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The effect of intrinsic channel noise is investigated for the dynamic response of a neuronal cell with a
delayed feedback loop. The loop is based on the so-called autapse phenomenon in which dendrites establish
connections not only to neighboring cells but also to its own axon. The biophysical modeling is achieved in
terms of a stochastic Hodgkin-Huxley model containing such a built in delayed feedback. The fluctuations stem
from intrinsic channel noise, being caused by the stochastic nature of the gating dynamics of ion channels. The
influence of the delayed stimulus is systematically analyzed with respect to the coupling parameter and the
delay time in terms of the interspike interval histograms and the average interspike interval. The delayed
feedback manifests itself in the occurrence of bursting and a rich multimodal interspike interval distribution,
exhibiting a delay-induced reduction in the spontaneous spiking activity at characteristic frequencies. More-
over, a specific frequency-locking mechanism is detected for the mean interspike interval.
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I. INTRODUCTION

Time-delayed feedback is a common mechanism relevant
in many biological system including excitable gene regula-
tory circuits �1� and human balance �2�. It has been investi-
gated not only in biological systems, but also in a wider area:
this includes but is not limited to semiconductor superlattices
�3�, chemical oscillators �CO oxidation on platinum� �4�, and
photosensitive Oregonator models �5�. These types of sys-
tems have been formulated mathematically in terms of recur-
rent models �6,7�. Recurrent connections introduce delayed
feedback loops which may dramatically change the dynamic
behavior of the system. It is known that delayed feedback
presents an efficient method to control chaos or turbulence
via stabilizing the unstable periodic orbits embedded in the
chaotic attractor �8�. Feedback can be used to stabilize peri-
odic orbits �4� or to control the coherence resonance �3,9,10�;
the latter has also been studied experimentally for bistable
system with delayed feedback �11�.

Over the past decades, neurobiologists found out that ax-
ons propagate the neuron’s electrical signal to other neurons
and may sometimes feedback to the same neuron’s dendrites
�12–15�. These autosynapses which establish a time-delayed
feedback mechanism on a cellular level are called autapses
and were described by Van der Loos and Glaser in 1972 �16�.
Since the discovery of such autapse in pyramidal cells in the
cerebral neocortex, they were found in about 80% of all ana-
lyzed neurons including neurons of the human brain �17�.
However, what functional significance they offer in the neu-
ral systems is still not fully understood, as the autapses ex-
hibit a broad range of delay time scales: these range from a
few milliseconds to tenths of milliseconds �7�.

It was established that delayed feedback can induce burst-
ing �10�. Its role for coding and processing of information in
the brain has been evidenced experimentally for a variety of
neural systems. However, the mechanisms leading to burst-
ing are still open to debate; in particular the presence of
noise is expected to play a key role.

Within this work we aim to contribute to this objective by
considering the influence of intrinsic noise. It has been dem-

onstrated that noise leads to nontrivial effects in neuronal
dynamics �18�. Some typical examples are stochastic reso-
nance phenomena �19–22�, coherence resonance �23–26�,
and dynamical synchronization phenomena �27–30�. In our
situation there occurs an intrinsic source of noise which is
due to the stochastic gating of ion channels, i.e., the so-called
channel noise. The latter is inherently coupled to the proper-
ties of the axonal cell membrane and a priori cannot be
neglected �31�. Interestingly, this intrinsic noise affects the
neuronal signaling at different levels: it was shown that it
may control the occurrence of spontaneous action potentials,
can improve the output of signal quality �21�, and may also
account for the reliability of propagation �32�, to name but a
few.

The paper is organized as follows: in Sec. II we present
the biophysical model. It is given in terms of a stochastic
Hodgkin-Huxley model containing a time-delayed feedback
current. In Sec. III we discuss the repetitive firing that occurs
for the deterministic dynamics �i.e., in absence of noise� of
this Hodgkin-Huxley model with delayed feedback. The sto-
chastic dynamics are addressed in Sec. IV. Finally, we
present our conclusions in Sec. V.

