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Entropic particle transport: Higher-order corrections to the Fick-Jacobs diffusion equation
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Transport of point-size Brownian particles under the influence of a constant and uniform force field through
a planar three-dimensional channel with smoothly varying, axis-symmetric periodic side walls is investigated.
Here we employ an asymptotic analysis in the ratio between the difference of the widest and the most narrow
constriction divided through the period length of the channel geometry. We demonstrate that the leading-order
term is equivalent to the Fick-Jacobs approximation. By use of the higher-order corrections to the probability
density we show that in the diffusion-dominated regime the average transport velocity is obtained as the product
of the zeroth-order Fick-Jacobs result and the expectation value of the spatially dependent diffusion coefficient
D(x), which substitutes the constant diffusion coefficient in the common Fick-Jacobs equation. The analytic
findings are corroborated with the precise numerical results of a finite element calculation of the Smoluchowski
diffusive particle dynamics occurring in a reflection symmetric sinusoidal-shaped channel.
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I. INTRODUCTION

The transport of large molecules and small particles that
are geometrically confined within pores, channels, or other
quasi-one-dimensional systems has attracted attention in
the last decade. This activity stems from the profitableness
for shape and size selective catalysis, particle separation,
and the dynamical characterization of polymers during their
translocation [1–5]. In particular, the last theme, which aims at
the experimental determination of the structural properties
and the amino acid sequence in DNA or RNA when they pass
through narrow openings or so-called bottlenecks, comprises
challenges for technical developments of nanoscaled channel
structures [5–8].

Along with the progress of experimental techniques the
problem of particle transport through corrugated channel
structures containing narrow openings and bottlenecks has
given rise to recent theoretical activities to study diffusion
dynamics occurring in such geometries [1]. Previous studies
by Jacobs [9] and Zwanzig [10] ignited a revival of research
on this topic. The so-called Fick-Jacobs (FJ) approach
[9,10] accounts for the elimination of transverse stochastic
degrees of freedom by assuming a fast equilibration in those
transverse directions [9]. The theme found its application for
particle transport through periodic channel structures [11] and
designed single nanopores [12] exhibiting smoothly varying
side walls. Several aspects of driven motion in the presence of
applied external force fields and the quality of the FJ approach
in the presence of an applied force field in corrugated structures
has been the focus of recent studies [13–19].

Beyond the FJ approach, which is suitably applied to
channel geometries with smoothly varying side walls, there
exist yet other methods for describing the transport through
varying channel structures such as cylindrical septate channels
[20–22], tubes formed by spherical compartments [23,24], or
channels containing abrupt changes of cross diameters [25].
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Our objective with this work is to provide a systematic
treatment by using a series expansion in terms of a smallness
parameter that specifies the channel corrugation for biased
particle transport proceeding along a planar, three-dimensional
periodic, reflection-symmetric channel for which the original,
commonly employed (lowest-order) FJ approach fails because
of extreme bending of the channel’s side walls.

In Sec. II we introduce the model system: a Brownian
particle in a confined channel geometry with reflection
symmetric, irregular boundaries. The central findings, namely,
the analytic expressions for the probability density and the
average transport characteristics, are presented in Sec. III. In
Sec. IV we employ our analytical results to a specific channel
configuration consisting of sinusoidally varying side walls.
Section V summarizes our findings.

II. TRANSPORT IN CONFINED STRUCTURES

Generic mass transport through confined structures such as
irregular pores and channels occurs due to the combination
of molecular diffusion, as quantified by the molecular diffu-
sivity D and passive transport arising from either different
particle concentrations maintained at the ends of the channel,
an applied hydrodynamic velocity field, or an external,
force-generating potential U (x,y,z). Here we concentrate
on constant force-driven transport where particles of dilute
concentration (i.e., interaction effects can safely be neglected)
are subjected to a fixed external force with magnitude F

acting along the longitudinal direction of the channel ex , i.e.,
U (x,y,z) = −F x. The overdamped single Brownian particle
then budges in a planar, three-dimensional periodic channel
geometry of period L, constant height �H , and periodically
varying transverse width. A sketch of a segment of the channel
is depicted in Fig. 1. The shape of the side walls is described
by the two boundary functions ω±(x). As we restrict ourselves
to reflection-symmetric confinements in the y direction, we set
ω±(x) ≡ ±ω(x).

