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We study a minimal non-Markovian model of superdiffusion which originates from long-range velocity

correlations within the generalized Langevin equation approach. The model allows for a three-

dimensional Markovian embedding. The emergence of a transient hyperdiffusion, h�x2ðtÞi / t2þ�, with

�� 1–3 is detected in tilted washboard potentials before it ends up in a ballistic asymptotic regime. We

relate this phenomenon to a transient heating of particles TkinðtÞ / t� from the thermal bath temperature T

to some maximal kinetic temperature Tmax. This hyperdiffusive transient regime ceases when the particles

arrive at the maximal kinetic temperature.
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Anomalous diffusion is found across many different
branches of physics, from charge transport processes in
amorphous materials to plasma physics and biophysics,
and there are many different theories reflecting a variety
of underlying physical mechanisms [1–7]. One of the
fundamental approaches is based on the generalized
Langevin equation (GLE) [8–23], see Eq. (1) below.
Remarkably, it can be derived from a Hamiltonian dynam-
ics of a particle that bilinearly couples to a thermal bath of
harmonic oscillators characterized by the bath spectral
density Jð!Þ [9,10,12,18]. This model is capable of de-
scribing all types of anomalous diffusion h�x2ðtÞi �
2D�t

�=�ð1þ �Þwithin a unified framework and the index
� reflects just the low-frequency behavior of the spectral
bath density Jð!Þ / !� for 0<�< 2 [12,24]. Namely,
the case 0<�< 1 corresponds to anomalously slow dif-
fusion, or subdiffusion, the case � ¼ 1 to normal diffusion,
and the case 1<�< 2 to superdiffusion. The ballistic
diffusion h�x2ðtÞi �D2t

2 is attained for all spectral den-
sities with �> 2 at low frequencies and the case of Jð!Þ /
!2 is marginally ballistic (a special case). This finding is
without a potential, or under a constant force. Then the
occurrence of hyperdiffusion, h�x2ðtÞi / t� with �> 2, is
not possible if Brownian particles are initially thermalized
[25]. Several circumstances are of special interest. First,
GLE diffusion is almost always ergodic, except for the
ballistic case [14,17,20,22] studied also below. Similarly,
anomalous diffusion based on continuous time random
walks is weakly nonergodic [26]. Second, for a constant
force F, the diffusion coefficient is proportional to the bath
temperature, i.e., D� / T and a generalized Einstein-
Stokes relation holds [12]. For nonlinear forcing, e.g., in
tilted washboard potentials, this kind of anomalous diffu-
sion is not sufficiently investigated and offers surprises. In
particular, a hyperdiffusive regime occurs with � greatly
enhanced to �eff � 3–5 [22,27]. This puzzling nonlinear
and nonequilibrium effect is the focus of this study.

Such anomalous diffusion allows for Markovian embed-
dings of surprisingly small dimensions which suffice

normally in practice [21,22]. A Markovian embedding is
natural given that the underlying Hamiltonian dynamics is
Markovian. However, it formally has an infinite dimension
for a thermal bath considered in the thermodynamic limit.
Surprisingly, the practical embedding dimension using
some auxiliary stochastic variables can be quite small.
The purpose of this Letter is to give a physical explana-

tion of the observed hyperdiffusive anomaly as a transient
heating of particles with their kinetic temperature defined
via the velocity variance h�v2ðtÞi / Tkin rising in accor-
dance to a transient power law, TkinðtÞ / t�, from the bath
temperature T to a maximal kinetic temperature Tmax

which depends on the duration of transient period through
F, T, and the amplitude of periodic potential V0 (Tkin ¼ T,
when V0 ¼ 0, or F ¼ 0). It can be very large (thousands
of T). Such a nonlinear heating mechanism in fixed not
alternating in time applied fields is quite unusual, and,
paradoxically, smaller bias strengths F yield higher Tmax

values.
We start from the traditional GLE model in one selected

direction for a particle of mass m in the potential VðxÞ
subjected to a linear friction with memory kernel �ðtÞ ¼
ð2=�ÞR1

0 d!Jð!Þ cosð!tÞ=! and random force �ðtÞ of

zero mean:

m €xþ
Z t

0
�ðt� t0Þ _xðt0Þdt0 þ @

@x
VðxÞ ¼ �ðtÞ: (1)