II. MODEL SETUP

In 1952, Hodgkin and Huxley proposed an archetypical
model for cell excitability and signal transmission along the
axon of a neuronal cell �33�. They postulated a set of con-
tinuous parallel pathways for the passage of the ionic and
capacitive currents to represent the electrical properties of
the neuronal cell membrane. The Hodgkin-Huxley model is
widely regarded as a milestone achievement in biophysics
and especially in electrophysiology. Its applicability was ex-
tended to more complex systems beyond the originally stud-
ied excitability of the squid giant axon. Experimental evi-
dence of the channel noise has resulted in stochastic
generalizations of the Hodgkin-Huxley model by considering
the stochastic dynamics of the ion channel gating �34�. These
generalizations allow for microscopic modeling of the occur-
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rence of spontaneous spiking and the phenomenon of bio-
logical stochastic resonance �20�. In this context, it was
shown recently that channel noise improves the reliability for
signal transmission along neuronal axons �32�.

We mathematically model the delayed feedback induced
by an autapse �sketched in Fig. 1� by a feedback mechanism
within a Hodgkin-Huxley model of the type put forward by
Pyragas �35�. By an additional pathway in the dynamics of
the membrane potential we consider the autapse leading to a
delayed stimulus I��t�. Particularly, we consider an excitable
dynamics for the membrane potential V�t�, reading

C
dV�t�

dt
= − n4�t�gK

max�V�t� − VK� − gL�V�t� − VL�

− m3�t�h�t�gNa
max�V�t� − VNa� + I��t� , �1�

wherein the autaptic delayed stimulus,

I��t� = � �V�t − �� − V�t�� , �2�

is proportional to the difference of the membrane potential at
time t and that at an earlier time t−�. Here, � corresponds to
the coupling strength of the autapse mechanism, and the fi-
nite delay time � refers to the specific time delay caused by
the autapse which is due to a finite signal propagation speed.
The delay time � is representing the elapsed time associated
with the axonal propagation prior to the signal recurring onto
the neuron; V�t−�� is the membrane potential at the earlier
time t−�.

The autaptic delayed stimulus in Eq. �2� results in an ex-
citatory coupling mechanism in which spiking of a cell at an
earlier time t−� favors the initiation of a spiking event of the
same cell at time t. We note that the ansatz for the delayed
self-stimulus corresponds to electrotonic interaction, i.e., we
consider an idealized situation wherein the autaptic delayed
stimulus is proportional to the difference of the presynaptic
and postsynaptic membrane potentials. Moreover, as au-
tapses are typically formed by chemical synapses, our mod-
eling simulates the complex biophysical temporal evolution
of the synaptic conductance by invoking a constant coupling
strength �.

In Eq. �1�, C denotes the membrane capacitance, V�t� is
the time-dependent membrane potential, VL is the leakage
potential, and VK and VNa are the reversal potentials for the
potassium and sodium currents. The leakage conductance is
given by gL, and the potassium and sodium maximum con-
ductances read gK

max and gNa
max, respectively. The functions

m�t�, n�t�, and h�t� in Eq. �1� denote the so-called stochastic
gating variables �see below�, describing the mean fraction of
open gates of the sodium and potassium channels at time t.
The typical values of parameters in our numerical simulation
are those of the original Hodgkin-Huxley model �33�, i.e.,
C=1 �F /cm2, gNa

max=120 mS /cm2, gK
max=36 mS /cm2,

gL=0.3 mS /cm2, VK=−77 mV, VNa=50 mV, and
VL=−54.4 mV. The stochastic dynamics of the gating vari-
ables m�t�, n�t�, and h�t� depend on the voltage-dependent
opening and closing rates �i�V� and �i�V� �i=m ,h ,n�, which
read �33�

�m�V� =
0.1�V + 40�

1 − exp�− �V + 40�/10�
, �3a�

�m�V� = 4 exp�− �V + 65�/18� , �3b�

�h�V� = 0.07 exp�− �V + 65�/20� , �3c�

�h�V� =
1

1 + exp�− �V + 35�/10�
, �3d�

�n�V� =
0.01�V + 55�

1 − exp�− �V + 55�/10�
, �3e�

�n�V� = 0.125 exp�− �V + 65�/80� . �3f�

The resulting stochastic dynamics is then modeled by a
Fokker-Planck-type dynamics for the individual gates. Spe-
cifically, this dynamics emerges within a large system size
expansion of the underlying Markovian master-equation dy-
namics for the dynamics of the number of open gates
�31,36�. This so obtained Langevin dynamics is then inter-
preted in the Itô sense, reading explicitly

di

dt
= �i�V��1 − i� − �i�V�i + �i�t� , �4�

with i=m ,h ,n. Here, �i�t� �i=m ,h ,n� denotes independent
Gaussian white noise sources with vanishing mean and au-
tocorrelation functions:

