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We present a theoretical treatment for the dissipative two-resonator circuit quantum electrodynamics setup
referred to as quantum switch. There, switchable coupling between two superconducting resonators is mediated
by a superconducting qubit operating in the dispersive regime, where the qubit transition frequency is far
detuned from those of the resonators. We derive an effective Hamiltonian for the quantum switch beyond the
rotating-wave approximation and provide a detailed study of the dissipative dynamics. As a central finding, we
derive analytically how the qubit affects the quantum switch even if the qubit has no dynamics, and we
estimate the strength of this influence. The analytical results are corroborated by numerical calculations, where
coherent oscillations between the resonators, the decay of coherent and Fock states, and the decay of resonator-
resonator entanglement are studied. Finally, we suggest an experimental protocol for extracting the damping
constants of qubit and resonators by measuring the quadratures of the resonator fields.
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I. INTRODUCTION

Circuit quantum electrodynamics1–3 �QED� is the solid-
state analog of quantum-optical cavity QED.4–6 While in the
latter natural atoms are coupled to three-dimensional cavi-
ties, the former is based on superconducting quantum circuits
and the roles of the atoms and the cavities are played by
qubit7–9 and microwave resonator circuits,10–12 respectively.
In fundamental research, circuit QED architectures have
proved to be valuable for implementing quantum optics on a
chip, for which a rich toolbox has been developed.13–22 These
experiments were based on a single qubit coupled to a single
resonator. With applications for quantum information pro-
cessing in mind, an extension to multiple qubits seems
natural.23–26 More recently, the potential of using multiple
resonators has been pointed out by several authors.27–29

Under opportune circumstances, in a two-resonator circuit
QED setup, a superconducting qubit acts as a quantum
switch between two superconducting on-chip resonators.27

To this end, the qubit must be detuned from both resonators.
The resulting effective Hamiltonian describes a resonator-
resonator interaction whose coefficient has two contribu-
tions. The first contribution depends on the qubit state and
the qubit-resonator detuning and can have a positive or nega-
tive sign. The second one has a definite sign and stems from
the fact that qubit and resonators are not pointlike objects but
extended circuits. Provided that the qubit always is in a suit-
able energy eigenstate, the switch is turned off when both
terms are balanced and turned on otherwise. Beyond this
simple protocol, the “quantumness” of the setup can be ex-
ploited by bringing the qubit into a superposition state with
the resonators. This allows for generating bipartite and tri-
partite entanglement or Schrödinger cat states.

In a real experiment, one expects the operation of the
two-resonator circuit QED setup to be affected by the vari-

ous decoherence rates of qubit and resonators. Since most
implementations of superconducting qubits can be tuned by
external parameters, those rates depend not only on the qubit
type, but also on the operating point. So far,30–34 they have
been in the range of approximately 1–200 MHz. In the case
of the quantum switch, only qualitative estimates on the ef-
fect of qubit dephasing exist.27 However, a detailed quanti-
tative understanding of the possible effects stemming from
the various existing decoherence channels is indispensable
for successful experimental implementation. In particular, it
is essential to analyze the effect of qubit decoherence sources
on the coupled resonator pair. Hence, in this work, we de-
velop a complete dissipative theory for a circuit QED setup
consisting of two resonators both dispersively coupled to a
single qubit. As a central result, we demonstrate that qubit
relaxation affects the resonators in second dispersive order,
whereas dephasing becomes an issue only in fourth disper-
sive order.