The random force is Gaussian and fully characterized by its
autocorrelation function satisfying the fluctuation-
dissipation relation

h�ðtÞ�ðt0Þi ¼ kBT�ðjt� t0jÞ (2)

which in turn is a consequence of the fluctuation-
dissipation theorem.
A necessary condition for the emergence of super-

diffusion asymptotically (t ! 1) within the considered
class of models is zero integral friction [14,22], i.e.,
limt!1

R
t
0 �ðt0Þdt0 ¼ 0. The memory kernel thus must be

positive at times t0 ¼ t, yielding �ð0Þ> 0 cf. Eq. (2), and
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possess a negative part. The simplest model which satisfies
these two conditions is [17]:

�ðtÞ ¼ �½2�ðtÞ � �e��t�: (3)

It will be considered in the following and corresponds to a
spectral bath density Jð!Þ which is cubic for ! � �
(typifying, e.g., acoustic bulk phonons in solids [12]) and
linear for! � �. The corresponding spectral power of the
noise Sð!Þ corresponds to the white noise (for ! � �),
i.e., Sð!Þ ¼ const, with the small-frequency part of the
spectrum smoothly cut, so that Sð!Þ / !2 for ! � �.

Furthermore, the autocorrelation function (ACF) of
velocity fluctuations,�vðtÞ ¼ vðtÞ � hvðtÞi, in the absence
of deterministic force, or under a constant forcing obeys for
this minimal model

h�vðtÞ�vðt0Þi¼v2
T

�
�

�þ�
þ �

�þ�
exp½�ð�þ�Þjt� t0j�

�
;

(4)

with � ¼ �=m, provided that the velocities are initially

thermally distributed with
ffiffiffiffiffiffiffiffiffiffiffiffiffih�v2ip ¼ vT ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kBT=m
p

. This
follows from the Laplace-transformed result for this quan-
tity for arbitrary kernels [8]: ~KvðsÞ ¼ v2

T=½sþ ~�ðsÞ=m�.
In other words, the ACF exponentially decays, but to a
nonzero constant, which is the reason for nonergodicity
and ballistic diffusion. Clearly, this is the simplest of
possible models, yet physically reasonable. The model is
non-Markovian, but it allows for a three-dimensional
Markovian embedding [17]:

_xðtÞ ¼ vðtÞ
m _vðtÞ ¼ � @

@x
VðxÞ � uðtÞ � �vðtÞ þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2kBT�
p

	ðtÞ
_uðtÞ ¼ ���vðtÞ � �uðtÞ þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBT�

p
	ðtÞ

(5)

where 	ðtÞ is a zero-centered white Gaussian noise with
autocorrelation function h	ðtÞ	ðt0Þi ¼ �ðt� t0Þ. By inte-
grating out the auxiliary variable uðtÞ in the above equa-
tions (projecting onto the x� v plane), it is not difficult
to show that this leads to the GLE in Eqs. (1) and (2) with
the memory kernel of Eq. (3), if the initial value of uð0Þ
is Gaussian distributed with zero mean and variance
hu2ð0Þi ¼ kBT�. This is assumed in the following. The
initial velocities are thermally distributed.

We consider the case of a washboard potential with
period x0 and amplitude strength V0 biased by a constant
force F, VðxÞ ¼ �V0 cosð2�x=x0Þ � Fx. It is convenient
to transform Eq. (5) into dimensionless quantities by scal-
ing time in units of ��1, distance in x0, energy in mðx0�Þ2
(which applies for V0, kBT, and Fx0), u in mx0�

2, and � in
�. We have integrated the system in the corresponding
nondimensional variables using a standard Euler algorithm
with time step �t ¼ 10�4 for � ¼ 0:25, V0 ¼ 1, and vary-
ing T and F. The behavior of the position variance for 104

particles which started at the origin with the velocities
thermally distributed is depicted in Fig. 1. A striking

feature is the regime of intermediate hyperdiffusion which
ends in the ballistic regime. This puzzling behavior, which
seems to be rather general, was not, however, explained
before in physical terms.
For this we notice that the diffusive behavior can be

related to the twice-integrated velocity ACF h�vðtÞ�vðt0Þi.
In the stationary limit, when the ACF depends on the
difference of time arguments, the normal diffusive behav-
ior emerges when the integral of ACF is finite. Its value
defines the diffusion coefficient, which is temper-
ature dependent. For the thermally distributed velocities
and normal diffusion (singular limit for � ¼ 0) the ACF
decays exponentially to zero from h�v2i ¼ kBT=m, with
the decay rate �. This yields the Einstein relation, DðTÞ ¼
kBT=ðm�Þ. For the anomalous GLE, diffusion is described
by a spectral bath density Jð!Þ / ��!