��m�t��m�t��� =
�1 − m��m + m�m

NNa
��t − t�� , �5a�

��h�t��h�t��� =
�1 − h��h + h�h

NNa
��t − t�� , �5b�

��n�t��n�t��� =
�1 − n��n + n�n

NK
��t − t�� . �5c�

Note that the noise strengths are determined by the num-
bers of potassium and sodium channels, NK and NNa.
Throughout this work we assume constant ion channel den-
sities, i.e., following the original Hodgkin-Huxley model we
use 18 for potassium and 60 for sodium channels per �m2

�33�. An integration step 	t=0.001 ms was used in the
simulations, and for the generation of the Gaussian distrib-
uted random numbers, the Box-Muller algorithm �37� was
used.

FIG. 1. �Color online� Sketch of an autapse: sketch of a neu-
ronal cell exhibiting a self-delayed feedback mechanism.
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III. DETERMINISTIC DYNAMICS

In the absence of both the delayed feedback, i.e., �=0,
and zero noise strength, with the latter being formally
achieved by NNa→
 and NK→
, the original Hodgkin-
Huxley dynamics is recovered. This exhibits a single stable
fixed point, which is the rest state with the rest potential
Vrest	−65 mV. Any temporary disturbance, e.g., caused by
an applied external current, stimulus decays and the system
relaxes back to the rest state. Note that upon a proper choice
of the initial condition, a single action potential may occur,
before the system relaxes to the rest state �38�.

In presence of the autaptic delay coupling, the fixed-point
solution remains stable, but upon increasing the delay time
parameter �, there emerges now a stable oscillatory solution,
presenting repetitive �tonic� spiking. To investigate this re-
petitive spiking behavior in more detail, we systematically
varied the two parameters �� and �� of the delay coupling
scheme. In doing so, we determined the first occurrence of
repetitive firing after a spike was created. The resulting phase
diagram with the positive and negative critical coupling
strengths �c

+��� and �c
−���, respectively, is depicted in Fig. 2.

We point out the resulting asymmetry between positive and
negative couplings �.

For subthreshold coupling strength, i.e., �c
−�������c

+���
�in the white regions of Fig. 2�, excitations die out and the
system relaxes to the rest state. For suprathreshold coupling,
i.e., ���c

+��� or ���c
−���, a repetitive firing is observed. If

the delay time becomes shorter than the refractory time in-
terval, being approximately 12 ms, which is the time the
system needs for spiking and returning to the rest state, the
modulus of the critical coupling strength of the bifurcation
increases drastically. This is due to the fact that in the so-
called undershoot phase �i.e., the part of the course of the
action potential when the membrane potential is smaller than
the membrane potential at rest� the neuron is rather insensi-
tive to any stimuli. Hence, a stronger coupling strength is

needed in order to excite the system from the undershoot
phase and to obtain repetitive firing. In the case of larger
delay the value of the critical coupling saturates. For longer
delay times more than one spike may fit into time interval
given by �. Consequently, doublets, triplets, and multiplets
may appear.

Below, we shall present examples where we have
chosen �=35 ms and used a positive coupling strength.
The critical value for repetitive firing corresponds to
�c

+=0.059 mS /cm2. For larger coupling ���c
+��� an action

potential induces repetitive firing. In Sec. IV we refer to this
regime as suprathreshold delay coupling regime. In the case
of lower coupling strength, i.e., ���c

