demonstrate that the presence of the Arnold diffu-

sion in the dynamics of a model Hamiltonian system can be

visualized by scanning the system phase space with a giant

ensemble of trajectories. This has been realized within the

compute unified device architecture (CUDA) framework19

with its benchmarks performed on a NVIDIA Tesla graphic

processing unit (GPU). We detect the Arnold web,21 i.e., a

chaotic network which can carry the system over the energy

shell, in the limit of extremely weak perturbations. We also

resolve a rich fractal structure of the Arnold web in the re-

gime of moderate non-integrability, when the clusters of

high-order resonances start to contribute to diffusion.
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II. MODEL FOR ARNOLD DIFFUSION

One of the typical models to study the Arnold diffusion

is a system of coupled standard maps, see, for example,

Refs. 20. Such systems are easy to handle because they only

need to be iterated and do not demand sophisticated integra-

tion schemes. However, they represent a class of driven
Hamiltonian systems, and their exposition to a train of delta-

kicks leads to an energy pumping and an unlimited diffusion

in the momentum subspace. Therefore, time evolution of

such systems is not restricted to a compact manifold in the

corresponding phase space.

Here, we want to address the case of autonomous Hamil-

tonian systems. Hamiltonians of such systems represent inte-

grals of motion, and their time evolution is restricted to

manifolds of constant energy.

An autonomous Hamiltonian system with one degree of

freedom, M¼ 1, is always integrable since it possesses the

integral of motion, E¼H(x,p). Hamiltonian systems with

two degrees of freedom, M¼ 2, evolve in a four-dimensional

phase space, X¼ {(x, y, px, py)}, but the system evolution is

confined to the energy shell of energy E¼H(x(0), y(0),

px(0), py(0)), determined by the initial conditions. Regular

two-dimensional invariant manifolds, tori,21 separate the

system energy shell into different regions. Different regions

exhibit different dynamics, chaotic or regular ones, but each

region is perfectly isolated from the remaining ones. This is

so because the two-dimensional tori provide a complete par-

tition of the three-dimensional energy shell. This topological

argument does not work anymore in higher dimensions: the

M-dimensional tori cannot partition the (2 M� 1)-dimen-

sional shell whenever the number of the degrees of freedom

M � 3. Therefore, there could be trajectories that slip

between regular tori and thus are able in exploring the whole

energy shell.

To be more specific, we consider a three-dimensional

system with a Hamiltonian

HðP;XÞ ¼ P2

2
þ eHpðXÞ ¼ H0ðPÞ þ eHpðXÞ; (1)

where P¼ (px, py, pz) and X¼ (x,y,z) denote the momentum

and coordinate vectors. For e¼ 0, the system is completely

integrable, and the vector P is constant along any trajectory

of the system, X(t)¼X(0)þPt. For a given energy E, the

energy shell forms a sphere in the momentum subspace, S:

P2¼ 2E, and system trajectories are represented by fixed

points on the sphere. Consider now the regime of weak per-

turbation, e� 1. This implies that the system phase space X
remains almost completely filled with invariant tori, which

form the set Xtori. The motion is regular on the manifold

Xtori but there also appears a tiny manifold, the relative com-

plement of Xtori in X, which constitutes the Arnold web,

Xweb¼X\Xtori. The Arnold web covers the resonance lines

Xm:¼ {P|m � P¼ 0}, where m¼ (mx, my, mz) is a triplet of

coprimes, by narrow chaotic channels. A typical channel

width depends on the order of the corresponding resonance,

m¼max|ma|, and it usually decreases with the increase of m.

The total volume occupied by the Arnold web is expected to

scale as
ffiffi
e
p

.21

The appearance of the Arnold diffusion may take a

while. The motion along the web can be detected only when

the change DP(t)¼ ||P(t)�P(0)|| assumes a noticeable value.