� (0<�< 2)
which corresponds to ~�ðsÞ ¼ ��s

��1 and yields
h�x2ðtÞi � 2D�ðTÞt�=�ð1þ �Þ asymptotically, the inte-
gral of the ACF for � � 1 either diverges (superdiffusion),
or it tends to zero (either subdiffusion, or bounded motion
in trapping potentials). However, in the absence of forcing,
or under a constant force a generalized Einstein relation
always holds, D�ðTÞ ¼ kBT=ðm��Þ. Furthermore, it is
easy to show [from the exact expression for ~KvðsÞ for V0 ¼
0] that for �> 2, the diffusion is asymptotically always
ballistic. This is why the occurrence of long-lasting hyper-
diffusion is rather surprising. For the considered model we
have h�x2ðtÞi �D2ðTÞt2 asymptotically with D2ðTÞ ¼
kBT=m

�, where m� ¼ mð1þ �=�Þ is an effective mass.
This asymptotics holds in the absence of a periodic poten-
tial, i.e., V0 ¼ 0.
If one switches on the periodic potential, the ballistic

diffusion turns over into normal diffusion when F ¼ 0
[22]. Upon application of a constant force F > 0, the
particles will start to gradually accelerate when they leave

FIG. 1 (color online). Biased diffusion in a washboard poten-
tial with strength V0 ¼ 1 for different values of the bias F and
the bath temperature T. The mean squared displacement exhibits
transient hyperdiffusion before it reaches the asymptotically
ballistic diffusion regime. The transient hyperdiffusion is en-
hanced upon decreasing F and T. The velocities are initially
thermally distributed, � ¼ 0:25, and n ¼ 104 trajectories are
used for the ensemble averaging.
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the attraction domains of potential wells in the phase space
due to the random kicks given by thermal noise. Their
initial Maxwellian velocity distribution hence will not
hold forever. Gradually accelerating, the running particles
undergo drastic transient heating above the bath tempera-
ture due to multiple scattering on the periodic potential.
Slower particles, however, are more strongly scattered
backwards (i.e., are decelerated) by the potential wells in
comparison with faster ones. This in turn yields a growing
width (see Fig. 2) of the velocity distribution, which be-
comes also skewed towards slower particles, see Fig. 3.
Indeed, the averaged kinetic energy per particle, K ¼
mhv2i=2, can be decomposed as K ¼ Km þ KT . Km ¼
mhvi2=2 is the kinetic energy associated with mean veloc-
ity which asymptotically is well described by hvðtÞi ¼
Ft=m� when the influence of periodic potential becomes
negligible. The part KT ¼ mh�v2i=2≑ kBTkin=2 is used
to define the effective kinetic temperature TkinðtÞ.
Importantly, the action of F results not only in the growing
mean hvðtÞi, but also generates a growing variance of the
velocity distribution, see in Fig. 2. It is a common practice
to characterize different sorts of particles with different
kinetic temperatures, e.g., in plasma physics [28]. In a
similar spirit, we use a ‘‘kinetic temperature’’ notion which
should be used with care as it does not correspond to a
thermodynamic temperature, but rather simply character-
izes the width of a nonequilibrium velocity distribution,
see in Fig. 3. Nevertheless, it is a useful concept because it
reflects an important statistical aspect of the temperature,
namely, that temperature characterizes the width of the
kinetic energy distribution. Even if the relative spread of
the velocity distribution around the mean value is rather
small at the end point of simulations (by just a few per-
cent), the mean kinetic energy is large and therefore the
kinetic temperature can also be large, cf. Fig. 4.

