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Abstract
Transport of spherical Brownian particles of finite size possessing radii R � Rmax through
narrow channels with varying cross-section width is considered. Applying the so-called
Fick–Jacobs approximation, i.e. assuming fast equilibration in the direction orthogonal to the
channel axis, the 2D problem can be described in terms of a 1D effective dynamics in which
bottlenecks cause entropic barriers. Geometrical confinements result in entropic barriers which
the particles have to overcome in order to proceed in the transport direction. The analytic
findings for the nonlinear mobility for the transport are compared with precise numerical
simulation results. The dependence of the nonlinear mobility on the particle size exhibits a
striking resonance-like behavior as a function of the relative particle size ρ = R/Rmax; this
latter feature renders possible new effective particle separation scenarios.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The diffusive behavior of Brownian particles depends mainly
on their size, the interaction between them, and the
environment where they are situated in. If, in addition to these
characteristics, particles are confined within narrow, tortuous
structures such as nanopores, zeolites, biological cells and
microfluidic devices, the restriction of the space available for
the particles will cause entropic barriers that will have strong
impact on the diffusive behavior (cf [1] and references therein).
Effective control schemes for transport in these systems require
a detailed understanding of the diffusive mechanisms involving
small objects and, in this regard, an operative measure to
gauge the role of fluctuations. The study of these transport
phenomena is, in many respects, equivalent to an investigation
of geometrical constrained Brownian dynamics. As the role of
inertia for the motion of the particles through these structures
can typically be neglected, the Brownian dynamics can safely
be analyzed by solving the Smoluchowski equation in the
domain defined by the available free space upon imposing
reflecting boundary conditions at the domain walls.

However, solving the boundary problem in the case of
nontrivial, corrugated domains presents a difficult task. A
way to circumvent this difficulty consists in coarsening the
description by reducing the dimensionality of the system
considering only the main transport direction, but taking
into account the physically available space by means of an

entropic potential [1–3]. The resulting kinetic equation for the
probability distribution, the so-called Fick–Jacobs equation, is
similar in form to the Smoluchowski equation, but contains
now entropic contributions leading to genuine dynamics which
distinctly differs from those observed for purely energetic
potentials.

The driven transport of particles across bottlenecks [1–4],
such as ion transport through artificial nanopores or artificial
ion pumps [5–8] or in biological channels [9–12], are striking
examples where the diffusive transport is regulated by entropic
barriers. In addition, geometrical confinements and entropic
barriers play also a prominent role in the context of the
Stochastic Resonance phenomenon [13–17].

Our objective with this work is to investigate the mobility
of noninteracting spherical Brownian particles in channels with
varying cross-section width. In particular, we are interested
in the influence of the particle size on the transport within a
periodic entropic potential exhibiting barriers which arise from
the geometrical restrictions.

The paper is organized as follows: in section 2 we
introduce the model and define the theoretical and numerical
problem. Further on, in section 3 we present the basic
principles of the Fick–Jacobs approximation allowing for
reducing the two-dimensional problem to an one-dimensional
one. The results are presented in section 4. Finally, we give the
main conclusions in section 5.
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2. Modeling

Transport through pores or channels (like the one depicted in
figure 1) may be caused by different particle concentrations
maintained at the ends of the channel, or by the application
of external forces acting on the particles. Here, we exclusively
consider the case of force driven transport of spherical particles
of radius R. The external force �F = F �ex is pointing parallel to
the direction of the channel axis. As small deviation from this
assumption does not affect our results, certainly not within the
limits of validity of the Fick–Jacob approximation. Moreover,
we shall assume low concentrations of spherical particles
such that particle–particle interactions and all hydrodynamic
interaction effects can consistently be neglected.

