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Influence of measurements on the statistics of work performed on a quantum system
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The recently demonstrated robustness of fluctuation theorems against measurements [M. Campisi, P. Talkner,
and P. Hänggi, Phys. Rev. Lett. 105, 140601 (2010).] does not imply that the probability distributions of
nonequilibrium quantities, such as heat and work, remain unaffected. We determine the impact of measurements
that are performed during a running force protocol on the characteristic function of work. The results are illustrated
by means of the Landau-Zener(-Stückelberg-Majorana) model. In the limit of continuous measurements the
quantum Zeno effect suppresses any unitary dynamics. It is demonstrated that the characteristic function of work
is the same as for an adiabatic protocol when the continuously measured quantity coincides with the Hamiltonian
governing the unitary dynamics of the system in the absence of measurements.
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I. INTRODUCTION

The Jarzynski equality and the fluctuation theorems are gen-
eral and surprisingly robust exact relations of nonequilibrium
thermodynamics. The validity of these relations was rigorously
established irrespective of the speed of the externally applied
forcing protocol for driven classical [1–3] and quantum
systems [4,5], staying either in complete isolation or in weak
[6] or even strong contact with an environment [7,8]. See also
the reviews in Refs. [9] and [10] and references therein. In
this work we will focus on the Tasaki-Crooks work fluctuation
theorem, reading

pF (w)

pB(−w)
= eβ(w−�F ), (1)

where pF (w) is the probability density function (pdf) of
work performed by a forcing protocol denoted as λt . This
forcing acts on the system between the times t = 0 and t = τ .
Accordingly, pB (w) is the pdf of work performed on the system
when the backward (B) protocol λτ−t describes the forcing of
the system. The forward and backward processes start in the
Gibbs equilibrium states at the same inverse temperature β

and at the initial parameter values λ0 and λτ , respectively. The
free-energy difference between these two states is denoted by
�F .

In the derivations [4,5] of the quantum work fluctuation
theorem, Eq. (1), the energy of the system is measured at times
t = 0 and t = τ , and the work w is determined by the differ-
ence of the obtained eigenvalues. Recently, we showed that
the Tasaki-Crooks work fluctuation theorem, Eq. (1), as well
as other quantum fluctuation theorems, remain unaffected for
scenarios other than this two-measurement scheme: The ratio
of forward and backward pdf’s in Eq. (1) stays unaltered even
if further projective quantum measurements of any sequence
of arbitrary observables are performed while the protocol is
in action [11]. In Sec. II we provide an alternative proof
of this result, based on the calculation of the characteristic
function of work of a driven quantum system whose dynamics
is interrupted by projective quantum measurements.

Based on the fact that the process of measurement of
a quantum system is rather invasive due to the collapse of
the wave function, it has been argued [11,12] that, although
the value of the ratio of backward and forward pdf’s in

Eq. (1) remains unchanged, additional measurements affect
the values of the individual work pdfs. One must expect
that, in a driven-measured quantum system, the work done
is not only determined by the interaction with the manipulated
external field λ, but also by the measurements themselves,
which are physically realized by a measurement apparatus. In
Sec. III we calculate the statistics of work in a prototypical
model of driven quantum system, namely, the Landau-Zener
(-Stückelberg-Majorana) [13–16] model, and illustrate how
it is influenced by projective quantum measurements. We
will also draw the attention on interesting features related to
the quantum Zeno effect appearing when the measurements
become very frequent. As we will see, if the observable that is
measured at time t is the Hamiltonian H (t), then in the Zeno
limit the work characteristic function approaches the same
expression as for an adiabatic protocol with no intermediate
measurements.

Section IV closes the paper with some concluding remarks.

