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Temperature-resonant cyclotron spectra in confined geometries
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We consider a two-dimensional gas of colliding charged particles confined to finite size containers of various
geometries and subjected to a uniform orthogonal magnetic field. The gas spectral densities are characterized
by a broad peak at the cyclotron frequency. Unlike for infinitely extended gases, where the amplitude of the
cyclotron peak grows linearly with temperature, here confinement causes such a peak to go through a maximum
for an optimal temperature. In view of the fluctuation-dissipation theorem, the reported resonance effect has a
direct counterpart in the electric susceptibility of the confined magnetized gas.
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I. INTRODUCTION

Electronic fluctuations are of great importance in plasma
physics due to their relevance in charge and energy transport
[1] and to the well-established connection between fluctuation
spectra and electronic susceptibility [2]. As the temperature
of the system is increased, the power of thermal fluctuations
contained in any narrow frequency interval is also expected
to increase. However, such a straightforward temperature
dependence has been observed in systems where the electron
dynamics is incoherent as a result of the electron interactions
with other electrons, positively charged ions, and impurities.
If, however, the electron dynamics also contains a coherent
component such as rotation with cyclotron frequency in the
presence of a magnetic field, then the temperature dependence
of the fluctuation power spectra may develop nontrivial
resonant behaviors. For instance, it has been demonstrated
[3] that a magnetized plasma operated at the limit-cycle
fixed-point bifurcation point and driven by a tunable external
white noise undergoes stochastic resonance [4]. In contrast,
the observation that in constrained geometries the matching of
thermal scales and characteristic system length can produce
detectable resonant effects has been previously reported [5,6].

In this paper we show that a simpler instance of temperature
controlled resonance can naturally occur in a confined mag-
netized electron gas due to the matching of two lengths: the
electron intrinsic thermal length, or gyroradius, and the finite
system size. The effect investigated here should not be mis-
taken for a manifestation of the well known electron cyclotron
resonance, which results instead from the matching of two
frequencies: the cyclotron frequency of an electron moving in
a uniform magnetic field and the pump frequency of a perpen-
dicular ac electric field [7]. The dynamics of a magnetoplasma
electron can be reduced to the two-dimensional (2D) Brownian
motion of a charged particle subjected to a uniform magnetic
field. In Sec. II we analyze the power spectral density (PSD) of
a magnetized Brownian particle moving in an unconstrained
planar geometry. We notice in particular that the amplitude
of the cyclotron peak grows linearly with temperature. At
variance with this remark, in Sec. III our numerical simulations
show that in constrained geometries the cyclotron peak goes
through a maximum for an optimal temperature (Sec. III A),

which in turn is determined by the matching of system size and
(temperature-dependent) average cyclotron radius (Sec. III B).
In Sec. IV we also show that the observed resonant temperature
dependence of the cyclotron peak is robust with respect to
variations of the boundary conditions and the geometry of the
system. Finally, in Sec. V we discuss possible applications of
this effect to confined systems of magnetocharges in biological
and artificial structures.

II. UNBOUNDED ELECTRON GAS

In an equilibrium neutral plasma electrons of charge q

and mass m oscillate with characteristic angular frequency [8]
ωp = (n0q

2/mε0)1/2 (in SI notation), where n0 is the average
electron density and ε0 is the vacuum permittivity. In the
following we restrict ourselves to weakly magnetized plasmas
to ensure that the cyclotron frequency associated with B0, ωc, is
much smaller than ωp , i.e., ωc = qB0/m � ωp. This allows us
to reduce the dynamics of a magnetoplasma electron to the 2D
Brownian motion of a charged particle subjected to a uniform
magnetic field. This is a long-standing problem in plasma
and astroparticle physics [9–11]. Here we limit ourselves
to introducing the results relevant to the discussion of our
simulation data. The corresponding Langevin equation reads

v = ṙ,
(1)

v̇ = q

m
(v × B0) − γ v +

√
2γ

kT

m
ξ (t),

where the vector ξ (t) = (ξx(t),ξy(t)) represents two
independent Gaussian white noises with 〈ξi(t)〉 = 0 and
〈ξi(t)ξi(0)〉 = δ(t) for i = x,y.

