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Over the last years, there has been a steadily growing interest in
nonlinear systems in which the nonlinear coupling can induce phenomena
such as a Hopf bifurcation, bistable behavior or chaos®. Here our focus
will be on nonlinear, noisy optical systems which either undergo a con-
tinuous Hopf bifurcation or which exhibit bistability. The control para-
merters may also be subject to fluctuations. Using the standard assump-
tion that those fluctuations evolve on an entirely different time scale,
one usually approximates the noise by white (Gaussian) fluctuations.
Typical examples are the treatments of the single mode laser? or a dye
laser at threshold ¥ . Above threshold, the whole matter can complicate
considerably. In particular, it has been realized recently that finite
noise correlation effects, e.g. in pump laser fluctuations * or in noisy
external driving fields can p1a¥ a crucial role. Because optical systems
which do exhibit bistability °°® are particularly sensitive to the de-
tails of the noise properties , as is manifested by the exponential sup-
pression of probability of the locally unstable state , they are ideal
to put to a critical test the various different theories and approxima-
tion schemes.

First, let us briefly summarize the present theoretical status for
Gaussian white noise (Fokker-Planck Eqs.) and white shot noise (Master
Egs.). Some interesting recent results are:

(i) For Master equations with nearest neighbor transitions
(one-photon transitions) and Master equations with both
one-step and two-step transitions (i.e. two-photon tran-
sitions) it is possible to derive exact analytical results
for the stationary probability and mean first passage times’.

(i1) There exists a novel Fokker-Planck approximation to the long-
time dynamics of Master equations yielding identical sta-
tionary probabilities and escape rates ®

(iii) A truncated Kramers-Moyal approximation (at 2-nd order) to
a given Master equation overestimates exponentially the
escape rates °»3,
In presence of colored noise, the system is generally no longer readily

tractable %, As the archetype of a bistable system which is driven by
correlated Gaussian noise, we consider witha >0 , b > 0 , the flow :
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X =ax - bx*+E(t) , <g(Des)> = D/t exp-|t-s|/x (1)

Recently, we have investigated (1) more closely 1°. We have found that
the usual approximation schemes which expand around the Markovian theory
(for the details see in Ref. 10a) converge non-uniformly and give in this
case exponentially wrong results for the stationary probability p(x;t)
at small but finite noise correlation time t .(Ref. 10a). A novel non-
linear approximation scheme has been proposed in Ref. 10b,which gives
results which are in close agreement with measured values of sojourn
times or escape rates (for figures see in Ref. 10a and 10b). With weak
noise, the colored noise activation rates over the barrier of eq. (1)
are estimated as :

a

r(t) = exp - A ¢ (t,0)/D, (2a)

T

where ( < x2> : D-dependent and t-dependent stationary 2-nd mean)
az

A ¢(t,D) = {1 + t(3b<x* -a)1} > ¢(t=0,D)

(2b)
Thus, the rate r(t) is predicted to undergo an exponential decrease with
increasing noise correlation time t. Recent experiments for the sojourn
time ( inverse of the rate ) confirm this feature (see Fig. 1).
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Fig. 1: Experiment (a), typical realization (b) and Arrhenius factor .

A ¢ for the system in eq. (1) (a= 10%*sec™® , b = 10*sec”1V-2), taken
from Ref. 10b. triangles: D=0.212;squares: D=0.153;full circles: D=0.114;
open circles: D=0.083 .

Likewise,we considered the model by Graham and Schenzlel! for the
complex-valued transmitted field, £ = x + iy , in optical , dispersive
bistability with cavity detuning y and atomic detuning &§. The results
are : :
(i) For white Gaussian noise and vy = & { no detailed balance:) we

obtain analytic results for the switching rates , both for the
Arrhenius factor and the prefactor!2.For y=6=0 (pure absorptive
case) one recovers the Kramers rate (in dimension d = 2) .
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(ii) Next we represent the fluctuations of the external, driving laser
field more realistically with correlated Gaussian noise.Then we
can model the long-time dynamics with a novel Fokker-Planck Eq.”b
which contains t-induced cross-diffusion terms and nonequal dia-
gonal diffusion strengths;i.e. D_.(t) #D, (). For y=6 > 0,

~ we again succed in obtaining ana¥§tic resu{¥s for the colored
noise Arrhenius factor and the colored noise prefactor. The rates

are - again exponentially suppressed over the white Gaussian noise
results of Ref. 12.

(iii) For pure absorptive bistability (y=6=0) we find that the transi-

tion rates for the transmitted amplitude A = ( x2 + y?)? ,under-
go an exponential suppression like in (2) with an Arrhenius
factor ( A ¢WG - White Gaussian noise result derived in Ref. 12)

8¢ (1) =8 ¢pye {1+ (1 +@2[(Thay?>-cx?>)/ (T4<x?> + <y?>)2])}
(3)

with @2 denoting the cooperativity parameter 11s12,
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