II. FLUCTUATION THEOREMS FOR DRIVEN-
MEASURED QUANTUM SYSTEMS

We consider a quantum system that, in the time span [0,τ ],
is thermally isolated, and interacts with the external world only
through a mechanical coupling to a time-dependent external
force field and a measurement apparatus. The information
regarding this interaction is encoded in a protocol which we
denote as

σ = {H (λt ),(ti ,Ai)}. (2)

It specifies (a) the system Hamiltonian H (λt ) at each time t

in terms of the external forces λt , and (b) the times ti ∈ (0,τ ),
i = 1, . . . ,N , at which measurements of the observables Ai

occur. For the sake of simplicity, in the following we will
adopt the notation H (t) for H (λt ). As in the two-measurement
scheme [4,5] of the Tasaki-Crooks theorem, we assume that,
besides the N intermediate measurements of A1, . . . ,AN , the
energies determined by H (0) and H (τ ) are measured at times
t0 = 0 and tf = τ . For simplicity we then set f = N + 1 and

A0 = H (0), Af = H (τ ). (3)
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The remaining observables, A1, . . . ,AN , represented by
Hermitean operators are required to have discrete spectra, but
otherwise can be chosen arbitrarily.

For times t � 0 the system is assumed to stay in the Gibbs
thermal state at inverse temperature β:

ρ
β

0 = e−βH (0)/Z0, (4)

where

Z0 = Tr e−βH (0) (5)

is the canonical partition function.
We denote the orthogonal eigenprojectors of the observable

Ai by �i
k . These satisfy the eigenvalue equations

Ai�
i
k = αi

k�
i
k, (6)

where αi
k are the eigenvalues of Ai . Hence, with the above

choice of the first and last measured observables, α0
k and α

f

k

represent the instantaneous eigenenergies of the system at t =
0 and t = τ , respectively.

In the following we compute the conditional probability
pσ (m,τ |n,0) to find the eigenvalue α

f
m obtained in the last

measurement at time τ , provided that the eigenvalue α0
n was

the result of the first measurement, under those conditions
that are specified by the protocol σ . We begin our discussion
considering only one intermediate measurement (N = 1) of
the observable A1.

According to the von Neumann postulates, immediately
after the eigenvalue α0

n is measured at t = 0, the system density
matrix becomes

ρn(0+) = �0
nρ

β

0 �0
n/pn, (7)

where

pn = Tr �0
nρ

β

0 /Z0 = e−βα0
n/Z0 (8)

is the probability to find the system initially in the state with
energy α0

n. Since we assumed that the system is thermally
isolated, it subsequently evolves until time t1 according to the
unitary time evolution Ut1,0 that is governed by the Schrödinger
equation,

ih̄∂tUt,0 = H (t)Ut,0, U0,0 = 1. (9)

Thus, immediately before the measurement of A1, occurring
at t1, the density matrix is

ρn(t−1 ) = Ut1,0ρn(0+)U †
t1,0

, (10)

and the subsequent measurement projects it into

ρn(t+1 ) =
∑

r

�1
rUt1,0ρn(0+)U †

t1,0
�1

r . (11)

Likewise, just before the measurement of Af = H (τ ) at
time τ , the density matrix becomes

ρn(τ−) = Uτ,t1ρn(t+1 )U †
τ,t1 , (12)

and the probability that the outcome of the measurement of
Af = H (τ ) at time τ is α

f
m is

pσ (m,τ |n,0) = Tr �f
mUτ,t1ρn(t+1 )U †

τ,t1 . (13)

Finally, the pdf of work w, Pσ (w), is obtained as the sum
of the joint probabilities pσ (m,τ |n,0)pn restricted to

w = αf
m − α0

n, (14)

and hence becomes

Pσ (w) =
∑
n,m

δ
[
w − αf

m − α0
n

]
pσ (m,τ |n,0)pn. (15)

A. The characteristic function of work

Next we focus on the characteristic function of work Gσ (u),
given by the Fourier transform of the work pdf Pσ (w):

Gσ (u) =
∫

dw Pσ (w)eiuw. (16)