The evolution of the probability density P (q,t) of finding
the particle at the local position q = (x,y,z)T at time t is
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FIG. 1. Sketch of a segment of a reflection-symmetric sinu-
soidally varying channel that is confining the motion of the over-
damped, pointlike Brownian particle. The periodicity of the channel
structures is L, the height is �H , and the minimal and maximal
channel widths are �ω and ��, respectively. The size of a unit cell
is indicated with the dashed lines.

governed by the three-dimensional Smoluchowski equation
[26,27], i.e.,

∂tP (q,t) + ∇q · J (q,t) = 0, (1a)
where

J (q,t) = F

η
P (q,t) ex − kBT

η
∇q P (q,t) (1b)

is the probability current of the probability density P (q,t).
The force strength acting on the Brownian particle is denoted
by F , η is the friction coefficient, the Boltzmann constant is
kB , and T is the environmental temperature. Because of the
impenetrability of the channel walls the probability current
J (q,t) = (J x,J y,J z)T is subjected to the no-flux boundary
condition, reading

J (q,t) · n = 0, ∀q ∈ channel wall. (2)

Here n denotes the out-pointing normal vector at the channel
walls. The probability density satisfies the normalization
condition

∫
unit−cell P (q,t) d3q = 1 as well as the periodicity

condition P (x + m L,y,z,t) = P (x,y,z,t),∀m ∈ Z. In the
long-time limit the stationary probability density is defined as
Pst (q) := limt→∞ P (q,t). Analogously, the stationary proba-
bility current reads Jst (q) := limt→∞ J (q,t).

The key quantities of particle transport through such
periodic channels are the average particle velocity 〈q̇〉 and
the effective diffusivity Deff . The latter is given by

Deff = lim
t→∞

〈x2(t)〉 − 〈x(t)〉2

2t
(3)

and can be calculated by means of the stationary probability
density Pst (q) using an established method taken from
Ref. [28]. Once Pst(q) is known, the mean particle velocity
of Brownian particles can be computed by

〈q̇〉 ≡ lim
t→∞

〈q(t)〉
t

=
∫

unit−cell

Jst(q) d3q. (4)

We next introduce dimensionless variables. In doing so, we
measure longitudinal length and height as x = x/L and z =
z/L, respectively. For the rescaling of the y coordinate, we
introduce the dimensionless aspect parameter ε: This is the
difference of the widest cross section of the channel, i.e., ��,

and the most narrow constriction at the bottleneck, i.e., �ω, in
units of the period length, yielding

ε = (�� − �ω)

L
. (5)

In previous studies, the averaged half width [16,29,30] or the
ratio of an imposed anisotropy of the diffusion constants ε2 =
Dy/Dx [15,31] serves as expansion parameter. Contrarily
in this work, the dimensionless value of ε characterizes
the deviation of the boundary from the straight channel
corresponding to ε = 0. The choice of ε is motivated by
Ref. [13], where the authors have shown that the long-time
dynamics of Brownian particles, when equilibration in the
transverse direction is accomplished, is well described by the
FJ equation as long as the extension of the bulges of the channel
structures is small compared to the periodicity, i.e., ε 	 1.

Following the reasoning in Ref. [29], we next measure, for
the case of finite corrugation ε 
= 0, the transverse length y

in units of εL, i.e., y = εL y, and, likewise, the boundary
functions ω±(x) = εLh±(x). Time is measured in units of
τ = L2η/(kB T ), which is twice the time the particle requires
to overcome diffusively, at zero bias F = 0, the distance L, i.e.,
t = t/τ . The potential energy is rescaled by the thermal energy
kBT , i.e., for the considered situation with a constant force
component in the longitudinal direction: U = −Fx/(kBT ) =
−f x, with the dimensionless force magnitude [11,14]:

f = F L

kB T
. (6)

The dimensionless forcing parameter f characterizes the
ratio of the work F L done on the particle when dragged
by the constant force F along a distance of the period
length L divided by the thermal energy kBT . Note that for
an adjustment of a certain value of f in an experimental
setup one can modify either the force strength F or the
temperature T . After scaling the probability distribution reads
P

(
q,t

) = ε L3 P (q,t); respectively, the probability current is
given by J

(
q,t

) = τ L2 (εJ x,J y,εJ z)T . In the following we
shall omit the overbar in our notation.

In dimensionless units, the Smoluchowski equation [see
Eqs. (1)] reads

∂tP (q,t) + ∇q · J (q,t) = 0, (7a)

where ∇q = (
∂x,

1
ε
∂y,∂z

)T
and

J (q,t) = f P (q,t) ex − ∇q P (q,t) ,

= −e−U (q)∇q[eU (q) P (q,t)]. (7b)

At steady state, Eq. (7a) becomes

ε2∂xJ
x
st + ∂yJ

y
st + ε2∂zJ

z
st = 0. (8)

Planar three-dimensional channel structures composed of
two parallel horizontal layers in the z direction and two
perpendicular side walls are often found in experimental setups
for microfluidic devices [32–34]. We postulate that (1) the
dynamics in the z direction is decoupled from the dynamics in
the x and y directions and (2) the shape of the lower and upper
boundary depends neither on x nor on y. Consequently, the
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separation ansatz Pst (x,y,z) = pst(x,y) ζ (z) under consider-
ation of the boundary condition