+���, the state of a re-
petitive firing is excitable and noise is needed to support the
repetition of an action potential. In the next section this re-
gime will be addressed as subthreshold delay coupling re-
gime. Remarkably, for negative coupling ��0 one finds an
overall similar behavior that differs, however, quantitatively
�not shown�.
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FIG. 2. The phase diagram �-� for repetitive firing within the
Hodgkin-Huxley model containing the delay coupling strength � is
depicted vs the delay time �. The two black solid lines indicate the
boundaries of critical coupling strength � versus the delay time � at
which the behavior changes from the rest state to a repetitive firing.
The gray areas give the parameter regime for which repetitive firing
is observed.
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FIG. 3. Simulated spike trains: �a� membrane potential V�t�
from the stochastic Hodgkin-Huxley model in the absence of feed-
back, i.e., with �=0 versus time t; �b� V�t� versus time t in the
presence of finite feedback of strength �=0.07 mS /cm2 exhibiting
repetitive spiking for a chosen delay time �=35 ms. The number of
potassium ion channels is set to NK=300 and that of the sodium ion
channels is set to NNa=1000. The spontaneous, i.e., noise-induced,
action potentials exhibit a burstinglike behavior in case of the delay
coupling �b�. In �a� we indicated with the double-arrow line a typi-
cal occurring noise-induced interspike interval Ti.
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IV. STOCHASTIC DYNAMICS OF THE
HODGKIN-HUXLEY MODEL WITH

DELAYED FEEDBACK

In Fig. 3 the simulated membrane potential V�t� is shown
for an exemplarily chosen noise level and for two cases,
namely, in Fig. 3�a� without delay coupling ��=0� and in Fig.
3�b� with a finite delay coupling ���0�. In the absence of
delay coupling the occurrence of spontaneous, i.e., noise-
induced, action potentials occurs irregularly, while a charac-
teristic bursting pattern can be detected in the presence of
finite delay coupling �.

In order to explain the spiking dynamics quantitatively,
we determined the time intervals between two spike events
Ti �see Fig. 3�a�� as obtained from simulations of the stochas-
tic Hodgkin-Huxley model with delayed feedback coupling
�cf. Eq. �1��. Note that in order to detect the occurrences of
action potentials from the simulated membrane potential dy-
namics V�t�, we did define a specific threshold barrier for
detection. In particular, whenever the membrane potential
V�t� exceeds the value of 0 mV, the occurrence of an action
potential is assigned. In fact, the so determined spike occur-
rences depend only weakly on the actual choice of the detec-
tion barrier �21�.

These observed stochastically emerging interspike inter-
vals Ti render the �normalized� interspike interval histograms
�ISIHs� and the mean interspike interval �T�,

�T� =
1

N


i=1

N

Ti, �6�

where N denotes the number of spikes obtained in the indi-
vidual numerical simulation. The bin width for the histo-
grams has been set at 0.2 ms. Both these quantities form the
basis of our analysis of spike trains.

We begin this study with the dynamics of zero delay cou-
pling for the neuron, i.e., with �=0. The distribution of the
interspike intervals at a fixed channel noise intensity is de-
picted in Fig. 4. For large time intervals, the distribution
decays exponentially. Small time intervals are suppressed be-
cause of the neuron’s refractory state. For �=0 the ISIH ex-
hibits one broad maximum located around the internal time
scale Tint. This time scale systematically diminishes with in-
creasing noise level �18,21�. The minimal time scale for un-
distorted spikes is around the refractory time of 	12 ms.

In the presence of noise and finite feedback coupling, the
neuron still can return to its fixed point with nonvanishing
probability. This is why the peak at the intrinsic time scale
and a broad exponential decay are still detected in the ISIH
in Fig. 4. However, the ISIHs become multimodal in the case
of finite nonvanishing feedback. Several maxima occur at
larger time intervals and, in between, a number of deep dips
are observed. Such forms of the distributions of the ISIH are
indicators of an enhanced coherence �18,28�. Whereas in the
subthreshold regime �dashed line� the additional extrema
merely show up, they become increasingly dominant in the
case of suprathreshold coupling �note the logarithmic scale
of the ordinate in Fig. 4�.