2.1. Dynamics inside the channel

In general the dynamics of a suspended Brownian particle is
overdamped [18] and well described by the Langevin equation:

ηR
d�r
dt

= �F + √
ηRkBT �ξ(t), (1)

where �r denotes the center position of the spherical particle
in the two-dimensional channel, kB the Boltzmann constant,
T the temperature and �ξ(t) is the standard 2D Gaussian noise
with 〈�ξ(t)〉 = 0 and 〈ξi (t)ξ j (t ′)〉 = 2δi jδ(t − t ′) for i, j =
x, y. The friction coefficient ηR is given by Stokes’ law:

ηR = 6πνR (2)

and depends on the shear viscosity ν of the fluid and the
particle radius R. In addition to equation (1) the full problem
is set up by imposing reflecting boundary conditions at the
channel walls. The boundary of the 2D periodic channel which
is mirror symmetric about its x-axis is given by the periodic
function y = ±ω(x) with ω(x + L) = ω(x) where L is the
periodicity of the channel. ωmin and ωmax refer to the half of
the maximum and minimum channel width, respectively.

To further simplify the treatment of this problem, we
introduce dimensionless variables. We measure all lengths in
units of the periodicity of the channel, i.e. x = x ′L. As a
unit of time τ we choose twice the time it takes the largest
transportable particle to diffusively cover the distance L which
is given by τ = L2ηmax/(kBT ), hence t = τ t ′. The largest
transportable particle is the particle with radius Rmax = ωmin.
Accordingly, the friction coefficient of a particle of radius R is
then given by η = ρηmax with the ratio of spherical particle
radii being ρ = R/Rmax and ηmax = 6πνRmax.

Summarizing, the Langevin equation (1) reads in
dimensionless variables:

d�r ′

dt ′ = f

ρ
�ex +

√
1

ρ
�ξ(t ′), (3)

where the dimensionless force parameter [2, 3]

f = L F

kBT
. (4)

Figure 1. Sketch of the 2D periodic channel with periodicity L , the
minimum half channel width ωmin and the maximum half channel
width ωmax. The spherical Brownian particle of radius R is subjected
to the force �F .

For the sake of better readability, we shall skip all the primes
in the following and proceed, if not mentioned explicitly
otherwise, with dimensionless variables.

The corresponding Fokker–Planck equation for the time
evolution of the probability distribution P(�r , t) takes the
form [19]

∂ P(�r , t)

∂ t
= −�∇ �J (�r , t), (5)

where �J (�r, t) is the probability current:

�J(�r , t) = 1

ρ

(
f �ex − �∇

)
P(�r , t). (6)

2.2. Boundary conditions

As the particles are confined by the channel structure, the
probability current has to vanish at the boundaries. Due
to the finite size of the particles their center position can
approach the boundary only up to its radius. Consequently,
the position vector �r of a particle with radius R never
approaches the channel walls and is restricted to only a
portion of the inner channel area, cf figure 1. The effective
boundary function ωeff(x), which serves as boundary for the
center of mass, exhibits the distance R from the original,
true boundary function ω(x). Consequently, the ‘no-flow’
boundary conditions for the center of mass dynamics read:

�J(�r , t) · �n = 0 , for �r ∈ effective boundaries, (7)

where �n denotes the normal vector field at the effective channel
walls. For the considered 2D channel structure, the boundary
condition becomes

dωeff(x)

dx

{
f P(x, y, t) − ∂ P(x, y, t)

∂x

}
+ ∂ P(x, y, t)

∂y
= 0,

(8)
at y = ±ωeff(x).

Note, that the effective boundary function exhibits a
complex dependence on the particle’s radius R and could not
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Figure 2. Sketch of the original tube geometry given by the
boundary function ω(x) and the effective boundary function ωeff(x)
for the center of the spherical particle. Hereby, the effective
boundary function depends on the radius of the particle which is
given in dimensionless units by ρ: ρ = 0.27 (red dotted line),
ρ = 0.81 (blue dashed line).

be given explicitly. If the curvature of the channel wall function
ω(x) is larger than that of the particle, the effective boundary
function exhibits a kink, cf figure 2.

For an arbitrary form of ω(x), the boundary value problem
defined by equations (5), (6) and (8) is very difficult to
solve. Despite the inherent complexity of this problem an
approximate solution can be found by introducing an effective
one-dimensional description where geometric constraints and
bottlenecks are considered as entropic barriers [2, 4, 20–25].

3. Fick–Jacobs approximation

The 1D equation is obtained from the full 2D Smoluchowski
equation upon the elimination of the transversal y coordinate
assuming fast equilibration in the transversal channel direction.