J z
st = 0, at z = 0 and z = �H/L, (9)

results in a nontrivial solution for ζ (z) for J z
st (q) = 0 every-

where within the channel. For the considered situation, i.e.,
there is only a constant force acting in the x direction, the
form function ζ (z) equals the inverse of the dimensionless
channel height, i.e., ζ = L/�H . Note that the presented
separation technique can also be applied for more complex
forcing scenarios with an additional force component in the
z direction such as a gravitational or a buoyant force. Assuming
a general potential landscape U (x,y,z) = V (x,y) + W (z)
defined within the channel, the used separation ansatz for the
stationary solution results in

Pst(x,y,z) = pst(x,y)
e−W (z)∫ �H/L

0 dz e−W (z)
. (10)

Consequently, this allows a reduction of the problem’s dimen-
sionality from three dimensions to two dimensions:

ε2∂xJ
x
st+ ∂yJ

y
st = 0, (11)

where the transport of Brownian particles is delimited by
entropic barriers caused by geometrical confinements like the
bottlenecks of the channel structure. The two-dimensional
transport problem was investigated in symmetric [11,13,14,
29,35,36] as well as in asymmetric [15–17,25] channels. Note
that even in the case of a more general substrate potential given
by U (q) = V (x,y) + W (z), the two-dimensional problem
[Eq. (11)] does not depend on the potential W (z).

For the considered dimensionless channel geometry ±h (x)
the outward-pointing normal vector at the perpendicular side
walls is given by n = (−h′(x), ± 1,0

)T
/
√

1 + h′(x)2 with the
prime denoting the differentiation with respect to x. Therefore,
the no-flux boundary condition Eq. (2) can be written as

±ε2h′(x) J x
st = J

y
st , ∀y ∈ ±h(x). (12)

Finally, we define the marginal one-dimensional probability
density in the force direction pst(x) as follows:

pst (x) =
∫ h(x)

−h(x)
dy

∫ �H/L

0
dz Pst(x,y,z). (13)

III. ASYMPTOTIC ANALYSIS

We apply the asymptotic analysis [29–31] to the problem
stated by Eq. (11) and Eq. (12). In doing so, we use for the
stationary probability density pst (x,y) (the index st will be
omitted in the following) the ansatz

p(x,y) =
∞∑

n=0

ε2npn(x,y) (14)

and for the probability flux

J(x,y) =
∞∑

n=0

ε2nJn(x,y) (15)

in the form of a formal perturbation series in even orders of
the parameter ε. Substituting these expressions into Eq. (11),
we find

0 = ∂yJ
y

0 (x,y) +
∞∑

n=1

ε2n
[
∂xJ

x
n−1(x,y) + ∂yJ

y
n (x,y)

]
,

(16a)
and the no-flux boundary condition at the channel walls y =
±h(x) [Eq. (12)] turns into

0 = −J
y

0 (x,y) +
∞∑

n=1

ε2n[±h
′
(x)J x

n−1(x,y) − J y
n (x,y)].

(16b)

Each order pn has to obey the periodic boundary condi-
tion pn(x + m,y) = pn(x,y),∀m ∈ Z, and p(x,y) has to be
normalized for every value of ε.

Consequently, the average particle velocity is given by

〈ẋ〉 = 〈ẋ〉0 +
∞∑

n=1

ε2n
[
f 〈pn(x,y)〉x,y − 〈∂xpn(x,y)〉x,y

]
.

(17)

In Eq. (17) the average of an arbitrary function k(x,y) is
defined as the integral over the cross section in y and over
one period divided by the period length, which is one in the
considered scaling, i.e., 〈k(x,y)〉x,y = ∫ 1

0 dx
∫ h(x)
−h(x) dy k(x,y).

In Sec. III A we demonstrate that the zeroth order of the
perturbation series expansion coincides with the FJ equation
[9,10]. Referring to Refs. [11,37] an expression for the average
velocity 〈ẋ〉0 is known. Moreover, in Sec. III B the higher-order
corrections to the probability density are derived. Using those
results we are able to obtain corrections (see Sec. III C) to the
average velocity beyond the zeroth-order FJ approximation
presented in the next section.

A. Zeroth order: The Fick-Jacobs equation

For the zeroth order, Eqs. (16) read

∂yJ
y

0 (x,y) = −∂y

(
e−V ∂y

(
eV p0(x,y)

)) = 0, (18a)

supplemented with the corresponding no-flux boundary con-
dition

J
y

0 (x,y) = 0,∀y ∈ wall. (18b)

Consequently,

p0(x,y) = g(x) e−V (x,y), (19)

where g(x) is an unknown function which has to be determined
from the second-order O

(
ε2

)
balance given by Eq. (16a):

0 = ∂x(e−V g′(x)) + ∂y(e−V ∂y(eV p1(x,y))). (20)

Integrating the latter over the cross section in y:

0 = ∂x

(∫ h(x)

−h(x)
dy e−V (x,y)g′(x)

)
+ h′(x)J x

0 [x, − h(x)]

+h′(x)J x
0 [x,h(x)] − J

y

1 [x,h(x)] + J
y

1 [x, − h(x)],

(21)
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and taking the no-flux boundary conditions Eq. (16b) into
account, one obtains

0 = ∂x

(
e−A(x)g′(x)

)
, (22)

where the effective potential A(x) is explicitly given by

e−A(x) =
∫ h(x)

−h(x)
dy e−V (x,y). (23)

For the problem at hand, i.e., for V (x,y) = −f x, as well for
potentials where x enters only linearly and where x is not mul-
tiplicative coupled to the other spatial coordinates [36,38,39],
the stationary probability density within the zeroth order
reads

p0(x,y) = e−V (x,y)g(x) = e−V (x,y)
∫ x+1
x

eA(x ′)dx ′∫ 1
0 dxe−A(x)

∫ x+1
x

eA(x ′)dx ′
.