Substituting (15) into (16) we obtain for the characteristic
function

Gσ (u) =
∑
m,n

eiu[αf
m−α0

n]pσ (m,τ |n,0)e−βα0
n/Z0

=
∑
m,n,r

eiu[αf
m−α0

n]Tr �f
mUτ,t1�

1
rUt1,0�

0
n

× ρ
β

0 �0
nU

†
t1,0

�1
rU

†
τ,t1

=
∑

r

Tr eiuH (τ )Uτ,t1�
1
rUt1,0e

−iuH (0)ρ
β

0 U
†
t1,0

�1
rU

†
τ,t1

= Tr[eiuH (τ )]σ e−iuH (0)ρ
β

0 , (17)

where [X]σ denotes the time evolution of an operator X

from t = 0 to t = τ in the presence of the protocol σ , which
implies a unitary evolution governed by H (t) interrupted by a
measurement of an observable A1 at time t = t1. It takes the
form

[X]σ =
∑

r

U
†
t1,0

�1
rU

†
τ,t1XUτ,t1�

1
rUt1,0, N = 1. (18)

In the case of a protocol σ containing N interrupting
measurements, the formal expression of the characteristic
function is the same as for one interrupting measurement,
Eq. (17), with the time evolution [X]σ given by

[X]σ =
∑

r1...rN

U
†
t1,0

�1
r1
U

†
t2,t1�

2
r2

· · ·

· · · U †
tN ,tN−1

�N
rN

U
†
τ,tN XUτ,tN �N

rN
UtN ,tN−1 · · ·

· · · �2
r2
Ut2,t1�

1
r1
Ut1,0. (19)

B. The Jarzynski equality

Putting u = iβ, one recovers the Jarzynski equality

Gσ (iβ) = 〈e−βw〉σ = Tr[e−βH (τ )]σ eβH (0)ρ
β

0

= Z−1
0 Tr[e−βH (τ )]σ

= Z−1
0 Tr e−βH (τ ) = Zf /Z0 = e−β�F , (20)

because Tr[X]σ = Tr X for any trace class operator X [17].
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This follows from the cyclic invariance of the trace, the
unitarity relation U

†
t,sUt,s = 1, and the completeness of the

projection operators
∑

r �i
r = 1. Here Zf = Tr e−βH (τ ) de-

notes the partition function of the Gibbs state at the initial
temperature and final parameter values,

ρ
β

f = e−βH (τ )/Zf , (21)

and �F = β−1 ln Z0/Zf is the difference of the free energies
of the thermal equilibrium states ρ

β

f and ρ
β

0 .
The symbol 〈·〉σ denotes an average with respect to the

work pdf Pσ (w). Equation (20) says that the Jarzynski equality
holds irrespective of the details of the interaction protocol σ .
Independent of the number and nature of the measured
observables as well as strength, speed, and functional form
of the driving force, the average exponentiated work is solely
determined by the free-energy difference [8].

C. The work fluctuation theorem

Besides the Jarzynski equality, also the Tasaki-Crooks
theorem is robust under repeated quantum measurements.
In the presence of many intermediate measurements it
reads

Pσ (w) = Pσ̃ (−w)eβ(w−�F ), (22)

where the tilde (σ̃ ) indicates the temporal inversion of the
protocol σ , that is,

σ̃ = {H (τ − t),(τ − ti ,Ai)}. (23)

Hence, σ̃ specifies the succession of force values and
measurements in the reversed order, specifically with
the measurement of the observables Ai at times τ − ti .
In particular, it implies that at time t = 0, the ob-
servable Af = H (τ ), and at time t = τ , the observable
A0 = H (0) are measured. Accordingly, the initial state of
the backward process is given by the Gibbs state ρ

β

f ,
Eq. (21), i.e., the system is at equilibrium with inverse
temperature β and force value λτ .