The Nekhoroshev theorem predicts that such a change can

be observed after a time tA, which scales at least exponen-

tially with 1/e.22 Moreover, only a tiny fraction of the initial

conditions, which entered into the manifold Xweb, can dif-

fuse. Therefore, even the numerical detection of the Arnold

diffusion is a rather difficult and time-consuming task.15,17

Here, we consider a perturbation Hamiltonian of the

explicit form

Hpðx; y; zÞ ¼ cosðxÞ cosðyÞ½1þ cosð2zÞ�: (2)

The total Hamiltonian H(P,X) in Eqs. (1) and (2) cannot be

separated into several independent two- or one-dimensional

Hamiltonians; therefore, the system is manifestly three-

dimensional. The system in Eqs. (1) and (2) falls within the

range of Nekhoroshev theorem since the Hamiltonian H0 is

convex and the function Hp(X) is analytic. Moreover, the

perturbation potential (2) is bounded, |Hp(X)| � 2, and the

total system energy, E¼H(P,X), effectively controls the

strength of perturbation. Therefore, we set e¼ 1 and intro-

duce an effective perturbation parameter

eeff ¼ max jHpðXÞj=HðP;XÞ ¼ 2=E: (3)

In the momentum subspace, the system evolves within the

sphere S. Namely, the system dynamics is confined to a thin

layer enclosing the surface of the sphere S, LE(P): 2(E� eeff)

� P2 � 2 (Eþ eeff). Resonance lines m � P¼ 0 form a set of

circles on the surface of the sphere. In the limit eeff � 1, the

Arnold web represents a sparse net on S. Upon increasing

the perturbation strength, eeff, the Arnold web tends to

become “thicker”: the invariant tori, which were located far

outside of the low-order resonances (the distance is defined

by the Diophantine resonance conditions21), and were unaf-

fected by the weak perturbation, become now modified. The

increasing perturbation involves more and more resonances

into the growing Arnold web. This all results in the appear-

ance of a complex, fine-structured network braiding whole

areas on the surface of the sphere.

III. COMPUTATIONAL METHOD

Numerical studies of Arnold diffusion demand long

runs. Therefore, one should resort to the integrators which

consistently respect the symplectic properties of the original

systems.23 A symplectic numerical scheme replaces the orig-

inal, continuous-time Hamiltonian by its discretized version,

and the numerical propagation produces the exact time evo-

lution of the corresponding Hamiltonian map.24 The so dis-

cretized system dynamics, thus, is a slightly perturbed

version of the original one, so that there is no secular growth

of the system integrals of motions, which is the total system

energy E in our case. The smaller the time step of the corre-

sponding Hamiltonian map is, the closer both systems, origi-

nal and discretized version stay close to each other. For the

propagation of the Hamiltonian in Eqs. (1) and (2), we used

the sixth-order symplectic integrator from Ref. 25. For the
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time step h¼ 10�2T, where the timescale is determined by

the characteristic frequency of the particle oscillations at the

bottom of the potential well, T¼ 2p, the absolute error in the

system energy, DE(t)¼ |E(t)�E(0)|, did remain below 10�8

during the whole integration time.

All our calculations have been performed on a NVIDIA

TESLA M2050 GPU, with 448 processing units on board,

and by using CUDA and double-precision accuracy. We

employed the complete parallelization, which allowed us in

total to run N¼ 107 realizations simultaneously. The per-

formance gain is shown in Figure 1. While the calculation

time on a single stack-structured CPU grows linearly with N.

At the same time, up to N¼ 7168 realizations can be calcu-

lated on a GPU simultaneously, due to the distribution proce-

dure performed by CUDA. This number is a multiple of the

number of GPU-cores, 7168¼ 16� 448. A further increase

of the number of realizations causes a re-distribution of

threads between the fixed number of cores and slow down

the calculations speed, note the steps on the corresponding

curve in Figure 1.