The paper is structured as follows. In Sec. II, we intro-
duce the system Hamiltonian and add the baths causing dis-
sipation to the system. We model the bath influence using a
Bloch-Redfield quantum master equation. Next, in Sec. III B,
we derive an effective system Hamiltonian beyond the
rotating-wave approximation �RWA�. We show that this ex-
tension results in quantitative, but not qualitative changes
compared to a treatment within RWA. Furthermore, in Sec.
III C, we derive a simplified effective quantum master equa-
tion suitable for analytical treatments. In particular, we use
the latter result to compute an explicit expression for the
influence of the qubit dissipation channel on the two-
resonator system. Sec. IV contains numerical results for vari-
ous prototypical operation modes of the quantum switch
setup. These include coherent oscillations between the reso-
nators, the decay of Fock and coherent states, and the decay
of resonator-resonator entanglement. We show that the agree-
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ment with the analytical results obtained by means of the
effective quantum master equation of Sec. III C is excellent.
Most importantly, we show that qubit dissipation affects the
switch only in second dispersive order. Finally, in Sec. V, we
suggest a protocol to extract the damping constants of the
system by measuring the field modes of the resonators. The
appendices contain technical details about the calculations
presented in this article.

II. DISSIPATIVE TWO-RESONATOR CIRCUIT QED

We introduce a dissipative description for a circuit QED
architecture consisting of two on-chip microwave resonators
that are simultaneously coupled to one superconducting qu-
bit. This setup is sketched in Fig. 1. We emphasize that our
formalism is general in the sense that qubit and resonators
can be based on any suitable quantum circuits. However,
whenever we need to give numbers, we assume a persistent-
current flux qubit35,36 coupled to two transmission line reso-
nators henceforth.

A. System-bath model

First, we write down the two-resonator circuit QED
Hamiltonian. A detailed derivation is given in Ref. 27. The
natural reference frame is the laboratory basis, the physical
basis of circuits and fields,

H� =
��

2
�z� +

��Q

2
�x� + ��Aa†a + ��Bb†b

+ �G�a + a†��b + b†� + �gA�z��a + a†� + �gB�z��b + b†� .

�1�

The first two terms in the first line of the above Hamiltonian
represent the qubit in terms of the standard Pauli operators
�x� and �z�. The controllable energy bias is ��, and ��Q de-
notes the minimum level splitting. In the particular case of a

flux qubit,35,36 ��Q is the tunnel splitting, and the energy bias
��=2iQ��x

DC−�0 /2� can be tuned by an externally applied
flux �x

DC. The quantities iQ and �0=h /2e denote the qubit
persistent current and the magnetic flux quantum, respec-
tively. When �x

DC=�0 /2 or, equivalently, �=0, the qubit is
said to be biased at its degeneracy or optimal point, where it
is protected from low-frequency noise to first order. The last
two terms in the first line of Eq. �1� represent the two reso-
nators with frequencies �A and �B. Here, a, b and a†, b† are
the annihilation and creation operators of the modes in reso-
nators A and B, respectively. The second line of Eq. �1�
describes the geometric coupling between the resonators,
which is due to the fact that we are dealing with circuits. The
coupling coefficient G contains contributions both from a
direct coupling and an interaction that is mediated by the
qubit circuit. Finally, the third line of Eq. �1� describes the
qubit-resonator coupling terms with coefficients gA and gB.
As explained in Sec. III B, they give rise to a “dynamical”
resonator-resonator coupling under appropriate conditions.

In a real experimental scenario, the two-resonator circuit
is unavoidably coupled to an external circuit that is charac-
terized by an impedance Z���. In a quantum mechanical de-
scription, this impedance can be modeled by coupling the
circuit bilinearly to the modes of an electromagnetic environ-
ment consisting of an infinite set of harmonic oscillators.37,38

Following this route, we obtain a Caldeira-Leggett-type
system-bath Hamiltonian,39–41

Htot� = H� + �
	

Q	�
j

cj
	�dj,	

† + dj,	�

+ �
	

�
j

�� j
	�dj,	

† dj,	 +
1

2
� . �2�

The indices 	� �A ,B ,x ,z� label the system-bath coupling
operators with respect to the different reservoirs the system
is coupled to. In detail,