A. Subthreshold delay coupling: ���c
+(�)

In the case of subthreshold coupling the repetitive oscil-
latory spiking is noise supported, as a nonvanishing delayed
stimulus I��t� shifts the stable fixed point toward the thresh-
old for excitation. Consequently, the generation of spikes be-
comes more likely. However, the dynamics is still excitable,
i.e., a threshold still exists and noise is needed to induce its
excitation. Consequently, a subthreshold delayed stimulus fa-
vors some characteristic interspike interval time T�. As long
as the system remains excitable, an activation time Tact after
the delayed stimulus did set in is necessary in order to create
the next noise-induced spike. Therefore, the time T� is not
equal to the delay time �, but equals the sum of the delay

Tint

Tτ

10−6

10−4

10−2
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IH
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ε=0
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ε=0.08

FIG. 4. �Color online� Interspike interval histograms �ISIHs�
versus the interspike interval T of the stochastic Hodgkin-Huxley
model with a delay coupling mechanism at different coupling
strengths �, as indicated in the figure in units of mS /cm2. The bin
width for T has been chosen throughout this work at 0.2 ms. The
chosen number of potassium ion channels is NK=150, while the
number of sodium ion channels is set at NNa=500. The delay time �
is set at 35 ms.
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FIG. 5. �Color online� ISIH vs interspike duration T for different
noise levels corresponding to different numbers of sodium and po-
tassium channels as indicated. The chosen delay time is �=35 ms;
the coupling strength is set at �=0.03 mS /cm2��c

+��� and
NNa= 10

3 NK.
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time and an activation time Tact, being around 2 ms in this
considered case.

In addition, there occurs a suppression of certain time
scales when the delay coupling is applied to the neuronal
dynamics �cf. Fig. 4�. For positive � the system favors fre-
quencies associated to the time T� and suppresses frequen-
cies slightly larger than those. The feedback hinders the gen-
eration of spikes by noise if the feedback current I��t�
approaches values around the polarized refractory period.

In the subthreshold regime the intrinsic time scale Tint and
correspondingly the height and the position of the associated
peak distinctly depend on the noise level. In Fig. 5 we depict
results from simulations for different noise levels, i.e., differ-
ent numbers of embedded ion channels. With increasing
noise level the generation of spontaneous spikes by noise
gains influence substantially. As a result, the intrinsic time
scale becomes changed and the larger time intervals reflect
the broad exponentially decaying ISIH. The former sharply
peaked maximum at T� switches toward a noise supported
broader peak at smaller times, and the maximum shifts with
growing noise toward the minimal time for a interspike in-
terval located at the refractory time. Interspike intervals
around this minimal time are promoted mainly by the pres-
ence of noise. They do not necessarily relate to the delay
mechanism. In contrast, the time scale T� induced by the
delayed feedback is only slightly affected by the noise level.
This is a somewhat striking feature recalling the fact that in
the case of an excitable dynamics these spikes in fact require
the presence of noise to become activated. The robustness of
the positions of the time scales as well as their separation
from the noisy time scale in terms of the resulting bimodal
shape of the ISIH thus indicates a noisy synchronization phe-
nomenon �9,29,30,41�.

B. Suprathreshold delay coupling: ���c
+(�)

We next consider the case with coupling strengths beyond
the critical strength, i.e., ���c

+���. Here, the spikes repeat

deterministically. However, noise-induced skipping of spikes
�39,40� leads to a transition from the oscillatory state with
repetitive firing to the excitable state. In turn, the backtran-
sitions from the excitable to the oscillatory state are caused
by noise-induced spontaneous spikes �cf. Fig. 3�. The spikes
that repeated deterministically lead to sharp peaks in the
ISIH, while the noise-induced backtransitions from excitable
to the oscillatory state result in a broad distribution with
exponentially decaying tail. In Fig. 6, the resulting ISIH is
depicted for various suprathreshold coupling strengths. Upon
the chosen parameter values for the noise level, i.e., the num-
bers of sodium and potassium ion channels, and the coupling
parameters � and �, the ISIH therefore exhibits sharp peaks
and more or less pronounced broad background: for stronger
coupling or weaker noise the broad background diminishes.
Contrarily, the peak height at T� shows a strong dependence
on the noise level, indicating the competitive interplay be-
tween channel noise and the delayed feedback mechanism:
with increasing noise level the height of the peak at T� de-
creases, while the intrinsic time scale acquires increasing in-
fluence �depicted for the subthreshold coupling regime in
Fig. 5�. Note that we have selected the delay time ��
=35 ms�, so that the separation between the broad back-
ground which is peaked at the intrinsic time scale Tint and the
delayed induced sharp peaks at T� and multiples thereof is
educible and visible with the ISIHs �cf. Figs. 5 and 6�.