IV. MAIN RESULTS OF THE SIMULATIONS

In order to visualize the Arnold web, we employed the

following procedure. After having the initial conditions dis-

tributed over a certain region of the system phase space the

ensemble of trajectories was launched. The location and the

shape of the distribution are tunable, so that we can scan dif-

ferent regions of the phase space at will. For every trajectory

from the ensemble, {Xi(t)}, i¼ 1,…, N, we calculate the vec-

tor of the averaged finite-time velocity, ViðtÞ ¼ ðVi
xðtÞ;Vi

yðtÞ;
Vi

zðtÞÞ, with the components reading: Vi
aðtÞ ¼ ½ðXi

aðtþ DtÞ
�Xi

aðtÞ�=Dt, wherein the averaging interval is given by Dt. In

other words, it corresponds to a point on S.26 By running

many such realizations in parallel, we collected the statistics,

and finally projected a probability distribution function,

FDt(V;t), on the surface of the sphere S. The distribution is a

nonstationary function, in the sense that its shape depends on

t, so that the distribution profile reflects the dynamics of the

ensemble.

If one of the ensemble trajectories was launched from a

region filled with regular trajectories, it remains at the close

vicinity of the initial momentum vector. There is no mixing

in regular regions. Therefore, the projection of the corre-

sponding part of the initial probability density distribution

onto the momentum sphere remains invariant. When one of

the ensemble trajectories entered the thin chaotic layer along

a resonance m, it stays within the channel for some time

(“sticking event”), and during this time the system moves

with the velocity vector, eP, which nearly exactly obeys the

resonance condition, m � eP 	 0. All the realizations within

the chaotic layer contribute to the probability distribution,

FDt(V;t), concentrated on the corresponding resonance. The

resonance appears as a bright line enclosed by an empty

“dark zone,” and the width of the dark zone corresponds to

the width of the web around the resonance. An increase of

the averaging time will induce further localization of the dis-

tribution at the corresponding resonance lines, but the widths

of channels, i.e., dark zones on the momentum sphere, are

fixed and do not depend on Dt. Therefore, the color represen-

tation of FDt(V;t) allows one to clearly identify the location

of the Arnold channels.

At this point, it is worth to refer to the two-dimensional

limit of the Hamiltonian (1 - 2). The momentum sphere repre-

sents a circle in this limit, and alternating chaotic and regular

zones provide a full partition of the circle into a set of sectors.

A trajectory, being placed initially into one of the zones, stays

forever within the corresponding sector. Each chaotic zone

can be characterized by the corresponding asymptotic veloc-

ity, Vi ¼ ðVi
x;V

i
yÞ. When the averaging time Dt approaches

infinity, the distribution function inside the corresponding

chaotic sector shrinks to the point V
i. Therefore, in the as-

ymptotic limit sectors, corresponding to chaotic zones look

like dark regions with bright points at their centers.

The averaging time interval Dt is tunable and there

exists no a priori best choice for it. Namely, every resonance

channel m can be characterized by a probability distribution

of the corresponding sticking times, wm(tstick). The distribu-

tion always possesses a finite first moment,27 a mean sticking

time tstickðmÞ ¼
Ð1

0
swmðsÞds. If the averaging time interval

is much larger than this mean sticking time, the correspond-

ing resonance channel cannot be resolved. If, on the con-

trary, Dt� tstickðmÞ, the oscillations of the momentum

vector P(m) along the high-order resonance, with m
 1,

will smear the probability density over a broad region thus

preventing a resolution of the fine structure of the web. In

the following we used the value Dt¼ 50 T.

The high degree of parallelism capability of the GPU

offers a massive speedup for the ensemble propagation, see

in Figure 1. With our Figures 2 and 3 we show the results of

our numerical experiment with N 	 108 independent realiza-

tions and the propagation time has been set at tp¼Dt. The

overall simulation time of each experiment assumed

45 minutes. For a very long time evolution, see in Figure 4,

we propagated an ensemble of N¼ 3.2 � 104 particles up to a

time tp¼ 107 T. The simulation time in this case was 24 h.