For numerical purposes, it is convenient to rescale both
time, t → ωct , and space, r → r/λ. We recall that ωc is
the B0-dependent cyclotron angular frequency and λ is
the T -dependent electron gyroradius λ = √

kT /mω2
c [8]. In

dimensionless units Eq. (1) reads

ṙ = v,
(2)

v̇ = v × b0 − gv + √
2gξ (t),
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where b0 is a unit vector parallel to B0. Note that, in the absence
of boundaries, the only free parameter in the dimensionless
Langevin equation [Eq. (2)] is the scaled damping constant g =
γ /ωc. In the following all results will be given in dimensional
units for the readers’ convenience.

For the linear and unconstrained dynamics of Eq. (2) the
PSD S(ω) = 〈|r̂(ω)|2〉, with r̂(ω) representing the Fourier
transform of r(t), can be computed analytically by means of
standard harmonic analysis [12,13]. Taking advantage of the
fact that ξx(t) and ξy(t) are uncorrelated white Gaussian noises,
we obtain

Sx(ω) = Sy(ω) = Svx

ω2
,

Svx
(ω) = 2kT

m

γ (ω2 + γ 2)(ω2 + γ 2 + ω2
c )

γ 2
(
ω2 + γ 2 + ω2

c

)2 + ω2
(
ω2 + γ 2 − ω2

c

)2 ,

(3)

where Si and Svi
denote the PSD of the i = x,y components of

the 2D vectors r and v, respectively. Note that at resonance ω =
ωc, the peak of the transverse velocity is Svx

(ωc) = v2
th/2γ ,

with v2
th = 〈v2〉 = 2kT /m. In view of the discussion below,

we note here that the stationary autocorrelation function of
the velocity, G(t − t ′) = 〈vx(t)vx(t ′)〉 = 〈vy(t)vy(t ′)〉, solely
depends on the difference t − t ′ and is related to the inverse
Fourier transform of the PSD Svx

(ω) through the Wiener-
Khinchin theorem [10–13],

G(t − t ′) = 〈vx(t)vx(t ′)〉 = 1

2π

∫ ∞

−∞
Svx

(ω)eiω(t−t ′)dω

= kT

m
e−γ |t−t ′ | cos [ωc(t − t ′)]. (4)

For an unbounded planar electron gas, the stationary distri-
bution density of the velocity is Maxwellian [9–11] and does
not depend on either the damping constant γ or the magnetic
field B0,

f (v) = m

2πkT
exp

(
−mv2

2kT

)
. (5)

The autocorrelation function of the electron coordinates
〈r(t)r(t ′)〉 diverges as a function of t and t ′ because the free
motion of electrons on the plane is unbounded.

In this regard it should be noted that the diffusion of a
Brownian charge carrier on a plane perpendicular to a constant
magnetic field is normal, that is, for asymptotically large t ,
〈r2〉 = 4DBt with

DB = kT

mγ

γ 2

γ 2 + ω2
c

. (6)

This means that for B0 > 0 the particle diffusivity gets
suppressed, as DB is smaller than the free diffusion coefficient
D0 = kT /mγ .

The typical velocity PSD Svx
(ω) and an example of a

velocity autocorrelation function G(t) are depicted in Fig. 1
for different values of the damping constant γ . The peak at
the cyclotron frequency ωc broadens as γ is increased. In the
remaining sections of this paper we choose γ to be much
smaller than ωc, i.e., γ � ωc. This ensures that the cyclotron
peak is well pronounced or, equivalently, that electrons with
any given velocity v tend to perform many cyclotron orbits
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FIG. 1. (Color online) Power spectral density Svx
(ω) = Svy

(ω)
[Eq. (3)] for kT /m = 1, ωc = 1, and different γ (reported in the
legend). The inset shows the velocity correlation function of Eq. (4),
G(t), for γ = 0.1.

of radius rc = v/ωc before being perturbed by the combined
action of noise and friction. Accordingly, in the underdamped
limit the diffusion coefficient DB tends to kT γ /mω2

c = λ2γ .