Strikingly, with increasing coupling strength the multimo-
dal structure collapses to a unimodal one �cf. Fig. 6�. The
most probable interspike interval now centers at one value.
Due to this suprathreshold driving, each spontaneous spiking
event is repeated periodically and even the noise dominated
scale now collapses toward a narrow peak. Note also that the
distribution gains in sharpness as the coupling strength in-
creases �cf. Fig. 6�.

Let us focus on the dependence of the interspike intervals
on the delay time �. For this purpose we consider the mean
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FIG. 6. �Color online� ISIH for different values of the suprath-
reshold coupling strength ���c

+���: the distribution of the interspike
intervals is depicted for fixed delay time �=35 ms; the numbers of
ion channels are NK=150 and NNa=500. The values of the coupling
strengths indicated in the plot are in units of mS /cm2.
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FIG. 7. �Color online� Average interspike interval �T� as a func-
tion of the delay time �: the mean interspike interval �T� �cf. Eq.
�6�� is plotted versus the delay time � for the following parameters:
the used ion channel numbers are NK=150 and NNa=500, and the
coupling strengths are set at �=0.1 mS /cm2 �black dashed line�,
�=0.2 mS /cm2 �red dotted line�, and �=0.4 mS /cm2 �blue solid
line�.
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interspike interval �cf. Eq. �6��. This quantity inherits the
characteristic dependence on � since the ISIH shape is uni-
modal. Larger deviations from the mean interspike interval
are found during transitions between different synchronized
states where the histogram becomes multimodal.

In Fig. 7 the mean interspike interval �T� is depicted for a
fixed channel noise strength. If the delay coupling mecha-
nism does not dominate the spiking, i.e., for small suprath-
reshold coupling strengths, the mean interspike interval ex-
hibits a smooth dependence on the delay time. However, for
larger suprathreshold driving strengths, for which the ISIH
exhibits a unimodal structure consisting of a sharp peak, the
mean interspike time varies with the delay time � in an al-
most piecewise linear fashion, displaying sharp trianglelike
textures �cf. Fig. 7�. At these sharp peak locations, the num-
ber of spikes that fit according to the intrinsic time into a full
time length given by the delay time just increases by unity
with increasing delay time �. The mean interspike interval is
henceforth proportional to the ratio of the delay time and the
number of spikes n fitting into this very delay time interval,
yielding

�T�  �/n � �� . �7�

In Fig. 8 the behavior of � vs the delay time � is depicted. At
multiples of the noise-dependent intrinsic time scale, such
characteristic steps do occur indeed.

We find that stronger noise intensity mimics a decrease in
the coupling strength. Nearby those typical steps noise is
able to induce newly generated spikes at the end of the in-
tervals reducing thereby the ratio �. Alternatively, the role of
noise decreases the number of spikes toward the left bound-
ary of a new synchronized region. Therefore, the correspond-
ing results at increased noise strength attain a form that is
similar to the case of lower delay coupling strength.

A comparable scenario has been reported in other systems
such as for a noisy Van der Pol dynamics �see Refs. �42–44��
near the Hopf bifurcation, for semiconductor superlattices �3�
and stochastic excitable dynamics �9�. We find that noise can

induce oscillations with a well-defined time scale, and the
simultaneous application of a delay of duration � is able to
stabilize this orbit.

C. Phase oscillator modeling

We have seen that the neuron behaves almost like an os-
cillatory system whenever the delay coupling rules the dy-
namics. This brings to mind a description in terms of a phase
oscillator model which we develop next. Let us assign an
intrinsic frequency by �=2� /Tint. As pointed out above, the
autaptic feedback leads to a stabilization of the internal
rhythmicity as determined by the model parameters. This in
turn results in synchronized patterns �cf. Fig. 8�.

Therefore, we investigate the question of whether the ob-
served synchronization in this studied neuronal model with
autapse can be characterized by a Kuramoto-type model �45�
of a phase oscillator including delayed feedback. Put differ-
ently, upon neglecting the details of the shape of the spike
trains the essential information can be reduced to the phase
of the oscillatory neuron.