The standard CPU-based run of a numerical experiment of

the same scale would require (i) approximately one year of

calculations on a standard desktop PC or (ii) about five

months on a more advanced CPU of the Augsburg Univer-

sity computational cluster.

FIG. 1. (Color online) Performance of a central processing unit (CPU) of

the Augsburg University computational cluster (Intel Xeon Processor

2.93 GHz Quad-Core X5570 Gainestown) versus the GPU (NVIDIA TESLA

M2050) for the propagation of an ensemble of Hamiltonian systems (1, 2):

the overall calculation time is depicted as a function of the number of real-

izations N (see text for more details). The propagation time of a single real-

ization was t¼ 5000 T.
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The results corresponding to the weak perturbative re-

gime at a total energy E¼ 400, corresponding to eeff¼ 0.005,

are shown in Figure 2. We used an ensemble with the initial

conditions uniformly distributed over the sphere S, and over

the torus [0,2p]� [0,2p]� [0,2p] in the coordinate space

XX. The most of the sphere surface is occupied by regular

trajectories, therefore, the initial uniform distribution

remains invariant almost everywhere, representing the uni-

form dark orange area on Figure 2(a). The brightest narrow

stripes which braid the sphere correspond to the lower order,

m � 2, resonances. We also scanned the energy shell by

using an ensemble of trajectories with the initial conditions

uniformly distributed within a small segment of the sphere

(enclosed by the two squares in Fig. 2(a), with the aim to

resolve the presence of the Arnold web around some higher-

order resonances. The results, depicted in Figs. 2(b) and (c),

show that the structures of the resonance intersections are

topologically similar.

The results for the regime of moderate perturbation with

total energy E¼ 15; i.e., eeff¼ 2/15, are depicted with Fig. 3.

Although the perturbation is much stronger now, it is not yet

strong enough so as to destroy all the resonance tori and bring

the system into the regime of the global Chirikov diffusion.28

There are several patches of the resonance web, which form

leaf-like clusters on the surface of the sphere. The zooms into

clusters reveal a fine fractal structure, see Figs. 3(b) and (c).

The clusters are formed by higher-order resonances, and the

width of the corresponding channels scales with the increase

of the resonance orders. Therefore, both the number of real-

izations, N(m), and the averaging time, Dt(m), needed to

resolve the web structure formed around the resonances of

order m, grow quickly with m. In order to overcome this ob-

stacle we scan the region of interest with the ensemble

launched within the designated area, and then tracked only

those trajectories which remained within the area during the

whole observation time. The results are shown in Figures

3(b) and (c).

Finally, we computed the diffusive spreading of the en-

semble initially injected at the point of intersection of three

low-order resonances, W ¼ Xð1;�1;2Þ \ Xð1;�1;�2Þ \ Xð1;�1;0Þ
¼ ð

ffiffiffi
E
p

;
ffiffiffi
E
p

; 0Þ, which is at the center of a well-developed

chaotic region. The evolution dynamics proceeds in a step-

wise manner. In a first stage, we detect a fast spreading over

the chaotic region, which encloses the injection point. Then

the spreading slows down and eventually enters a second

stage of slow diffusion through the Arnold web. Both stages

are illustrated on Figure 4.29 The system phase space is not

FIG. 2. (Color) (a) Arnold web—Probability density, FDt(V;0) (see text), of

the average velocity over Dt¼ 50 T of the system in Eqs. (1) and (2) starting

from uniformly distributed initial conditions with a total energy E¼ 400.

The braided stripes correspond to the resonances m � P¼ 0. The width of a

stripe depends on the order of the resonance: the higher the order, the nar-

rower is the stripe. Insets (b) and (c): These depict zooms of the correspond-

ing resonance intersections. The inner stripe regions correspond to chaotic

channels of the Arnold web, see the main text for more details.