III. FINITE SYSTEMS

Our goal now is to compute the PSD S(ω) of a confined
2D gas of electrons with finite temperature and for different
geometries and boundary conditions. It should be noticed that
S(ω) encodes important information about the electromagnetic
transmission properties of the electron gas. In fact, S(ω) can
be directly linked to the imaginary part of the gas electric
susceptibility κ(ω) via the fluctuation-dissipation relation
S(ω) ∼ kT Im[κ(ω)] [2].

We start with the simplest case of an electron gas trapped
in a strip delimited by two walls parallel to the y axis and a
fixed distance d apart. Electrons are assumed to be reflected
elastically by the strip boundaries, which leads to a zero net
transverse flux in the x direction.

We numerically integrated the dimensionless Langevin
equation [Eq. (2)] for g in the range 10−3–10−2 and then
restored dimensional units with ωc = 1 and fixed system size.
With respect to the time unit, this corresponds to reporting ω

in units of ωc, with no severe restriction on the actual value of
B0, but for the condition that ωc � ωp (see Secs. II and V for
more details). With respect to the space units, setting the width
of the strip to a given value d makes the electron PSDs depend
explicitly on the temperature, which had been eliminated from
Eq. (2) by expressing all lengths in units of λ. Note that in our
plots ωc = 1, so that the scaled temperature kT /m boils down
to the square of the gyroradius λ, introduced in Sec. II.

A. Resonant cyclotron peak

The typical PSDs of the transverse coordinate Sx(ω) are
depicted in the main panel of Fig. 2. The finely dotted curves
represent Sx(ω), as computed numerically through Eq. (2)
with γ = 0.005 and ideal reflecting boundaries located at
x = ±d/2 with d = 1. The solid curves are the corresponding
Sx(ω) for an unbounded planar electron gas, as predicted in
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FIG. 2. (Color online) Transverse power spectral density Sx(ω)
of an electron moving in a strip of width d = 1 (see sketch in Fig. 3),
as computed from Eq. (2) for γ = 0.005, ωc = 1, and the scaled
temperature kT /m reported in the legend. Solid curves represent
the corresponding PSDs for an unbounded planar system. Inset:
Amplitude of the cyclotron peak Sx(ωc) as a function of kT /m (solid
curve) and its analytical approximation [Eq. (8)] (dashed curve). Note
that for ωc = 1 the scaled temperature kT /m coincides with λ2.

Eq. (3). The height and the width of the cyclotron peak depend
on the scaled temperature kT /m.

Unlike for the case of an infinite system, the amplitude
of the cyclotron peak Sx(ωc) for the confined electron gas
depends resonantly on the temperature, as shown in the inset
of Fig. 2: As T is gradually increased, Sx(ωc) goes through a
maximum for an optimal temperature Tc whose dependence
on the confinement geometry is investigated in the following
sections. This behavior may be reminiscent of stochastic
resonance [4]. However, we anticipate that here the optimal
temperature is defined by the matching of two length scales,
rather than two time scales, as it is the case in ordinary
stochastic resonance [4,14]. Finite volume effects have been
reported in the early stochastic resonance literature [15], but
in a totally different context.

B. Quantitative interpretation

The resonant temperature dependence of the cyclotron peak
can be qualitatively explained as follows. First we recall
that, in the underdamped regime, the diffusion time of a
charged Brownian particle across a strip of width d is strongly
suppressed by the presence of a magnetic field, especially for
γ t � 1. From Eq. (43) of Ref. [10], 〈r2〉 = O(t3); hence the
transverse diffusion time in the strip can be safely assumed
to be much shorter than the cyclotron period, as illustrated in
Figs. 3(a) and 3(b). We notice that, as the interaction of the
electrons with the walls is elastic, the equilibrium distribution
of their velocity is not affected by the boundary geometry and
is still given by the Maxwell distribution of Eq. (5).