QA = �a + a†�, Qx = �x�,

QB = �b + b†�, Qz = �z�. �3�

The coupling coefficients cj
	 represent the interaction be-

tween the system and the different bath modes with frequen-
cies � j

	, which are described by the bosonic annihilation and
creation operators dj,	 ,dj,	

† . Within the scope of this paper,
we consider the noise sources to be uncorrelated. This is
justified since the different types of noise are caused by fluc-
tuations of distinct nature. In other words, we assume that
the baths are independent, �di,	 ,dj,


† 	=�ij�	
. We find it note-
worthy to mention that for 	� �x ,z� the coefficients cj

	 de-
pend on the specific implementation of the qubit. For a flux
qubit, the dominant noise source is believed to be flux
noise,31–33 which couples to the circuit via the z axis in the
laboratory frame.

In order to get more physical insight, we rotate H� into
the qubit energy eigenbasis42 �
g� , 
e��, where 
g� and 
e� de-
note the flux-dependent qubit ground and excited state, re-
spectively. Using the redefined Pauli operators

�x = 
g��e
 + 
e��g
 = cos ��x� − sin ��z�,

gBg A

γφ

A B

γ

κA κB

G

|e〉
|g 〉

FIG. 1. �Color online� Sketch of the two-resonator circuit QED
system under analysis, including schematically the interaction with
bosonic heat baths �blue boxes with oscillator potentials�. Either
microstrip or coplanar waveguides could be employed as resonators
�red lines�. As in the text, the coupling qubit is exemplarily depicted
as persistent-current flux qubit �green loop�. The system is coupled
to external circuits via coupling capacitors. The decay rates ��A,B�, 
and � are defined in Sec. II C.
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�z = 
e��e
 − 
g��g
 = sin ��x� + cos ��z�, �4�

we obtain

H =
��qb

2
�z + ��Aa†a + ��Bb†b + �G�a + a†��b + b†�

+ �gA�cos ��z − sin ��x��a + a†�

+ �gB�cos ��z − sin ��x��b + b†� . �5�

The flux dependence is now encoded in the qubit energy
level splitting ��qb=���Q

2 +�2�1/2 and the mixing angle �
=arctan��Q /��. The qubit-bath coupling operators are rewrit-
ten as

Qx = �x� = cos ��x + sin ��z,

Qz = �z� = cos ��z − sin ��x. �6�

They are defined along the rotated axes determined by the
tunneling matrix element ��Q in �x� direction, and the energy
bias �� in �z� direction. The system-bath interaction is fully
characterized by the spectral densities

J	��� = �
j


cj
	
2��� j − �� . �7�

In the case where decoherence is mainly caused by external
circuitry, the spectral densities are proportional to the real
part of the impedances Re�Z	���	. In general, internal loss
mechanisms are also relevant in superconducting resonators
at low powers and low temperatures. They often originate
from fluctuators on the resonator surface, which are usually
modeled as two-level systems. Thus, we interpret the J	���
in an effective sense in that they include both the effects of
external circuitry and internal losses. Our effective descrip-
tion does not cover the so-called excess phase noise though,
i.e., low-frequency fluctuations in the resonator frequency
itself, which originate from the surface fluctuators as well.
As it was pointed out and investigated experimentally,43,44

this leads to resonator dephasing. While such effects are not
included in our modeling of decoherence, we cannot ensure
that they will only be of minor importance with respect to
operating the two-resonator setup �see below in Sec. III A�.
In most experimental situations, however, decoherence is
predominantly governed by external resonator losses. The
corresponding external quality factor is characterized by the
coupling capacitors to external circuitry. We note that reso-
nator dephasing was not reported to play a major role in
recent circuit QED experiments done with comparable reso-
nators, in particular at low photon numbers.45 In any case,
the role of nonvanishing excess phase noise requires a sepa-
rate, more detailed treatment with respect to an intended ex-
perimental realization of our setup.