Equation (22) holds under the assumptions that both H (t)
and Ai commute with the quantum-mechanical antiunitary
time-reversal operator � [18]. That is, for all t ∈ [0,τ ], and
i = 0, . . . ,f , we assume

H (t)� = �H (t), (24)

Ai� = �Ai . (25)

We prove Eq. (22) for the simplest case of a sin-
gle intermediate measurement, N = 1. The generalization
to many measurements is straightforward. From Eq. (17)
we have

Gσ (u) = Tr
∑

r

U
†
t1,0

�1
rU

†
τ,t1e

iuH (τ )

×Uτ,t1�
1
rUt1,0e

i(iβ−u)H (0)/Z0. (26)

Introducing the notation Ũt ′,t for the time evolution governed
by H̃ (t) ≡ H (τ − t), the backward characteristic function of

work can be written as

Gσ̃ (u) = Tr
∑

r

Ũ
†
τ−t1,0

�1
r Ũ

†
τ,τ−t1

eiuH̃ (τ )

× Ũτ,τ−t1�
1
r Ũτ−t1,0e

−iuH̃ (0)e−βH (τ )/Zf

= Tr
∑

r

�
[
�†Ũ †

τ−t1,0
��†�1

r��†Ũ †
τ,τ−t1

�

×�†eiuH̃ (τ )��†Ũτ,τ−t1��†�1
r�

×�†Ũτ−t1,0��†e−i(u−iβ)H̃ (0)�
]
�†/Zf , (27)

where we used the antiunitarity ��† = 1. From Eq. (25) it
follows that all eigenprojection operators commute with the
time-reversal operator, i.e., �1

r� = ��1
r . The time-reversal

invariance, expressed by Eq. (24), implies �†esH (t)� = es∗H (t)

for any C-number s. Further, microreversibility of driven
systems [10,19] implies

�†Ũτ−t,0� = Ut,τ ,
(28)

�†Ũτ,τ−t� = U0,t .

Using these relations and recalling that for any trace class
operator X, Tr �X�† = Tr X†, one ends up with

Gσ̃ (u) = Tr
∑

r

ei(iβ−u)H (τ )Uτ,t1�
1
rUt1,0

× eiuH (0)U
†
t1,0

�1
rU

†
τ,t1/Zf . (29)

By comparison with Eq. (26), we finally find

Zf Gσ̃ (iβ − u) = Z0Gσ (u), (30)

hence, by means of an inverse Fourier transform the searched
fluctuation theorem (22).

We thus have proved that the fluctuation theorem of
Tasaki-Crooks remains unchanged if, additionally to the
measurements of energy at time t = 0 and t = τ , intermediate
measurements of time-reversal invariant observables Ai are
performed at times ti , provided the order of measurements in
the backward protocol is properly changed in accordance with
the corresponding times τ − ti .

III. EXAMPLE

As mentioned in the Introduction, one expects mea-
surements to strongly influence the pdf of work, although
the Jarzynski equality and the Tasaki-Crooks relation are
insensitive to intermediate measurements. To illustrate this
point in more detail, we consider the example of the Landau-
Zener(-Stückelberg-Majorana) [13–16] model described by
the Hamiltonian

H (t) = vt

2
σz + �σx. (31)

It governs the dynamics of a two-level quantum system whose
energy separation, vt , varies linearly in time, and whose states
are coupled via the interaction energy �. Here, σx and σz

denote Pauli matrices.
The Landau-Zener model is one of the few time-dependent

quantum-mechanical problems that have an analytic solution.
The elements of the 2 × 2 unitary time evolution matrix Ut,s
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can be expressed in terms of parabolic cylinder functions [20].
The instantaneous eigenvalues of H (t) are

Et
n = (n − 1/2)

√
v2t2 + 4�2, n = 0,1. (32)

Since these energies are symmetric with respect to an inversion
about t = 0 we choose the initial and final times t0 and tf as
−τ/2 and τ/2, respectively, instead of 0 and τ , as in the
previous discussion.