FIG. 3. (Color) Arnold web—Probability density, FDt(V;0) (see text), of

the average velocity over Dt¼ 50 T of the system in Eqs. (1) and (2) starting

from uniformly distributed initial conditions with a total energy E¼ 15. The

phase space is pierced by the resonance channels of different orders, which

form fine structured patches on the velocity sphere, see the sequel of insets

from (a) ! (b) ! (c). The bright areas correspond to the zones of well-

developed chaos. For the highest resolution in panel (c) we double the aver-

aging interval Dt¼ 100 T.
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uniform so that two dynamical stages correspond to two dif-

ferent regions of the energy shell. The region at the vicinity

of the intersections of the primary resonances is strongly cha-

otic, and the dynamics there is governed by the fast Chirikov

diffusion. The rest of the shell is well-structured by the KAM

tori, and the evolution there is mediated by the Arnold web.

Fractal clusters play the role of hubs between two regions.

V. CONCLUSIONS

With this numerical study, we have shown how a GPU

supercomputer can be used to explore the Arnold diffusion

in near-integrable Hamiltonian systems. The appearance of

the Arnold diffusion demands the evaluation of huge statisti-

cal data sets. It may be considered as a typical problem of

sampling of rare events.18 Namely, once the system got into

a narrow resonance channel, it stayed there for a while

before making a transition to another channel. These transi-

tions constitute rare events, which in fact determine the

long-time evolution of the system. The disparity of the

involved time scales, which strongly depend on the reso-

nance orders, makes the mapping of the diffusion web a very

challenging computational task. The use of the CUDA-based

NVIDIA platform led to speedups by the factors � 350

and� 100, as compared with the performances of a standard

PC and of a computational cluster’s CPU, correspondingly.

When compared with other, more sophisticated

methods,15–18 our approach to the visualization of the Arnold

diffusion in three-dimensional autonomous Hamiltonian sys-

tems revails some advantages, both in theoretical and experi-

mental domains. First, our scheme neither demands pre- nor

after-processing but only a straightforward integration of the

corresponding equations of motion. Second, it allows for a

direct extension to the quantum limit, while it is not at all

clear how one could generalize the concept of finite-time Lya-

punov exponents15,17,18 or the frequency analysis16 to the

Schroedinger equation.

The state-of-the-art experiments with ultracold atoms

provide a natural playground for the realization of our

method. The creation of three-dimensional periodic optical

potentials nowadays become an experimental routine.30 The

initial ensemble in a form of narrow distribution over a cer-

tain manifold in the three-dimensional momentum space can

be prepared by using a diluted Bose-Einstein condensate

cloud and the Bragg selection technique.31,32 The needed

time, Dt. 100T, where T is the period of oscillations at the

bottom of potential well, is several orders of magnitude

smaller then the characteristic decoherence time.30 There-

fore, the evolution of ultracold atoms is Hamiltonian. The

instantaneous momentum distribution can be measured by

using the standard time-of-flight measurement technique.30

Finally, a tunable effective Planck constant allows to probe

both the semiclassical and the deep quantum limits.

Another intriguing application that comes to mind is the

implementation of the GPU-based mapping procedure to

search for the footprints of the Arnold diffusion in the emis-

sion patterns of three-dimensional optical resonators.33

Our work here illustrates the advantages, provided by

general purpose computing (GPC)–GPU ideology, for non-

linear dynamics studies by using a particular example. Yet

the potential of this approach reaches far beyond: it has al-

ready been put to work to explore (i) the noisy phase dynam-

ics in a Josephson junction and the noisy Kuramoto model,34

(ii) the long-time evolution of nonlinear lattices,35 and (iii)

the functioning of inertial Brownian motors that are driven

by colored noise.36 We thus believe that the use of GPU

computing in nonlinear science is only at a beginning: in the

immediate future its great potential likely will provide many

unforeseen findings and possibly even unravel manifest new

phenomena.
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