(24)

Moreover, the marginal probability density Eq. (13) becomes

p0(x) = e−A(x) g(x). (25)

Expressing next g(x) by p0(x) [see Eq. (22)] then yields the
celebrated stationary FJ equation

0 = ∂x

(
e−A(x)∂x

[
eA(x) p0(x)

])
(26)

derived previously in Refs. [9,10,40]. Thus, we find the result
that the leading-order term of the asymptotic analysis is
equivalent to the FJ equation.

Note that the above presented derivation of the FJ equation
is limited neither to reflection symmetric channel geometries
[15–17] nor to the particularly chosen external potential:
V (x,y) = −f x [36,38,39,41]. Further, the differential equa-
tion determining the unknown function g(x) [see Eq. (22)] is
the same for the dynamics of a Brownian particle evolving
in an energetic potential Ven(x,y) leading to a confinement
in the y direction, with the natural boundary conditions
J

y
n (x,y = ±∞) = 0 [10,42]. Therefore, in zeroth order and

for the given scaling, an appropriately chosen confining en-
ergetic potential Ven(x,y) obeying

∫ ∞
−∞ dy exp[−Ven(x,y)] =∫ h(x)

−h(x) dy exp[−V (x,y)] results in the same transport charac-
teristics as those induced by the confining channel with the
boundary functions h±(x) [43,44].

The average particle current is calculated by integrating the
probability flux J x

0 over the unit cell [37,45]

〈ẋ(f )〉0 =
∫ 1

0
dx

∫ h(x)

−h(x)
dy J x

0 (x,y)

= 1 − e−f∫ 1
0 dx e−A(x)

∫ x+1
x

eA(x ′) dx ′
. (27)

In the spirit of linear response theory, the mobility in units
of the free mobility 1/η is defined by the ratio of the mean
particle current Eq. (27) and the applied force f , yielding

η μ0 (f ) = 〈ẋ(f )〉0

f
. (28)

In general, the stationary probability density of finding an
overdamped Brownian particle budging in a two-dimensional

periodic geometry is sufficiently described by Eq. (26) as long
as the extension of the bulges of the channel structures is small
compared to the periodicity, i.e., ε 	 1. We next address the
higher-order corrections pn(x,y) of the probability density,
which become necessary for more winding structures.

B. Higher-order contributions to the Fick-Jacob equation

According to Eq. (16a), one needs to iteratively solve

∂2
ypn(x,y) = Lpn−1(x,y), n � 1, (29)

in consideration of the boundary condition [Eq. (16b)]. In
Eq. (29) we make use of the operator L, reading L =(
f ∂x − ∂2

x

)
. Applied n times this yields the expression

Ln =
n∑

k=0

(
n

k

)
(−1)k f n−k ∂ n+k

∂ xn+k
. (30)

Each solution of the second-order partial differential equation
[Eq. (29)] possesses two integration constants dn,1 and dn,2.
The first, dn,1, is determined by the no-flux boundary condition
Eq. (16b), while the second provides the normalization condi-
tion 〈p(x,y)〉x,y = 1. In what follows we use the normalization
constant of the probability density p(x,y) via the zeroth order
〈p0(x,y)〉. As a consequence, we have

〈p0(x,y)〉x,y =
∫ 1

0
dx

∫ h(x)

−h(x)
dy p0(x,y) = 1, (31a)

〈pn(x,y)〉x,y = 0, ∀n � 1, (31b)

with the constraint that∫ h(x)

−h(x)
dy pn(x,y) 
= 0, ∀n � 1, (31c)

in order to prevent that the marginal probability density
[Eq. (13)] equals the FJ results [see Eq. (25)] for an arbitrary
value of ε, i.e., p(x) = p0(x). Further, we have to emphasize
that the centered functions

pn(x,y) �−→ pn (x,y) − 〈pn (x,y)〉
〈p (x,y)〉 , for n � 1, (32)

are not probability densities anymore because they can assume
negative values for a given x and y. The calculation of the
average particle velocity [Eq. (17)] simplifies to

〈ẋ〉 = 〈ẋ〉0 −
∞∑

n=1

ε2n 〈∂xpn(x,y)〉x,y . (33)

We find that the average particle current (1) is composed of
the FJ result 〈ẋ〉0 [see Eq. (27)] and (2) becomes corrected
by the sum of the averaged derivatives of the higher orders
pn(x,y). One immediately notices that the second integration
constant dn,2 does not influence the result for the average
particle velocity [Eq. (33)].