Figure 1(a) depicts the survival probability p1(0,τ/2|0, −
τ/2) as a function of the instant t1 of a single intermediate
measurement of H (t1) for positive times t1 and fixed length τ

of the protocol. As an even function of t1, this also specifies
p1(0,τ/2|0, − τ/2) for negative t1. The straight horizontal
line shows the value of the survival probability p(0,τ/2|0, −
τ/2) without intermediate measurement. It is obvious that
the intermediate measurement in general alters the survival
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FIG. 1. (Color online) Survival probability of the Landau-Zener
system, Eq. (31), interrupted by measurements. (a) Survival proba-
bility as a function of the time t1 of a single energy measurement
of H (t1). The parameter values are τ = 20h̄/�, v = 5�2/h̄. The
horizontal line is the survival probability p(0, − τ/2|0,τ/2) with no
intermediate measurements. (b) Survival probability as a function of
the number N of equally spaced intermediate measurements of H (t).
The parameter values are τ = 20h̄/�, v = 5�2/h̄ (black circles),
and τ = 10h̄/�, v = 20�2/h̄ (red triangles). Inset: The survival
probabilities approach the value 1 in the Zeno limit.

probability thus affecting the work pdf. For example, the
average work,

〈w〉 = 2E
τ/2
1 tanh

[
βE

τ/2
1

]
[1 − p(0,τ/2|0, − τ/2)], (33)

evidently changes when p(0,τ/2|0, − τ/2) is replaced by
p1(0,τ/2|0, − τ/2). The same can be said for the standard
deviation of work that reads

〈�w2〉 = (
2E

τ/2
1

)2
[1 − p(0,τ/2|0, − τ/2)] − 〈w〉2. (34)

Notably, the introduction of an intermediate measurement may
lower the average work.

Figure 1(b) shows the N dependence of the survival proba-
bility pN (0,τ/2|0, − τ/2) for N equally spaced intermediate
measurements of H (t), and two sets of model parameters.
Oscillatory behavior is observed for small values of N , while
as N increases the asymptotic value 1 is approached (see the
inset). When the measurement frequency is high enough, the
unitary dynamics between subsequent measurements becomes
increasingly suppressed until the dynamics is completely
frozen, and consequently the survival probability reaches the
asymptotic value 1 for N → ∞. This phenomenon is known
as the quantum Zeno effect [21–24]. We investigate it further
in the following section.

A. Quantum Zeno effect

To formally elucidate the quantum Zeno effect observed in
this particular example, and under more general conditions as
well, we analyze the form of the characteristic function given
by Eq. (17) in the limit of infinitely many measurements of
energy. We approach this limit by considering a finite number
of N intermediate measurements of energy that take place at
equally spaced instants,

tk = t0 + kε, k = 1, . . . ,N, (35)

where ε = (tf − t0)/(N + 1) denotes the time elapsing be-
tween two subsequent measurements. We denote the corre-
sponding protocol with the symbol ν, that is,

ν = {H (t),[tk,H (tk)]}. (36)

Since we are interested in the limiting case of infinitely many
measurements, we may choose N sufficiently large such that
the Hamiltonian between two subsequent measurements can
safely be approximated by its value at the later measurement,
i.e., H (t) ≈ H (tk) for t ∈ (tk−1,tk) with tk = t0 + kε being the
instant of the kth measurement. The time evolution within such
a short period then becomes

Utk,tk−1 � e−iH (tk )ε/h̄ . (37)

According to Eq. (19) the time evolution U
†
tk ,tk−1

acts on
the projection operator �rk

(tk), resulting in the phase factor
eiαrk

(tk )ε/h̄ while the complex-conjugate phase factor is obtained
from the product �rk

(tk)Utk,tk−1 , which appears to the right of
the operator X. In slight deviation from our previous notation,
Eq. (6), we denote the eigenvalues of Ak = H (tk) by αr (tk)
and the respective projection operators by �r (tk). Hence,
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these phase factors cancel each other and one obtains for the
ν-propagated exponential operator X = eiuH (τ ) the expression

[eiuH (τ )]ν =
∑

r1,r2,...rN

�r1 (t1)�r2 (t2) · · ·

×�rN
(tN )eiuH (τ )�rN

(tN ) · · ·
×�r2 (t2)�r1 (t1). (38)

Assuming first that H (t) is nondegenerate at any time t ∈
(t0,tf ), all projection operators are of the one-dimensional
form, �rk