Moreover, the cyclotron radius of an electron moving with
instantaneous velocity v is rc = v/ωc; in the regime of low
damping γ � ωc, we can neglect the effects of friction on the
electron orbits. This means that the contribution to Sx from
a circular orbit of constant radius rc is proportional to r2

c /2γ

[see the discussion following Eq. (3)], that is, it increases
quadratically with v. However, this conclusion applies only
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FIG. 3. (Color online) Trajectory samples of (a) |v|(t) and (b)
and (c) x(t) for kT /m = 0.02, γ = 10−3, d = 1, and ωc = 1 (black
curves) or B0 = 0 [red (gray) curves]. Shown in (c) is a blowup of
the trajectory portion marked by a rectangle in (b). The horizontal
dashed line in (a) represents 〈|v|〉 as computed from Eq. (7).

to electronic trajectories with centers located a distance not
smaller than rc away from the reflecting boundaries. Indeed,
when the electrons come too close to the boundaries, they
repeatedly bounce off the walls, so that their trajectories get
distorted [see Fig. 3(c)]. For an equilibrium distribution of
the electron velocities, this surely happens when their orbit
diameter is larger than half the strip width, 2rc > d/2.

In view of the preceding arguments, we assume for
simplicity that fast electrons with too large a cyclotron radius,
say, rc > d/4, do not contribute to the cyclotron peak, whereas
only a fraction 1 − 4rc/d of the slower electrons with rc

< d/4 do. On further noticing that from Eq. (5) the equilibrium
distribution of v is

ρ(v) = mv

kT
exp

(
−mv2

2kT

)
, (7)

we obtain the estimate for the amplitude of the cyclotron peak,

Sx(ωc) 
 (T̄ d)2

32γ

[
2 + e−(1/2T̄ 2) − 3

√
π

2
T̄ erf

(
1√
2T̄ 2

)]
,

(8)

where T̄ = 4
√

kT /m/dωc and erf(· · ·) denotes the standard
error function. Note that this estimate for Sx(ωc) system-
atically underestimates the corresponding simulation curve
as we neglected the residual contribution from electronic
orbits larger, but not much larger, than d/4. By numerically
evaluating Eq. (8), one concludes that both the resonance value
of the cyclotron peak Smax(ωc) and Tc grow quadratically
with d, namely, kTc/m 
 0.01(ωcd)2 and Smax(ωc) 
 2.8 ×
10−3d2/γ .

We also stress that the emergence of a resonant cyclotron
peak is not conditioned by the elastic boundary assumption.
Boundary randomness or fluctuations may indeed affect the
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residual contribution from large electronic orbits with rc >

d/4, but not the bulk contribution estimated in Eq. (8).

IV. DEPENDENCE ON GEOMETRY AND
BOUNDARY CONDITIONS

Next we numerically compute Sx(ωc) as a function of the
temperature for different geometries and boundary conditions
in order to demonstrate the robustness of the temperature
resonance of the cyclotron peak. We consider here five
confining setups for the 2D electron gas.

(i) Box with an internal semitransparent wall. We consider
a d × d square box, centered at the origin x = y = 0, and
containing a semitransparent internal wall x = h with |h| <

d/2, parallel to the y axis. The internal wall acts like a porous
filter letting charges pass through only if the x component of
their velocity vx is larger than a certain threshold velocity vc,
i.e., vx > vc. If vx � vc, the electrons are elastically reflected
back into their half box. We fix d = 12 and h = 0 and plot
in Fig. 4(a) the amplitude of the cyclotron peak as a function
of the scaled temperature kT /m for different values of the
threshold. For vc = 0 the compartment wall is transparent,
so that the effective width of the box is d, whereas for
vc > 5 the internal wall acts as an almost perfectly reflective
boundary, thus dividing the square box in two rectangular
compartments of width d/2. Despite the different geometries,
confined cyclotron orbits are confirmed to generate a resonant
temperature dependence of the electronic PSD, no matter what
vc is. Moreover, in agreement with our analytical discussion
of the infinite strip from Sec. III B, the optimal temperature Tc,
corresponding to the maxima of the plotted curves, diminishes
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FIG. 4. (Color online) Amplitude of the cyclotron peak Sx(ωc) as
a function of the scaled temperature kT /m for the different geometries
of Sec. IV as sketched. In all four panels ωc = 1 and γ = 1.66 × 10−3