B. Bloch-Redfield quantum master equation

The dissipative dynamics of the qubit-two-resonator sys-
tem is obtained by tracing out the bath degrees of freedom of
the total density operator �tot associated with the transformed
system-bath Hamiltonian,

Htot = H + �
	

Q	�
j

cj
	�dj,	

† + dj,	�

+ �
	

�
j

�� j
	�dj,	

† dj,	 +
1

2
� , �8�

where the qubit-bath coupling operators Qx and Qz are now
written in the qubit eigenbasis according to Eq. �6�. For weak
system-bath interaction, the baths can be eliminated within
Bloch-Redfield theory46,47 as follows: Assuming that the
baths are initially in thermal equilibrium at temperatures
T	 and not correlated with the system state �, the
total system-bath state can be written as �tot�� � 	exp
�−� j�� j

	dj,	
† dj,	 /kBT	�. Then, one can derive within pertur-

bation theory the quantum master equation for the reduced
system density operator �=Trbath��tot	. This procedure yields

�̇�t� = −
i

�
�H,��t�	 +

1

�2�
	
�

0

�

d�K	���

��Q̃	�− ����t�Q	 − Q	Q̃	�− ����t�	 + H.c. �9�

The environment correlation functions K	��� are given by

K	��� =
�

�
�

0

�

d�J	����coth� ��

2kBT	
�cos �� − i sin ��� ,

�10�

where, J	��� are the spectral densities �7�. The Heisenberg

operators Q̃	���=U0
†���Q	U0��� are constructed via the sys-

tem propagator U0���=T�exp�−�i /���0
�dtH�t��	. Here, the

time ordering operator T is only required for an explicitly
time-dependent system Hamiltonian.

We note that Eq. �9� is based on a Born-Markov approxi-
mation, since the bath correlation functions are supposed to
decay sufficiently fast as compared to typical time scales of
intrinsic system evolution. Thus, it was appropriate to extend
the integral in Eq. �9� to infinity. Consistently, we assume
Ohmic spectral densities in the correlation functions of Eq.
�10�, modeling Z��� as an effective resistance. However, this
restriction is only necessary in the low-frequency region of
the qubit environments. There, we assume

J	��� = �	� 	 � �x,z�, �� �qb, �11�

and the coefficients �	 represent the dimensionless damping
strengths. As we will see later, in the high-frequency regime,
we are interested only in infinitely small intervals around
frequencies such as �qb, �A, and �B. Hence, the Born-
Markov approximation remains justified by expanding J	���
to first order in these intervals. In this way, the only remain-
ing restriction is that J	��� is a smooth function around the
frequencies of relevance. Within the scope of this work, we
shall consider Eqs. �9�–�11� as a full description of the influ-
ence of dissipation and decoherence on the two-resonator
setup.

This reasoning excludes in particular 1 / f noise, which
affects the phase coherence of superconducting qubits31,33,48

due to its high impact at low frequencies. One typically de-
scribes 1 / f noise by calculating the accumulated random
phase as a function of time for specific experimental
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protocols.32,48,49 However, as shown below, we expect the
effect of qubit dephasing to be suppressed even more than
relaxation effects in the setup described here.

Since the quantum master equation �9� is nontrivial with
respect to analytical treatment, we only use it for numerical
purposes. However, in Sec. III, we derive a simplified effec-
tive quantum master equation in the dispersive regime,
which will allow for analytic insight into the dissipative be-
havior of the two-resonator circuit.