Let us next compare our findings with the results obtained
from a pure phase dynamics. Accordingly, the proposed dy-
namics for the underlying phase is modeled as

�̇ = � − A sin���t� − ��t − ��� , �8�

where � denotes the angular intrinsic frequency of the oscil-
lator and A is the delay coupling strength. Searching for so-
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FIG. 8. The inverse of the number of spikes that fit into the
delay-time interval � is plotted as a function of the delay time � for
NK=150 and NK=500 and a delay coupling strength of
�=0.4 mS /cm2.
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FIG. 9. �Color online� Comparison of the stochastic neuronal
dynamics Hodgkin-Huxley model including feedback �Eqs. �1�, �2�,
�3a�–�3f�, �4�, and �5a�–�5c�� with the dynamics of the feedback
assisted Kuramoto-type phase oscillator model �Eq. �8��. The mean
interspike interval �red dashed lines� is the result of the numerical
integration of the stochastic Hodgkin-Huxley model with delayed
feedback; there is quantitatively good agreement between periods of
oscillations as obtained from a phase oscillator dynamics of the
Kuramoto-type delayed feedback model �solid black line�. Regions
with multiple solutions in the phase model correspond to discon-
tinuous jumps between different types of multiplets in the Hodgkin-
Huxley model. The parameters for the neuronal modeling are cho-
sen as NK=150, NNa=500, and �=0.4 mS /cm2; those of the phase
oscillator are given by oscillator frequency �=2� /15.5 ms−1 and
feedback strength A=1 /15.5 ms−1.
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lutions with fixed frequency �, we make the ansatz

��t� = �t . �9�

The resulting self-consistent equation reads �46–48�

� = � − A sin���� , �10�

which was solved numerically. Comparing this phase oscil-
lator dynamics with our oscillatory stochastic neuron dynam-
ics exhibiting an autapse, we make the following parameter
identification, i.e., �=2� / �T�, and obtain from an expansion
in small delay time � the relation A=1 /Tint. In Fig. 9 we
present the comparison between the Hodgkin-Huxley model-
ing and the phase oscillator modeling: even though the quan-
titative behavior is different, a good qualitative agreement is
detected. The positions of the spikes where the autapse
model jumps between bursts of different numbers of multi-
plets are nicely reproduced by this simplified phase oscillator
modeling. A further improvement of the modeling would re-
quire a more optimal determination of the �-dependent pa-
rameters of this Kuramoto model with feedback.

V. CONCLUSION

With this work we have investigated the effect of delayed
feedback on the dynamics of a stochastic Hodgkin-Huxley
neuron. Using the original Hodgkin-Huxley parameters, we
simulated numerically the stochastic Hodgkin-Huxley model
taking into account the effects of intrinsic channel noise. A
Pyragas-like delayed feedback mechanism is employed to
model the autapse phenomena, in which a neuron’s dendrite
backcouples to itself. The two basic parameters used in our
study are the strength of the autapse coupling � and the time

delay � resulting from the finite length of the self-connecting
dendrite.

We have found that the neuron dynamics exhibits intrigu-
ing time scales that stem from the autaptic connection. Since
the rest state of the neuron is always stable, noise or an initial
spike is necessary to create activity, i.e., the spiking dynam-
ics. For small numbers of Na and K channels, the noise be-
comes sizable and the excitory dynamics remains practically
unaffected by the delay. In contrast, smaller noise levels and
stronger coupling strengths induce different synchronization
phenomena between the delay time and the intrinsic �also
noise-dependent� time scales. The delay time and these in-
trinsic time scales determine how many spikes will be cre-
ated and become subsequently locked during one delay ep-
och. We further underline that our exemplary study can be
mimicked qualitatively in terms of a reduced description
given by a Kuramoto phase dynamics with built-in feedback.

We have shown that the delayed feedback mechanism
serves as a control option for adjusting the peaked distribu-
tion of interspike intervals, being of importance for memory
storage �49� and stimulus-locked short-term dynamics in
neuronal systems �50�. One may therefore speculate whether
nature adopted the autapse phenomena for frequency filtering
in the presence of unavoidable intrinsic channel noise.
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