3.1. The Fick–Jacobs equation

The marginal probability density along the axis of the channel
is defined by

P(x, t) =
∫ ωeff(x)

−ωeff(x)

P(x, y, t) dy. (9)

Assuming fast equilibration in y-direction the 2D probability
distribution becomes

P(x, y, t) = P(x, t) Q(y|x), (10)

with the local equilibrium distribution Q(y|x) of y, conditional
on a given x . If there is no force component in
transversal channel direction (as it is in our case), the
conditional distribution Q(y|x) is uniform and reads due to
the normalization condition:

Q(y|x) = 1/(2 ωeff(x)). (11)

Then on integrating the full 2D Smoluchowski equa-
tion (5) and making use of equations (9), (10) and (11), the
Fick–Jacobs equation for the spherical particle is obtained:

∂ P(x, t)

∂x
= 1

ρ

∂

∂x
D(x)

{
dA(x)

dx
+ ∂

∂x

}
P(x, t), (12)

with the dimensionless free energy A(x) = − f x−ln 2ωeff(x).
For a periodic channel this free energy assumes the form of a
tilted periodic potential with the bottlenecks forming entropic
potential barriers. Note, that for a straight channel, i.e. constant
effective boundary function, the entropic contribution vanishes
and the particle is solely driven by the external force.

Introducing the x-dependent diffusion coefficient D(x) in
equation (12) considerably improves the accuracy of the kinetic
equation, extending its validity to more winding structures
[21–25]. The expression for D(x) (in dimensionless units)

D(x)
.= 1

[
1 + (dω(x)/dx)2

]1/3
, (13)

has been shown to appropriately account for curvature effects
of the confining walls [22].

3.2. Nonlinear mobility

Besides the effective diffusion coefficient, the average particle
current, or equivalently the nonlinear mobility serves as key
quantity of particle transport through periodic channels. For
any non-negative force the average particle current in periodic
structures can be obtained from [26–28]

〈ẋ〉 = 〈t (x0 → x0 + 1)〉−1, (14)

where 〈t (a → b)〉 denotes the mean first passage time of
particles starting at x = a to arrive at x = b. Within the
Fick–Jacobs equation (12), the mean first passage time can be
determined:

〈t (a → b)〉 = ρ

∫ b

a
dx exp(− f x)/ωeff(x)

×
∫ x

−∞
dy exp( f y)ωeff(y). (15)

The nonlinear mobility μ( f ) is defined by μ( f ) = 〈ẋ〉/ f
and can be obtained as

μ( f ) = 1

ρ
· 1 − exp(− f )

f
∫ 1

0 dz I (z, f )
, (16)

where

I (z, f )=1/D(z) exp(−f z)/ωeff(z)
∫ z

z−1
dy exp( f y)ωeff(y).

(17)
In case of a straight channel with ωmin = ωmax, an exact

analytical solution of the full 2D Smoluchowski equation (5)
is known and the nonlinear mobility equals the free mobility
(i.e. without geometrical constrictions)

μ = μfree = 1/ρ = Rmax/R (for straight channels). (18)
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Consequently, the influence of the confinement can be
expressed by the ratio of nonlinear mobility for the transport
through the channel and the one for the unrestricted case:

μ( f )

μfree
= 1 − exp(− f )

f
∫ 1

0 dz I (z, f )
. (19)

4. Precise numerics for a two-dimensional channel
geometry

The nonlinear mobility, predicted analytically within the Fick–
Jacobs approximation, has been compared with Brownian
dynamic simulations performed by a numerical integration of
the full 2D Langevin equation (3), using the stochastic Euler
algorithm. As random number generator we used the Box–
Muller and MT19937 algorithm from the GSL library. The
sinusoidal shape of the considered two-dimensional channel is
described by

ω(x) := a sin(2πx) + b, (20)

with the two dimensionless channel parameters a and b. In
physical units, these two parameters are given by aL and bL,
respectively. Note that ω(x) may also be regarded as the
first terms of the Fourier series of a more complex boundary
function. Due to the symmetry with respect to the x-axis, the
boundary function could be given in terms of the maximum
half-width ωmax = b + a and the aspect ratio of minimum and
maximum channel width ε = ωmin/ωmax (with ωmin = b − a),
i.e.