For the first-order correction, the determining equation is

∂2
yp1(x,y) = Lp0(x,y) = 〈ẋ〉0

2
∂x

(
1

h(x)

)
, (34)
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and after integrating twice over y, we obtain

p1(x,y) = −〈ẋ〉0

2

(
h′(x)

h2(x)

)
y2

2!
. (35)

Hereby, as previously required above, the first integration
constant d1,1(x) is set to 0 in order to fulfill the no-flux bound-
ary condition, and the second must provide the normalization
condition [Eq. (31b)], i.e., d1,2 = 0. Consequently, the first
correction to the probability density becomes positive if the
confinement is constricting, i.e., for h′(x) < 0 and 〈ẋ〉0 
= 0.
In contrast, the probability density becomes less in unbolting
regions of the confinement, i.e., for h′(x) > 0. Note that the
first-order correction scales linearly with the average particle
current 〈ẋ〉0. Overall the break of spatial symmetry observed
within numerical simulations in previous works [13,41] is
reproduced by this very first-order correction. Particularly,
with increasing forcing, the probability for finding a particle
close to the constricting part of the confinement increases; see
Refs. [13,41].

Upon recursively solving, we obtain for the higher-order
corrections n � 1 as

pn (x,y) = Lnp0(x,y)
y2n

2n!
+ dn,2

+
n∑

k=1

Ln−kdk,1(x)
|y|2(n−k)+1

(2 (n − k) + 1)!
, (36)

with the integration constants for the nth order reading

dn,1(x) = −1

2
∂x

(∫ h(x)

−h(x)
dy J x

n−1 (x,y)

)
, (37a)

dn,2 = −
(∫ 1

0
dx

n∑
k=1

h2(n−k)+2

(2 (n − k) + 2)!
Ln−kdk,1(x)

+
∫ 1

0
dx Lnp0(x,y)

h2n+1

(2n + 1)!

)/∫ 1

0
dx h(x).

(37b)

Note that for the considered case of an axis-symmetric
channel, with respect to the y axis, each correction term
pn(x,y) results in a first contribution involving even powers
in y only and, in addition, of a sum over odd powers
of |y|.

The stationary probability density p(x,y) is obtained
by summing all correction terms pn(x,y) [see Eq. (14)].
Accordingly, all terms with odd powers |y|2k+1, k ∈ N, vanish
identically because these are proportional to

∑∞
n=1 ε2ndn,1 =

−ε2∂x

(∫ h(x)
−h(x) dy J x (x,y)

)
/2. The latter expression equals

zero in the stationary case [see Eq. (11)]. Consequently, the
stationary probability density simplifies to read

p(x,y) = p0(x,y) +
∞∑

n=1

ε2n

(
Lnp0(x,y)

y2n

(2n)!
+ dn,2

)
.

(38)

Because Lp0(x,y) ∝ 〈ẋ(f )〉0, the two-dimensional prob-
ability density equals the zeroth-order contribution

p(x,y) = p0(x,y) = const. for all values of ε for the case that
the external force f = 0.

The presented derivation of p(x,y) is valid here only for an
axis-symmetric channel where no transverse potential force is
acting on the particles, i.e., ∂yV (x,y) = 0.

Further, according to Eq. (33), it follows that the average
particle current scales with the average particle current
obtained from the FJ formalism 〈ẋ〉0 for all values of ε. In
the following, we derive an expression for the mean particle
current based on the above presented perturbation series
expansion for the stationary probability density p(x,y).

C. Corrections to the mean particle velocity

In Sec. III A, we could show that the dynamics of
Brownian particles in confined structures can be described
approximatively by the FJ equation [see Eq. (26)]. Zwanzig
[10] obtained this one-dimensional equation from the full
two-dimensional Smoluchowski equation upon eliminating
the transverse degree of freedom. This approximation neglects
the influence of relaxation dynamics in the transverse direction,
supposing that it is infinitely fast. In a more detailed view, we
must notice that diffusing particles pile up, or miss, at the
curved wall if the channel is getting narrower or wider as they
can flow out from or toward the wall in the y direction only at
finite time. These effects are described by the higher expansion
orders pn(x,y) presented in Eq. (36).

Next we derive an estimate for the mean particle current
〈ẋ(f )〉 based on the higher expansion orders pn(x,y). Refer-
ring to Eq. (33), the average particle current (1) is composed
of the FJ result 〈ẋ〉0 [see Eq. (27)] and (2) becomes corrected
by the sum of the averaged derivatives of the higher orders
pn(x,y). Consequently, it plays no role whether one uses the
original expansion terms defined by Eq. (16a) or the centered
ones, given by Eq. (32).