(tk) = |ψrk
(tk)〉〈ψrk

(tk)|, with instantaneous eigen-
functions |ψrk

(tk)〉 of the Hamiltonian H (tk). The labeling of
the instantaneous eigenstates can be arranged in such a way
that the eigenvalues αk(t) are continuous functions of time.
In other words, each adiabatic energy branch is labeled by an
index r . The scalar products of eigenfunctions at neighboring
times then deviate from a Kronecker delta by terms of the
order ε2, which consequently can be neglected, i.e., states on
different adiabatic energy branches at neighboring times are
almost orthogonal:

〈ψrk
(tk)|ψrk+1 (tk+1)〉 = δrk,rk+1 + O(ε2). (39)

Herewith the left-hand side of Eq. (38) simplifies to read in
the limit of infinitely many dense measurements

[eiuH (τ )]ν =
∑

r

|ψr (t0)〉〈ψr (tf )|eiuH (tf )|ψr (tf )〉〈ψr (t0)|.

(40)

For the generating function this yields

G∞
ν (u) =

∑
r

eiu[αr (tf )−αr (t0)]e−βαr (t0)/Z0. (41)

We therefore find that in the Zeno limit the characteristic
function of work and accordingly the pdf of work coincide with
the respective expressions obtained for an adiabatic protocol
in the absence of any intermediate measurement.

The same line of reasoning also applies for the case that an
observable that does not change in time is repeatedly measured,
i.e., for a protocol

μ = {H (t),(tk,A)}. (42)

For such an observable A with eigenprojection operators �r ,
one then obtains in the Zeno limit for the characteristic function

G∞
μ (u) = Tr

∑
r

(
�re

iuH (tf )�r

)
e−iuH (t0)e−βH (t0)/Z0. (43)

1. Landau-Zener

In the case of the Landau-Zener problem studied in the
previous section, Eq. (31), the eigenvalues on each adiabatic
branch coincide at the beginning and the end of the protocol,
and therefore the coefficients of u in the exponential terms on
the right-hand side of Eq. (41) vanish, leading to

G∞
ν (u) = 1. (44)

This leads to the expected result that under permanent
observation of the Hamiltonian no work is done, i.e.,

P ∞
ν (w) = δ(w). (45)

The Zeno effect sets in when the measurement frequency
is so large that any unitary evolution within the time leaps
between two subsequent measurements can be neglected,
hence for ε

√
v2τ 2/4 + 4�/h̄ � 1, or equivalently if N 

τ
√

v2τ 2/4 + 4�/h̄. With the parameters used in Fig. 1(b),
the Zeno effect sets in for N  103, as shown in the inset of
Fig. 1(b).

In the case of degeneracy, Eq. (41) continues to hold if
the instantaneous energy branches are labeled such that the
corresponding instantaneous eigenvalues smoothly vary along
each branch. For the Landau-Zener problem a degeneracy
happens at t = 0 if the coupling strength � vanishes. One
then finds the characteristic function

G∞
ν (u) = cosh[(β + 2iu)vτ/2]

cosh(βvτ/2)
[� = 0], (46)

yielding, for the pdf of work,

P ∞
ν (w) = p−δ(w − vτ ) + p+δ(w + vτ ) [� = 0], (47)

where p± = e∓βvτ/2/[2 cosh(βτ/2)] denote the thermal pop-
ulations of the ground and the excited states at the initial time
t = −τ/2, respectively.

In the case of continuous measurement of the
Pauli operators σi , i = x,y,z, the driving-measurement
protocols are

μi = {H (t),(tk,σi)}, i = x,y,z. (48)

The characteristic functions of work then become

G∞
μx

(u)=1

2

(
1 − �2

q2

)
(p−e2iqu + p+e−2iqu) + 1

2

(
1 + �2

q2

)
,

G∞
μy

(u) = 1

2
(p−e2iqu + p+e−2iqu + 1), (49)

G∞
μz

(u)=1

2

(
1 + �2

q2

)
(p−e2iqu + p+e−2iqu) + 1

2

(
1 − �2

q2

)
,

where p± denotes the populations of the excited and the ground
states of the initial Hamiltonian, respectively, given by

p± = e∓βq/(eβq + e−βq ), (50)

with

q =
√

(vτ/4)2 + �2 . (51)