ω(x) = ωmax − ωmin

2

[
sin (2πx) + ωmax + ωmin

2

]
, (21)

ω(x) = ωmax

2
(1 − ε)

[
sin (2πx) + 1 + ε

1 − ε

]
. (22)

To ensure, that the spherical particles of radius ρ stay
within this channel geometry, the integration was carried out
performing ‘no-flow’ boundary conditions at the channel walls.
By averaging over 105 simulations we obtain the steady-state
average particle current

〈ẋ〉 = lim
t→∞

〈x(t)〉
t

, (23)

and the nonlinear mobility μ = 〈ẋ〉/ f .

4.1. Nonlinear mobility: force and temperature dependence

Figure 3 depicts the nonlinear mobility as a function of the
scaling parameter f for two different particle radii and a fixed
channel geometry: ω(x) = 0.7/(2π) sin(2πx) + 1.02/(2π).
Strikingly, the transport through such channel structures is
distinctly different from the one occurring in one-dimensional
periodic energetic potentials [2–4, 29]. This phenomenon
is due to the different temperature dependence of the barrier
shapes. Decreasing the temperature in an energetic periodic
potential decreases the transition rates from one cell to the
neighboring one by decreasing the Arrhenius factor [30] and,
therefore, reduces the nonlinear mobility. For the periodic
channel system, a decrease of temperature results in an increase

Figure 3. (Color online) Graph for the scaled nonlinear mobility as a
function of the force parameter f . In the Langevin simulation the
different symbols correspond to different particle radius of ρ = 0.2
(red triangles) and ρ = 0.8 (blue diamonds). The relative error of the
simulation results is smaller than 0.01. The Fick–Jacobs results,
equation (19), correspond to the solid lines. The boundary function
reads: ω(x) = (0.7/2π) sin(2πx) + 1.02/2π .

of the dimensionless force parameter f , cf equation (4)
and consequently, in a monotonic increase of the nonlinear
mobility.

Due to the geometrical restrictions, the nonlinear mobility
is always smaller than the mobility for the free case, cf figure 3.
With increasing scaling parameter, the nonlinear mobility tends
to that of the free case, i.e. μ → μfree for f → ∞.

A comparison of the analytics obtained by means of
the Fick–Jacobs approximation with the precise numerics
enables one to determine validity criteria for the Fick–Jacobs
approximation, for further details see [3, 4]. According to
them the applicability of the Fick–Jacobs approximation for
the transport of point particles depends on the smoothness
of the geometry and the scaling parameter f . For finite
size particles, the diameter of the particles should become
an additional parameter in the validity criteria. In particular,
the particle’s radius determines the maximum width of the
effective channel structure. A larger particle leads to a smaller
maximum effective width. Since for a fast equilibration in
the orthogonal tube direction the timescale for the orthogonal
diffusion process must be smaller than the timescale for the
drift [3], a smaller maximum channel width favors the validity
of the Fick–Jacobs approximation. Thus, with increasing
particle size the range of the applicability of FJ increases,
cf figure 3.

However, it turned out, that the transport phenomena
presented below, occur for channel structures for which the
validity criteria is not fulfilled. Therefore, we stick in the
following, to the numerical results only.

4.2. Particle size

Surely, the transport of particles through small channel systems
depends on the size of the particles. In particular, the effect
of the size on the nonlinear mobility is two-fold. Firstly, the
friction coefficient depends on the particle size, resulting in
a ρ-dependence of the nonlinear mobility even for the case
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Figure 4. The numerically obtained nonlinear mobility μ (a) and the
scaled nonlinear mobility μ/μfree (b) as a function of the radii ratio
ρ = R/Rmax for different channel geometries
(constant-width-scaling: ωmax = const), cf equation (22).

of unconstrained motion (free case), cf equation (18). With
increasing radii ratio ρ, the mobility declines. Secondly, there
is the influence of the geometrical confinement. The extent
of the bottleneck (2ωwmin) gives a limit to the size of particles
able to travel through the channel. In our scaling the largest
sphere possible to overcome the geometry’s bottleneck has a
radii ratio of ρ = 1. Considering particles of different sizes,
the effective bottleneck (2ωeff

min) will be smaller for spheres of
higher diameter. It is intuitive that a small bottleneck hinders
the transport.