Burada et al. [13] have presented a validity criteria for the
FJ approach. They have shown that the critical value of the
force magnitude up to which the FJ equation holds depends on
1/ε2. Here we are mainly interested in the effect of winding
structures on the average velocity, and thus we concentrate on
the limit |f | 	 1. Then the n-times-applied operator L [see
Eq. (30)] simplifies to Ln = (−1)n ∂ 2 n

∂ x2 n . Similar to the authors
of Ref. [15], we make the ansatz that all but the first derivative
of the boundary function h(x) are negligible. Then the partial
derivative of pn(x,y) simplifies to

∂xpn(x,y) = 〈ẋ〉0 (−1)n+1 (h′)2n

2 h2n+1
y2n + O(h′′(x)). (39)

Integrating the latter over the channel’s width, inserting the
result into Eq. (33), and calculating the sum over ε2 yields our
main finding:

lim
f →0

〈ẋ(f )〉 � lim
f →0

〈ẋ(f )〉0

〈
arctan

(
εh′(x)

)
εh′(x)

〉
x

. (40)

There the average is taken over one period, which is one in
the considered scaling, i.e., 〈·〉x = ∫ 1

0 · dx. In Eq. (40), we
identify arctan

(
εh′(x)

)
/εh′(x) with the spatially dependent
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diffusion coefficient D(x) derived by Kalinay and Percus [15]
for two-dimensional channel geometries:

lim
f →0

〈ẋ(f )〉 = lim
f →0

〈ẋ(f )〉0 〈D(x)〉x + O
(
h′′(x)

)
. (41)

In the diffusion-dominated regime, the average transport
velocity is therefore obtained as the product of the zeroth-order
FJ result and the expectation value of the spatially dependent
diffusion coefficient 〈D(x)〉. In the Appendix, we derive the
expression for the spatially dependent diffusion constant based
on the above presented perturbation series expansion in the
average slope parameter ε.

In the linear response limit, i.e., for |f | 	 1, the
Sutherland-Einstein relation emerges [46,47] and reads in
dimensionless units

lim
f →0

μ(f ) = lim
f →0

Deff(f ). (42)

Thus, the effective diffusion coefficient Deff is determined
by the mobility μ = limf →0 〈ẋ(f )〉 /f . Consequently, if the
average current 〈ẋ(f )〉0 [or the effective diffusion coefficient
D0

eff(f )] are known in the zeroth order, the higher-order
corrections to both quantities can be obtained according to
Eq. (41).

IV. APPLICATION OF THE THEORY TO A
SINUSOIDALLY SHAPED CHANNEL

In this section we validate the obtained analytic predictions
[Eq. (41)] with precise numerical simulations concerning one
single pointlike Brownian particle moving with a corrugated
sinusoidally shaped geometry [13,14]. The dimensionless
boundary function h(x) reads

h± (x) = ±h(x) = ±1

4

(
1 + δ

1 − δ
+ sin (2π x)

)
(43)

and is illustrated in Fig. 1. Note that in absence of the scaling
each channel geometry is determined by the period L, the
maximum width ��, and the width at the bottleneck �ω.
Upon scaling all lengths are measured in units of the period L.
Consequently the parameter δ� denotes the ratio of the
maximum width �� and the period L, namely, δ� = ��/L.
Equivalently, it holds that δω = �ω/L. Within this scaling the
period of the channel equals one.

In addition, one notices that the dimensionless boundary
function h(x) is solely governed by the aspect ratio of the
minimal and maximal channel width δ = δω/δ�. Obviously
different realizations of channel geometries can possess the
same value of δ. The number of orders have to taken into
account in the perturbation series [Eq. (14)]; respectively,
the applicability of the Fick-Jacob approach to the problem
depends only on the value of the slope parameter ε =
δ� (1 − δ) for a given aspect ratio δ. For clarity, the impact of
the maximum δ� and minimum width δω on the expansion
parameter ε and on the aspect ratio δ, respectively, is illustrated
in Fig. 2.

According to the Sutherland-Einstein relation [Eq. (42)]
the mobility equals the effective diffusion coefficient (in
the dimensionless units) for f 	 1 [46]. Consequently, it
is sufficient to discuss the behavior of the mobility μ(f ).
Referring to Sec. III C, the higher-order corrections to the

mobility are given by the product of the FJ result and
the expectation value of the spatially dependent diffusion
coefficient D(x) [see Eq. (41)].

First, we obtain the mobility μ0 within the zeroth-order
(FJ approximation). In the diffusion-dominated regime, the
analytic expression for the mobility within the FJ approach [see
Eqs. (27) and (28)] simplifies to the Lifson-Jackson formula
[13,48]:

μ0 := lim
f →0

μ0(f ) = 1

〈h(x)〉
〈

1
h(x)

〉 = lim
f →0

Deff(f ). (44)

For the exemplarily considered channel geometry [Eq. (43)]
the mobility attains the asymptotic value

lim
f →0

μ0(f ) = 2
√

δ

1 + δ
= 2

√
1 − ε/δ�

2 − ε/δ�
. (45)

One notices that in the diffusion-dominated regime, |f | 	 1,
the mobility of one single particle is determined only by the
geometry, more precisely by the aspect ratio δ. In the limit of
vanishing bottleneck width, i.e., δ → 0, the mobility tends to
0. In contrast, for straight channels corresponding to δ = 1,
i.e., ε = 0, the mobility equals its free value, which is one in
the considered scaling.