The work pdf follows then, by means of an inverse Fourier
transform, to read

p∞
μx

= 1

2

(
1 − �2

q2

)
[p−δ(w − 2q) + p+δ(w + 2q)]

+ 1

2

(
1 + �2

q2

)
δ(w),

p∞
μy

= 1

2
[p−δ(w − 2q) + p+δ(w + 2q) + δ(w)], (52)

p∞
μz

= 1

2

(
1 + �2

q2

)
[p−δ(w − 2q) + p+δ(w + 2q)]

+ 1

2

(
1 − �2

q2

)
δ(w).
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IV. DISCUSSION

We provided an alternative proof of the robustness of the
Tasaki-Crooks fluctuation theorem against repeated measure-
ments [11]. The present proof, however, is more general
in regard to the fact that it allows for possibly degenerate
eigenvalues of the measured observables. Further, it was found
that the characteristic function of work assumes the form of
a quantum two-time correlation function of the exponentiated
initial Hamiltonian, and the exponentiated final Hamiltonian
in the Heisenberg picture generated by the unitary evolution
interrupted by quantum collapses.

Our proof keeps holding also if quantum measurements
are done with respect to positive operator-valued measures
(POVMs) [25] which are less invasive than those described
by von Neumann projection-valued measures. For the case of
measurements with respect to a POVM,∑

r

MrM
†
r = 1, (53)

the interrupted evolution [X]σ is obtained from Eq. (19), with
the projection operators �r on the left-hand side of X being
replaced by the weak measurement operators Mr , and those to
the right of X by the adjoint operators M

†
r . Due to Eq. (53),

Tr[X]σ = Tr X continues to hold, implying the validity of the
Tasaki-Crooks relation, Eq. (22), for weak measurement of
time-reversal invariant observables with Mk� = �Mk.

In proving Eq. (22) we assumed that the Hamiltonian and
the measured observables commute with the time-reversal
operator. This assumption may be relaxed and the Tasaki-
Crooks fluctuation theorem continues to hold if the backward
protocol is defined as

σ̃ = {�H (τ − t)�†,(τ − ti ,�Ai�
†)}. (54)

Notwithstanding the robustness of the Tasaki-Crooks the-
orem, we found, in accordance with the intuitive expectation,
that the interruption of the dynamics of a driven quantum sys-
tem by means of projective measurements alters the statistics
of work performed on the system. We illustrated the influence

of measurements on the work distribution by the example of
the Landau-Zener(-Stückelberg-Majorana) model. We noticed
that, depending on the positions in time or frequency of one or
more interrupting measurements, the average work 〈w〉 may
be lowered (Fig. 1).

Schmiedl et al. [26] studied the problem of designing
optimal protocols that minimize the average work spent during
the forcing, without considering intermediate measurements.
In order to further minimize the average work, one might
expand the optimization parameter space and include the
possibility of performing intermediate measurements. This
opens for the possibility of a much greater control over the
energy flow into the system.

In the limit of very frequent measurements the unitary
dynamics becomes completely suppressed due to the quantum
Zeno effect. If at each measurement time the instantaneous
Hamiltonian is measured, then in the Zeno limit the work
characteristic function approaches the same form that it would
assume if the protocol was adiabatic.

The result of an intermediate measurement may be used
to alter the subsequent force protocol. In this way a feedback
control can be implemented for classical [27] as well as for
quantum systems [12]. In both cases the Jarzynski equality
only holds in a modified form.

Landau-Zener dynamics and frequent quantum measure-
ments of a two-level system coupled to a thermal bath were
recently shown to provide efficient means for quantum-state
preparation [28] and purification [29], respectively. These
are crucial prerequisites for the implementation of work-
ing quantum computers. The combined study of dissipative
Landau-Zener dynamics with frequent observations could
unveil unique practical methods for quantum-state control and
manipulation.
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