[(a) and (b)] and 0.003 [(c) and (d)]. (a) Square box containing a
semitransparent wall x = h [case (i)]. The simulation parameters
are d = 12, h = 0, and threshold velocity vc as reported next to the
relevant data sets. (b) Infinite strip with semitransparent walls [case
(ii)]. The simulation parameters are d = 18 and vc as reported next
to the relevant data sets. (c) Annulus with reflective inner boundary
[case (iii)] with vc = ∞. The outer radius is kept constant, r1 = 9,
and the inner radius r2 varied as in the legend. (d) Same geometry
as in (c) but with constant inner radius r2 = 4.5 and semitransparent
inner wall with threshold velocity vc in the legend [case (iv)].

with d2 → d2/4 by a factor 4 on increasing vc from 0 to ∞
and thus halving the container width.

(ii) Infinite strip with semitransparent walls. Let us consider
the infinite strip of Sec. III A with the important difference that
now its parallel walls are semitransparent, as described in (i). If
vx � vc the electrons are contained in the strip; if vx > vc the
electrons exit one wall and reenter through the other one with
periodic boundary conditions. In Fig. 4(b) the peak amplitude
S(ωc) is plotted as a function of the temperature for different
values of the threshold. Since the boundaries are periodic
for vc = 0 and reflective for vc = ∞, here our approximate
estimate for S(ωc) from Sec. III B is expected to work well
only as vc → ∞. In this limit, Eq. (8) reproduces fairly closely
both Tc and Smax(ωc). In the opposite limit of purely periodic
boundary conditions, the cyclotron peak at resonance Smax(ωc)
gets enhanced, while Tc only weakly depends on vc.

(iii) Annulus with a reflecting inner wall and (iv) with
a semitransparent inner wall. Next we consider electrons
trapped in a circle with radius r1, which represents an ideal
reflecting boundary. The inner space is divided by a second
circle of radius r2, with r2 < r1, into two compartments.
The inner circle is concentric with the outer circle and its
circumference works as a semitransparent wall [case (iv)] with
threshold velocity vc (applied to the radial component of v).
The case (iii) of an ideal reflecting inner circle corresponds
to setting the threshold velocity vc = ∞ [see Fig. 4(c)]; the
gas is confined to an annulus. As one can anticipate from the
discussion in Sec. III B, the maximum of the cyclotron peak
Smax(ωc) decreases on increasing r2 [see Fig. 4(c)]. Corre-
spondingly, the optimal temperature Tc also decreases because
the width of the annulus shrinks. The dependence of the
resonant cyclotron effect on vc is illustrated in Fig. 4(d). The
effect is most pronounced in the case of a perfectly transparent
inner circle vc = 0. Indeed, lowering vc enlarges the surface
accessible to the cyclotron orbits of the confined electrons.
As suggested by Eq. (8), Tc and the maximum of S(ωc)
grow quadratically with the effective transverse dimensions
of the gas container; for the simulation parameters reported in
Fig. 4(d), this corresponds to an increase of both quantities by
a factor of about 4 as vc increases from 0 to ∞.

(v) Infinite strip with an internal semitransparent wall.
Finally, we show that by appropriately choosing the geometry
of the system, the cyclotron peak can go through two maxima
as a function of temperature. Such a double resonance was
found by inserting an internal wall, x = h with |h| < d/2,
of tunable threshold vc in the infinite strip of Sec. III A.
Our simulation results for a symmetric geometry with d =
12, h = 0, and different vc are displayed in Fig. 5(a). The
limiting regimes vc = 0 and vc → ∞ are reproduced well
by our approximate formula in Eq. (8). In the intermediate
regimes, say at vc = 2, the S(ωc) features two maxima. The
low temperature maximum is centered around the optimal
temperature T (∞)

c corresponding to a partitioned strip vc = ∞.
Most remarkably, the optimal temperature of the second
maximum on the right is systematically higher than the optimal
temperature T (0)

c of the unpartitioned strip vc = 0. Moreover,
such a double resonance could only be found for certain
combinations of vc and h/d, as shown in Fig. 5(b).