Evaluating the period-averaged value of D(x), i.e., consid-
ering all higher-order corrections apart from than scaling with
higher derivatives of the boundary function h(x), we obtain
from Eq. (41)

μ : = lim
f →0

μ(f ) = μ0 〈D(x)〉

= 4
√

1 − ε/δ�

2 − ε/δ�

asinh (πε/2)

π ε
(46)

for the mobility μ and the effective diffusion coefficient Deff

in units of its free values, respectively.
In Fig. 3 we depict the dependence of the μ(f ) (triangles)

and Deff(f ) (circles) on the slope parameter ε for f = 10−3.
The numerical results are obtained by solving the stationary

0.01

0.1

1

10

δω

0.1 0.2 0.5 1 2 5 10

δΩ

δ = 1 ,
ε = 0

δ = 0.5

δ = 0.2
5

ε = 0.1 ε = 1 ε = 5

FIG. 2. (Color online) Schematic sketch of the dependence of the
expansion parameter ε = δ� − δω and the aspect ratio δ = δω/δ�

on the maximum width δ�; respectively, the width at the bottleneck
δω in units of the period L. The dashed lines correspond to δ =
1,0.5,0.25 (from above), and the colored areas illustrate pairs of
(δ�,δω), where ε � 0.1 (blue, circles), ε � 1 (red, triangles), ε �
5 (green, dots), and ε > 5 (yellow, plus signs).
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0
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,
D

e
ff
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ε/δΩ
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δΩ = 1
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FIG. 3. (Color online) Comparison of the analytic theory versus
precise numerics (in dimensionless units): The mobility and the
effective diffusion constant for a Brownian particle moving inside a
channel confinement are depicted as function of the ratio of slope
parameter ε and maximal channel width δ� for different values
δ� = 0.1,1,2,5 and bias f = 10−3 (corresponding to the diffusion-
dominated regime). The symbols correspond to the numerical
obtained mobility (triangles) and the effective diffusion coefficient
(circles). The lines correspond to analytic higher-order results; see
Eq. (46). The zeroth-order FJ results given by Eq. (45) collapse to a
single curve hidden by the solid line.

Smoluchowski equation [Eq. (1a)] using the finite-element
method [49] and subsequently calculating the average particle
current [Eq. (4)]. In order to determine the effective diffusion
coefficient Deff(f ), one has to solve numerically the reaction-
diffusion equation for the B-field [28,29]. Note that the
numerical results for the effective diffusion coefficient Deff(f )
and the mobility μ(f ) coincide for all values of ε, thus
corroborating the Sutherland-Einstein relation. In addition, the
FJ result, given by Eq. (45), and the higher-order result [see
Eq. (46)] are depicted in Fig. 3.

For the case of smoothly varying channel geometry, i.e.,
δ� 	 1, the analytic expressions are in excellent agreement
with the numerics, indicating the applicability of the FJ
approach. As long as the extension of the bulges of the channel
structures is small compared to the periodicity, sufficiently
fast transversal equilibration, which serves as a fundamental
ingredient for the validity of the FJ approximation, is taking
place. In virtue of Eq. (5), the slope parameter is defined by
ε = δ� − δω, and hence the maximal value of ε equals δ�;
see Fig. 2. Consequently the influence of the higher expansion
orders ε2n 〈∂xpn(x,y)〉 on the average velocity [Eq. (33)] and
mobility, respectively, becomes negligible if the maximum
channel’s width δ� is small.

With increasing maximum width the difference between the
FJ result and the numerics is growing. Specifically, the FJ ap-
proximation resulting in Eq. (45) overestimates the mobility μ

and the effective diffusion coefficient Deff . The higher-order
corrections need to be included and consequently provide a
good agreement for a wide range of ε values for maximum
widths δ� on the scale to the length of the channel, i.e., δ� ∼
1; see the dotted line in Fig. 3. Further increasing the maximum
width δ� diminishes the range of applicability of the derived
higher-order corrections. This is due to the neglect of the higher
derivatives of the boundary function h(x). Put differently, the
higher derivatives of h(x) become significant for δ� � 1.

V. SUMMARY AND CONCLUSION

In summary, we have considered the transport of point-
sized Brownian particles under the influence of a constant
and uniform force field through a planar three-dimensional,
axis-symmetric channel. The latter exhibits a constant height
and periodically varying side walls.