C. Qubit decay rates

So far, we have modeled the coupling of the qubit to the
baths in the laboratory frame. In this way, we can include the
relevant noise channels for any particular qubit architecture
into our formalism easily. However, with regard to physical
understanding, it is more favorable to work in the qubit en-
ergy eigenframe and refer to what is commonly called energy
relaxation and pure dephasing. The former describes bath-
induced level transitions, while the latter accounts for the
pure loss of phase coherence without a change of the system
energy. In order to define the decay rates corresponding to
these two processes, we first review the dissipation mecha-
nisms of the qubit alone. To this end, we derive the quantum
master equation describing the evolution of the reduced qubit
density matrix �qb for a single qubit associated with the
Hamiltonian Hqb=��qb�z /2 in the energy eigenbasis. Using
the formalism detailed in Appendix A, we find

�̇qb�t� = −
i

�
�Hqb,�qb�t�	

+ ��qb���−�qb�t��+ −
1

2
��+�−,�qb�t�	+�

+ ��� → 0���z�qb�t��z − �qb�t�	 , �12�

where �A ,B	+=AB+BA denotes the anticommutator be-
tween the operators A and B. The dissipator in the third line
of Eq. �12� does not affect the populations of the qubit eigen-
states, but only accounts for the decay of the off-diagonal
elements of the density operator. Thus, the rate ���→0�
can be associated with pure dephasing. The dissipator in the
second line of Eq. �12� induces transitions between the qubit
eigenstates, hence ��qb� characterizes relaxation. Assuming
an overall temperature T=Tx=Tz, and following Eqs. �A7�
and �A9�, the qubit energy relaxation rate ��qb� and pure
dephasing rate ���→0� are obtained as

��qb� = Jx��qb�cos2 � + Jz��qb�sin2 � , �13�

��� → 0� =
kBT

�
��z cos2 � + �x sin2 �� . �14�

Equations �13� and �14� link the physical system-bath inter-
actions quantified in the laboratory frame to the pure bit-flip
and dephasing mechanisms relevant in the qubit eigenbasis.
Moreover, they highlight the dependence of the pure decay
rates on the applied flux in terms of the mixing angle �. In
particular, for a flux qubit, flux noise can be responsible for
both relaxation and dephasing. We emphasize that, in this

special scenario, Jx���=0 and Jz����0, and Eq. �13� is con-
sistent with results from other works.32,48,49

III. ANALYTICAL TREATMENT OF DECOHERENCE IN
THE DISPERSIVE LIMIT

In the setup of Fig. 1, the qubit can mediate a controllable
coupling between the two resonators, i.e., it can act as a
quantum switch between them. In this section, we review the
quantum switch Hamiltonian of Ref. 27 and extend it beyond
the rotating-wave approximation. Furthermore, we derive an
effective quantum master equation which allows us to under-
stand by purely analytical arguments that the quantum switch
is affected by the qubit dissipation only in second �relax-
ation� and fourth order �dephasing�, respectively.

A. Dispersive Hamiltonian within the rotating-wave
approximation: The quantum switch

In order to function as a quantum switch, the two-
resonator circuit must be operated in the dispersive limit,
where the qubit-resonator detuning � is large as compared to
the qubit-oscillator coupling,

g ��, � = �qb − � , �15�

and the parameter �� is necessarily small,

�� =
g sin �

�
, 
��
 � 1. �16�

Here and henceforth, we confine ourselves to symmetric set-
ups with �=��A,B� and g=g�A,B�. This is not expected to be a
serious restriction in practice, though.27

In the dispersive limit determined by Eq. �15�, the Hamil-
tonian of Eq. �5� can be diagonalized approximately. To this
end, it is first simplified with a rotating-wave approximation
as follows. Writing �x=�++�− with the fermionic raising
and lowering operators �+= 
e��g
 and �−= 
g��e
, one can
move to the interaction picture with respect to the uncoupled
Hamiltonian. Then, the coupling operators �+a, �−a†, �+b,
and �−b† oscillate with the phase factors exp��i�t	, whereas
�−a, �+a†, �−b, and �+b† oscillate with exp��i�t	, where

� = � + �qb. �17�

Close to resonance, the resonator-qubit detuning is small
and, consequently, 
�
��. Thus, the former set of operators
oscillates slowly, whereas the latter exhibit fast “counter-
rotating” oscillations. For sufficiently weak coupling g
�min��qb,��, one can separate time scales and average the
counter-rotating terms to zero. In this way, the first-order
interaction Hamiltonian between qubit and resonators is
Jaynes-Cummings-like50 and we describe our system with

HRWA =
��qb

2
�z + ��a†a + ��b†b

− ������+a + �−a† + �+b + �−b†� + �G�a†b + ab†� .