Figure 4(a) depicts the nonlinear mobility as a function
of the radii ratio ρ for different geometries. For a straight
channel one observes the nonlinear mobility of the free case
μfree which depends reciprocally on the radii ratio ρ. In
presence of geometrical restrictions, i.e. for varying cross-
section width, the nonlinear mobility is smaller than μfree,
cf figure 4(a). Moreover, upon decreasing the bottleneck half-
width (i.e. decreasing the aspect ratio ε) of the structure, the
nonlinear mobility decreases [31].

Deviations from the 1/ρ-dependence show another effect
of the geometrical confinement, cf figure 4(a). In order
to focus on the geometrical effect, we consider the scaled
nonlinear mobility, i.e. the nonlinear mobility relative to the
nonlinear mobility in free case: μ/μfree, cf figure 4(b). This
is equivalent to the consideration of the nonlinear mobility of a
point particle moving in the effective channel geometry defined
by the effective boundary function ωeff(x), which still depends
on the parameter ρ. With increasing ρ, the maximum half-
width of the effective geometry shrinks. As a consequence, the
sojourn time, the particle spends on average in a bulge of the

channel structure decreases with increasing ρ and the mobility
of the point particle in the effective geometry grows. This
behavior causes the maximum in the scaled nonlinear mobility
and the shoulder in the dependence of the nonlinear mobility
on the radius, cf figure 4.

4.3. Role of the channel structure

The confinement by the considered channel geometry can be
altered by systematically changing the parameters ωmax and
ωmin or ωmax and ε in the boundary function, equation (21) or
equation (22) respectively. While for figure 4 we examined
a constant maximum half-width ωmax = const and varied
the aspect ratio ε which is equivalent to vary the half-width
ωmin at the bottleneck, cf the constant-width-scaling in [31],
it is instructive to also consider both, the constant-bottleneck-
scaling ωmin = const as well as the constant-ratio-scaling ε =
ωmin/ωmax = const.

As we keep the bottleneck width constant and decrease the
maximum half-width, the sojourn times the particles spends
in the bulges decreases causing the mobility to increase and
approach the maximum value for a straight channel (ωmin =
ωmax and ε = 1), cf figure 5(a). In contrast, within
the constant-ratio-scaling, where the bottleneck half-width
scales with the maximum half-width, the nonlinear mobility
μ depends for small radii only slightly on ωmax, cf figure 5(b).
However, with increasing particle size, i.e. radii ratio ρ, the
nonlinear mobility μ shows a striking dependence on the
maximum half-width.

As pointed out already, with increasing particle radius
the effective maximum half-width decreases. The effective
maximum half-width will exhibit a linear dependence on the
radius if the particle curvature is larger than that of the
channel’s boundary function (in physical units),

ωeff
max = ωmax−R, for 1/R >

−d2ω(xmax)/dx2

[
1 + (dω(xmax)/dx)2

]3/2
,

(24)
where xmax denotes the x-values for which the boundary
function assumes a maximum. For larger particle radii the
effective boundary function shows a kink and the effective
maximum half-width ωeff

max decreases faster than linearly with
the radii ratio ρ. As the sojourn times the particle spend in the
channel’s bulges depends mainly on the effective maximum
width, a nonlinear dependence of the nonlinear mobility is
observed for larger particle radii causing a peak in the scaled
nonlinear mobility, cf figures 5(c) and (d).

5. Conclusions and outlook

We studied the transport of finite Brownian particles through
channels with periodically varying width. For point size
particles it was shown previously [3, 4], that the transport
through such channels could be approximately described
by means of the so-called Fick–Jacobs equation which is
based on the assumption of a fast equilibration in orthogonal
transport direction. Validity criteria for the capability of this
approximation include a dependence on the channel shape and
predict an upper limit for the force value. In case of spherical,
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Figure 5. The nonlinear mobility (a), (b) and scaled nonlinear mobility (c), (d) are depicted for different scalings of the geometry:
constant-bottleneck-scaling, i.e. ωmin = const, in (a) and (c); constant-ratio-scaling, i.e. ε = ωmin/ωmax = const, in (b) and (d). The force
parameter f equals 1.6π .

finite size particles the maximum force value up to which the
Fick–Jacobs equation could be applied depends also on the size
of the particle. By comparison of the approximative result for
the nonlinear mobility and the numerical ones we have shown,
that the equilibration assumptions holds for a wider force range
in case of larger particles than it is the case for smaller ones.