The occurrence of a double resonance can be explained by
noticing that for electrons with vx � vc the wall acts as an
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FIG. 5. (Color online) Amplitude of the cyclotron peak Sx(ωc)
as a function of the scaled temperature kT /m [case (v) of Sec. IV]
for ωc = 1 and γ = 1.66 × 10−3. (a) Infinite strip of width d = 12
with a semitransparent filter located at h = 0 and different thresholds
vc (in the legend). The curves of Eq. (8) for d = 12 (dashed) and 6
(dash-dotted) are reported for a comparison. (b) Same geometry as in
(a), but for vc = 2 and different h (in the legend).

effective partition. In Fig. 5(a), where h = 0, this corresponds
to splitting the strip into two equal strips of half width.
Correspondingly, the slow electrons trapped in either half strip
contribute a cyclotron peak that is the highest for T 
 T (∞)

c .
Fast electrons with vx > vc are free to move across the full
width of the strip so that the optimal temperature of their
cyclotron orbits ought to approach T (0)

c with T (0)
c 
 4T (∞)

c .
However, by taking a closer look at our derivation of Eq. (8),
it is apparent that in the case of fast electrons the lower limit
of the integral must be modified to account for the condition
vx > vc. As a consequence of the bell shaped profile of the
Maxwell distribution, such a modification of the integration
range moves the optimal value T̄c to appreciably higher values,
in agreement with Fig. 5.

V. CONCLUDING REMARKS

The temperature controlled resonance of the cyclotron
spectra, emerging from a matching between the system size
length d with the thermal electron gyroradius λ, becomes
detectable for a confined magnetized gas of charged particles
under two important conditions, summarized by the in-
equalities γ � ωc � ωp. The condition ωc � ωp, introduced
in Sec. II, required applying magnetic fields of relatively
low intensity. The underdamped regime γ � ωc was as-
sumed to enhance the cyclotron peak of the transverse PSD

Sx(ω) over its background. Both conditions can be met in
magnetoplasmas [1].

In normal metals the observation of the resonant cyclotron
effects reported here might seem impossible. At room tem-
perature typical values of the electron damping constant
are γ ∼ 1013 s−1 or larger, so an underdamped electron
dynamics would set in only for exceedingly large magnetic
fields [16]. A more promising realm for an experimental
demonstration of the effect under investigation is a 2D electron
gas, where mobility can be quite high, thus corresponding
to a small damping constant γ ∼ 109 s−1. A relatively low
magnetic field (of about 0.1 T) then would easily satisfy the
condition γ � ωc. However, since the plasma frequency ωp

of an unconstrained 2D electron gas tends to be very low,
artificial geometries should be implemented. Helpful in this
regard are two sets of recent experiments, which detected,
respectively, oscillations in the magnetoresistances of two-
dimensional lateral surface superlattices with square patterns
[17] and dynamical phase transitions between localized and
superdiffusive (or ballistic) regimes for paramagnetic colloidal
systems confined to magnetic bubble domains [18]. Both
results can be explained, in the semiclassical approximation,
as a commensurability effect between the cyclotron radius of
the magnetocharges and the spatial periodicity of the substrate,
without the need to invoke quantum mechanics.

We finally point out that the diffusion of confined mag-
netocharged particles is a topic of increasing interest beyond
solid state physics. In medical research, for instance, magnetic
nanostructures confined to 2D geometries are thought to offer
the most exciting avenues to nanobiomagnetic applications,
including targeted drug delivery, bioseparation, and cancer
therapy, even if their diffusion properties are not yet fully
controllable. The possibility of extending our analysis to
nanobiomagnetic processes at the cellular level requires ad-
vances on at least two issues. The first is diffusion of complex
magnetic materials. In biomedical applications, pointlike
magnetocharges are often replaced by synthetic magnetic
structures such as magnetic microdiscs with a spin-vortex
ground state [19]. The second is wall interactions. Contrary to
our simple model, the interactions between a magnetocharge
and cellular walls are typically inelastic, namely, characterized
by finite interaction times, energy transfer, and even structural
changes such as the activation on mechanosensitive ion
channels. Both issues are the subject of ongoing investigations
by research teams worldwide.
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