�18�

In a second step, we apply the unitary transformation
URWA=exp�−��D�, where

REUTHER et al. PHYSICAL REVIEW B 81, 144510 �2010�

144510-4



D = �−a† − �+a + �−b† − �+b . �19�

Finally, we truncate the transformed Hamiltonian Heff
RWA

=URWA
† HRWAURWA to second order in ��, yielding

Heff
RWA = ���a†a + b†b + 1� +

��qb

2
�z

+ ����
2�z�a†a + b†b + 1� + �ĝSW

RWA�ab† + a†b� .

�20�

Here, the first line describes qubit and resonators, the second
ac-Stark/Zeeman and Lamb shifts, and the third an effective
coupling between the two resonators. The corresponding
coupling operator is

ĝSW
RWA = G + ���

2�z. �21�

A remarkable feature of the Hamiltonian of Eq. �20� is that it
commutes with �z, i.e., �Heff

RWA,�z	=0. Consequently, the
qubit state will not change during the unitary evolution of the
system. When the qubit is prepared in a suitable eigenstate, it
can be traced out. Throughout this work, we consider the
qubit to be initially prepared in its ground state 
g��g
. Then,
ĝSW simplifies to the resonator-resonator coupling constant

gSW
RWA = G − ��

2� . �22�

In this case, the Hamiltonian of Eq. �20� describes two
coupled harmonic oscillators. By means of either adiabatic or
oscillating external flux signals, the qubit can be tuned such
that the interaction between the resonators is either switched
on �
gSW

RWA
�0� or off �
gSW
RWA
=0�. This feature is referred to

as the switch-setting condition. With the help of specific pro-
tocols, it can be utilized to create entangled states out of
initial bi-resonator product states.

We note that the effective coupling between both resona-
tors can be interpreted as a beam-splitter interaction. A com-
parable quantum-optical setup was proposed in Ref. 51.
There, an atom passing through a cavity serves to create
entanglement between two optical fields inside the cavity.
That system is described by an effective Hamiltonian quite
analogous to Eq. �20�.

For this work the “adiabatic” shift protocol is of particular
relevance. There, parameters are initially chosen so as to
fulfill the switch-setting condition when the qubit is in 
g�.
Then, the resonator-resonator interaction can be turned on by
adiabatically varying the flux bias. Experiments have shown
that a flux change slow enough to avoid significant popula-
tion of the excited state can be realized easily even in pulsed
setups.32

Regarding the influence of a dissipative environment on
the quantum switch, we already note that, for suitable
switching protocols and at sufficiently low temperatures, the
qubit energy relaxation and dephasing will not affect the op-
eration of the switch in first order. As one of the main results
of this work, we give analytic arguments to put this state-
ment on firm theoretical footings in Sec. III C.

B. Dispersive Hamiltonian beyond the rotating-wave
approximation

In the process of deriving Eq. �20� in the previous section,
a rotating-wave approximation is applied to the Hamiltonian
�5� at the level of first-order in the qubit-oscillator coupling.
However, it has recently been revealed that neglecting the
counter-rotating terms may lead to inaccuracies.52 Especially
in the case of far detuning described by Eq. �15�, the
rotating-wave approximation causes noticeable deviations
from results obtained numerically from the full Hamiltonian
of Eq. �5� for typical parameters. Nevertheless, the effective,
dispersive Hamiltonian can be obtained by means of the uni-
tary transformation