In our numerical experiments, the velocity distribution
becomes broadened and strongly skewed with the
‘‘retarded’’ tail of distribution described by an exponential,
rather than by a Gauss-Maxwell distribution, cf. in Fig. 3.
The variance of the distribution grows in time in accor-
dance with a power law, TkinðtÞ / t�, cf. Fig. 2. This
explains the emergence of hyperdiffusion h�x2ðtÞi �
D2ðTkinÞt2 ¼ kBTkint

2=m� � t2þ� in Fig. 1. This regime
is, however, only transient. The duration of the transient
period depends strongly on the potential amplitude V0, the
strength of the bias force F, and the bath temperature T.
The hyperdiffusive regime turns over into the ballistic

diffusion regime when the particles arrive at the maximal
kinetic temperature Tmax, compare Figs. 1 and 2. This
nonlinear heating mechanism is quite unusual. The heating
of plasmas by time-varying stochastic fields is well known.
One of the pertinent nonlinear mechanisms is the so-called
Fermi acceleration [29]. It requires but a time-varying
driving field (or stochastically oscillating boundary). In
our case, the ‘‘heating’’ field is, however, constant, and,
strikingly enough, the use of weaker bias fields heats up the
particles ever more strongly, see in Fig. 4(a). However,
much longer times are required then. Moreover, the smaller
the bath temperature is, the higher is the final kinetic
temperature, cf. Fig. 4(b). Both effects are due to the fact
that the transient time scale becomes longer because the
particles take on the kinetic energy more slowly in the
accelerating field F. The corresponding dependencies are
stronger than exponential. Such a strong sensitivity is
surprising. The qualitative physical explanation is as fol-
lows: The heating is caused by retardation of flying parti-
cles when they pass over the trapping domains while
moving in the bias direction. It is appreciably strong as
long as the averaged energy of the particles does not
substantially exceed the potential barrier height. For
smaller temperatures and smaller bias forces it takes an
exponentially greater amount of time for the particles to
escape out of potential wells and to arrive on average at

FIG. 2 (color online). The mean square fluctuation of the
particles velocity for the biased diffusion in Fig. 1 exhibits a
transient behavior, in which the kinetic temperature Tkin (see
text) grows from bath temperature to a maximal value Tmax. The
transient power-law growth, TkinðtÞ / t�, explains the hyperdif-
fusive regime with the corresponding exponent 2þ � in Fig. 1.
Lower bath temperature and weaker biasing field lead surpris-
ingly to stronger heating (see Fig. 4).

FIG. 3 (color online). Two snapshots of the velocity distribu-
tion Pðv; tÞ, initial and at the end point of simulations in Figs. 1
and 2 for F ¼ 1:5 and T ¼ 0:5. Pðv; tÞ becomes shape invariant
already for t > 500, after the kinetic temperature reaches its
maximum, see in Fig. 2. After this happens, only the maximum
of the distribution moves accelerating in time. The initial distri-
bution is Gaussian with h�v2ð0Þi ¼ T. The final distribution is
strongly skewed: its left slope (v < 2999) is well fitted by an
exponential, while the right slope (v > 2999) remains approxi-
mately Gaussian.
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a sufficiently high kinetic energy, so that their backscatter-
ing or deceleration cease to play a role. This leads to a
greater broadening of the velocity distribution [30]. The
giant enhancement of ballistic diffusion reminds one of the
giant enhancement of normal diffusion [31]. However, the
underlying physical mechanisms are quite different.

The physical systems where the discussed hyperdiffu-
sive heating effect might be relevant are dusty plasmas
where heavy tracer particles collide with the gas of light
particles serving as a thermal bath. Even if our GLE
description in this case is not directly applicable, there
exists some partial correspondence between the superdif-
fusive fractional GLE results and the fractional Kramers
equation by Barkai and Silbey [6]. Such a correspon-
dence is surprising because both descriptions are different,
see, e.g., in [11]. The latter scheme derives from linear
Boltzmann equations with a fractional scattering integral
accounting for scattering events which are power-law dis-
tributed in time. Our physical explanation of the transient
heating mechanism is more generally applicable; i.e., it is
not restricted by the present GLE model. In particular, it is
expected to work for the fractional kinetic equations like
the fractional Kramers equation, or a more general one
introduced recently by Friedrich et al. [7]. We are confident
that our work will stimulate further studies and even an
experimental validation of this intriguing hyperdiffusive
behavior.
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