We have presented a systematic treatment of particle trans-
port by using a series expansion of the stationary probability
density in terms of a smallness parameter that specifies the
corrugation of the channel walls. In particular, it turns out that
the leading-order term of the series expansion is equivalent
to the well-established Fick-Jacobs approach [9,10]. The
higher-order corrections to the probability density become
significant for extreme bending of the channel’s side walls.
Analytic results for each order of the perturbation series have
been derived. Interestingly, within the presented perturbation
theory, all higher-order corrections to the stationary probability
distribution and the average particle current scale with the
average particle current obtained from the FJ formalism.
Accordingly, in the linear response regime, i.e., for small
forcing |f | 	 1, the mean particle velocity is then given
by the product of the average particle current obtained from
the FJ formalism and the expectation value of the spatially
dependent diffusion coefficient D(x). Moreover, due to the
Sutherland-Einstein relation, the above statement also holds
good for the effective diffusion coefficient.

Finally, we have applied our analytic results to a specific
example, namely, the particle transport through a channel
with sinusoidally varying side walls. We corroborate our
theoretical predictions for the mobility and the effective
diffusion coefficient with precise numerical results of a
finite-element calculation of the stationary Smoluchowski
equation. Moreover, by using the higher-order corrections we
present an alternative derivation for the spatially dependent
diffusion coefficient D(x), which substitutes the constant dif-
fusion coefficient present in the common FJ equation based on
assumptions similar to those suggested by Kalinay and Percus.

In conclusion, the consideration of the higher-order correc-
tions leads to a substantial improvement of the FJ approach,
which corresponds to the zeroth order in our perturbation
analysis, toward more winding side walls of the channel.
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APPENDIX: SPATIALLY DEPENDENT DIFFUSION
COEFFICIENT D(x)

Below we present an alternatively derivation for the
spatially dependent diffusion coefficient D(x), which was
previously derived by Kalinay and Percus (KP) [15,17].
The concept of D(x) was introduced by Zwanzig [10] and
subsequently supported by the study of Reguera and Rubi [40].
Zwanzig obtained the FJ equation [see Eq. (26)] from the full
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two-dimensional Smoluchowski equation upon eliminating
the transverse degree of freedom supposing infinitely fast
relaxation.

The first systematically treatment taking the finite diffusion
time into account was presented by Kalinay and Percus
[15,17]. Their suggested mapping procedure enables the
derivation of higher-order corrections in terms of an expansion
parameter ε2

KP, which is the ratio of the diffusion constants
in the longitudinal and transverse directions. The projection
technique based on an imposed anisotropy in the diffusion
equation which is equivalent to scaling the transverse lengths
by εKP [31]. Within this scaling, the fast transverse modes
(transients) separate from the slow longitudinal ones and can
be projected out by integration over the transverse directions.
KP suggested an operator procedure mapping the solutions
of the corrected FJ equation back onto the space of solutions
of the original two-dimensional problem. The resulting re-
currence scheme provides systematical corrections to the FJ
equation [17].

In the spirit of KP, we determine the spatially dependent
diffusion coefficient D(x) based on the presented results for the
perturbation series expansion [see Eq. (38)]. Reguera and Rubi
[40] derived the corrected stationary FJ equation within the
framework of mesoscopic nonequilibrium thermodynamics:

0 = −∂xJ
x(x) = ∂

∂ x

[
D (x) e−A(x) ∂

∂ x
(eA(x)p (x))

]
. (A1)

In the limit of small force strengths, i.e., for |f | 	 1,
diffusion is the dominating process. Integrating the two-
dimensional stationary Smoluchowski equation [Eq. (11)]
over the cross section in y, and taking the no-flux boundary
condition [Eq. (12)] into account, one derives an alternative

definition of the marginal probability current J x(x), equivalent
to Eq. (A1):

−J x(x) = D (x) h(x)∂x

(
p (x)

h(x)

)

=
∫ h(x)

−h(x)
∂xp(x,y) dy. (A2)

The second equality determines the sought-after spatially
dependent diffusion coefficient D(x). Note that D(x) is solely
determined by derivatives of p(x,y) and p(x). Hence, it plays
no role whether one uses the original expansion terms defined
by Eq. (16a) or the centered ones, given by Eq. (32). In
compliance with Ref. [15], we make the ansatz that all but the
first derivative of the boundary function h(x) are negligible.
Moreover, in the limit |f | 	 1, the n-times-applied operator
L [see Eq. (30)] simplifies to Ln = (−1)n ∂ 2 n

∂ x2 n , yielding

∂xL
np0(x,y) = 〈ẋ〉0 (−1)n+1(2n)!

(h′)2n

2 h2n+1
+ O[h′′(x)]. (A3)

Inserting the probability densities into Eq. (A2), one finds that

D(x) =
∞∑

n=0

ε2n (−1)n
(h′)2n

2n + 1
+ O[h′′(x)]

� arctan
(
εh′(x)

)
εh′(x)

(A4)

for the spatially dependent diffusion coefficient D(x) in the
diffusion-dominated regime, i.e., for |f | 	 1. Note that in
contrast to KP we concentrate on the stationary process, which
is, in fact, the only state necessary for deriving D(x). Following
KP’s argumentation, we derive the identical result for D(x)
avoiding their presented operator algebra.
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