U = exp�− ��D − ��S − ��W� . �23�

Here,

S = �−a − �+a† + �−b − �+b†, �24�

W = �z�a − a†� + �z�b − b†� , �25�

and the corresponding coefficients are

�� =
g sin �

�
, 
��
 � 1, �26�

�� =
g cos �

�
, 
��
 � 1. �27�

The above inequalities allow us to discard terms of orders
higher than ���,�,��

2 when computing the effective second-
order Hamiltonian Heff=U†HU. In this case,

Heff = ���a†a + b†b + 1� +
��qb

2
�z

+ �����
2 + ���

2 ��z�a†a + b†b + 1� + �ĝSW�ab† + a†b�
�28�

becomes diagonal. In the above equation, we use the qubit-
state-dependent resonator-resonator coupling operator

ĝSW = G + ���
2� + ��

2���z. �29�

At this point, we can gain insight about the effect of the
transformation U �Eq. �23�	 on the Hamiltonian. We first note
that, when applying the rotating-wave approximation to H,
only the exponent D is required to produce a diagonal
second-order Hamiltonian, cf. Sec. III A. Beyond this simple
scenario,52 the exponent S cancels the first-order counter-
rotating terms of H. Furthermore, the polaron transformation
represented by the exponent W must be applied to eliminate
off-diagonal interaction terms such as g cos ��z�a+a†�,
which cause qubit-state-dependent energy shifts of the oscil-
lator coordinates when the qubit is biased away from its de-
generacy point.

However, in Heff, terms of the order ���,�,��
2 , such as, e.g.,

�+�a�†��2 or �+a†a, need to be canceled with a rotating-wave
argument. We emphasize that this rotating-wave approxima-
tion in second order in Heff still allows for an accurate de-
scription of our system in the dispersive regime, whereas a
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rotating-wave approximation in the first-order Hamiltonian
H does not. Following the same reasoning, we may also
neglect terms �G /� ,G /� , . . . �1. The effective Hamil-
tonian Heff of Eq. �28� has the same structure as its rotating-
wave counterpart Heff

RWA of Eq. �20�. However, there is one
important quantitative difference: the detuning dependence
��

2� of the coupling coefficients is replaced by the expres-
sion ���

2�+��
2��. In particular, the effective resonator-

resonator coupling constant is

gSW = G − ���
2� + ��

2�� �30�

for the qubit being in its ground state. The effect of the
counter-rotating terms is visualized in Fig. 2. There, we com-
pare gSW

RWA and gSW to the numerically exact coupling coef-
ficient for adequate parameters. Obviously, in contrast to
gSW

RWA, the agreement is excellent for gSW. This finding once
more confirms the necessity to include counter-rotating terms
of first order in the qubit-oscillator coupling in the full sys-
tem Hamiltonian. It also confirms the validity of the rotating-
wave approximation in second order of ���,�,�� applied to the
dispersive Hamiltonian. We also illustrate the importance of
the non-RWA features below, where we develop a dissipative
description of the quantum switch Hamiltonian coupled to
different reservoirs.

C. Effective master equation for the quantum switch setup

In this section, we analytically investigate the dissipative
behavior of the two-resonator-qubit system. To this end, we
derive an effective quantum master equation for the reduced
density matrix of our system in the dispersive limit.53,54 In
particular, we study the additional dissipation imposed on the
resonators due to the presence of the qubit.

In principle, we combine the procedure explained in Sec.
III B with that of Sec. II C and apply it to the system-bath
Hamiltonian Htot of Eq. �5�, which includes all counter-
rotating terms. First, we compute the total dispersive Hamil-
tonian Htot,eff=U†HtotU using the transformation �23� and
truncate it to second order with respect to the parameters
���,�,��, as described above. During this procedure, we ob-
tain the effective system-bath coupling operators

Q	,eff = U†Q	U, 	 � �A,B,x,z� . �31�

The explicit expressions for these effective coupling opera-
tors are given in Appendix B. In the next step, we derive the
effective quantum master equation following the lines of
Refs. 55 and 56. While the interested reader can find the
details in Appendix C, we give a short summary of the most
important steps in the following. Motivated by the usual ex-
perimental conditions in circuit QED, we assume an equal
temperature for all baths, T=T�x,z,A,B�, and confine ourselves
to the low-temperature regime kBT /��min��qb,� ,� ,��.
Consequently, we neglect all contributions to the dissipative
system dynamics that describe energy absorption from the
baths.