In addition, we pointed out, that the transport of finite,
spherical Brownian particles in channel geometries with highly
corrugated channel walls exhibits some striking features which
may allow for the development of newly separation devices
which extends the functionality of the sieves. In particular
we found, that the nonlinear mobility of Brownian particles
in such channel structures deviates from the one-over-size
dependence predicted by the Stokes law for Brownian particles
moving in an environment without geometrical constrictions.
Instead, there is an optimal particle size for which the nonlinear
mobility as compared to the free mobility exhibits a maximum
value.

Our present study also implicitly used a small concentra-
tion of spherical particles such that both, effects of particle–
particle interactions and forces between particle–particle and
particle–walls due to hydrodynamic interactions can safely
be ignored. These complications would require totally new
and extensive studies that are beyond this present study.
Moreover, as emphasized in the abstract already, we assumed
throughout perfect spherical symmetry. Deviations from such
spherical symmetry would also impact the viscous friction law
behavior [32] and, as well, may give rise to additional, new
entropic effects. All such complications are beyond the work
presented here; all these latter complications, however, open
up avenues for interesting future investigations.
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Rubi J M and Pérez-Madrid A 2002 Diffusion in tilted
periodic potentials: enhancement, universality, and scaling
Phys. Rev. E 65 031104

[29] Burada P S, Schmid G and Hänggi P 2009 Entropic transport: a
test bed for the Fick–Jacobs approximation Phil. Trans. R.
Soc. A 367 3157–71

[30] Hänggi P, Talkner P and Borkovec M 1990 Reaction rate
theory: fifty years after Kramers Rev. Mod. Phys.
62 251–342

[31] Burada P S, Schmid G, Li Y and Hänggi P 2010 Controlling
diffusive transport in confined geometries Acta Phys. Pol. B
41 935–47

[32] Koenig S H 1975 Biopolymers 14 2421–3

7

http://dx.doi.org/10.1529/biophysj.104.057588
http://dx.doi.org/10.1063/1.2719193
http://dx.doi.org/10.1103/PhysRevE.80.020904
http://dx.doi.org/10.1103/RevModPhys.70.223
http://dx.doi.org/10.1103/PhysRevLett.101.130602
http://dx.doi.org/10.1140/epjb/e2009-00051-5
http://dx.doi.org/10.1209/0295-5075/87/50003
http://dx.doi.org/10.1103/PhysRevLett.104.020601
http://dx.doi.org/10.1119/1.10903
http://dx.doi.org/10.1016/0370-1573(82)90045-X
http://dx.doi.org/10.1021/j100189a004
http://dx.doi.org/10.1103/PhysRevE.64.061106
http://dx.doi.org/10.1103/PhysRevE.74.041203
http://dx.doi.org/10.1103/PhysRevE.80.031106
http://dx.doi.org/10.1103/PhysRevE.80.061142
http://dx.doi.org/10.1103/PhysRevLett.87.010602
http://dx.doi.org/10.1142/S0219477501000056
http://dx.doi.org/10.1103/PhysRevE.65.031104
http://dx.doi.org/10.1098/rsta.2009.0068
http://dx.doi.org/10.1103/RevModPhys.62.251
http://dx.doi.org/10.1002/bip.1975.360141115

	1. Introduction
	2. Modeling
	2.1. Dynamics inside the channel
	2.2. Boundary conditions

	3. Fick--Jacobs approximation
	3.1. The Fick--Jacobs equation
	3.2. Nonlinear mobility

	4. Precise numerics for a two-dimensional channel geometry
	4.1. Nonlinear mobility: force and temperature dependence
	4.2. Particle size
	4.3. Role of the channel structure

	5. Conclusions and outlook
	Acknowledgments
	References