Using Eq. �9� as a starting point, we move first to an
interaction picture with respect to the uncoupled qubit and
resonators and insert the spectral decompositions of the ef-
fective coupling operators. In the following, we perform a
semisecular approximation.56 To this end, we dismiss terms
that evolve rapidly compared to the time evolution of the
system state, i.e., on system time scales �� ,�qb,� ,��−1. On
the contrary, we keep those terms that oscillate slowly at
frequencies such as ��

2� ,��
2� ,��

2 �. We emphasize that our
result goes beyond the standard Lindblad master equation,
where one would perform a full secular approximation, dis-
missing all oscillating contributions. In this way, we obtain
the effective quantum master equation for the reduced sys-
tem state, Eq. �C17�. There, we assume ��x,z����qb /kBT in
order not to violate the Markov approximation.

In order to gain physical insight into the influence of dis-
sipation on the quantum switch setup, we can simplify the
complicated effective master equation of Eq. �C17�. In the
dispersive regime, the qubit mediates part of the coupling
between the resonators by exchanging virtual, but not real
excitations with them. In particular, as discussed in Sec.
III B, the switch can be operated in a way that the qubit is
initially prepared in the ground state and remains there dur-
ing the whole time evolution, as it cannot suffer from further
decoherence. In this scenario, the qubit degrees of freedom
can be traced out and the reduced Hamiltonian of the
coupled resonators becomes

Hcav
eff = ���a†a + b†b + 1� − ����

2� + ��
2���a†a + b†b + 1�

+ �gSW�ab† + a†b� . �32�

With the dissipator D�X	 acting on an operator X in the prod-
uct Hilbert space of the resonators,

D�X	�cav = X�cavX
† −

1

2
�X†X,�cav	+, �33�

we can write down the effective Lindblad-type quantum
master equation for the reduced state �cav of the two coupled
oscillators up to second order in �� and ��,

�̇cav = −
i

�
�Hcav

eff ,�cav	 + �AD�a	�cav

+ �BD�b	�cav + �qbD�a + b	�cav. �34�

The above equation reveals the relevant processes governing
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FIG. 2. �Color online� Switch setting coefficient gSW �qubit in
the ground state� for the RWA �blue dash-dotted line� and non-RWA
case, Eq. �30� �red dashed line�, compared to numerical data ob-
tained from the diagonalization of Hamiltonian �1� �black solid
line�. All quantities are plotted against the qubit flux bias �x

DC.
Parameters are � /2�=3.5 GHz, �Q /2�=4 GHz, G /2�
=0.0022 GHz, and g /2�=0.24 GHz.
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the dissipative behavior of the quantum switch. The dissipa-
tors D�a	 and D�b	 represent the independent decay channels
due to the individual environments of the resonators A and B,
respectively. The corresponding decay rates are the inverse
lifetimes of the uncoupled resonators, �A=JA��� and �B
=JB���. These rates may incorporate the combined effects of
internal and external loss mechanisms, according to the dis-
cussion in Sec. II A. In addition to these contributions, the
qubit introduces extra dissipation on the resonators via the
dissipator D�a+b	. The appearance of the center-of-mass co-
ordinate a+b of the two-resonator system in the dissipator
originates from the system Hamiltonian of Eq. �5�, where the
qubit couples to the resonator “center of mass” coordinate,
i.e., the interaction is proportional to �x�a+b+a†+b†� and
�z�a+b+a†+b†�, respectively. The qubit-induced damping
rate is

�qb = ��� + ���2�Jx���cos2 � + Jz���sin2 ��

= ��� + ���2��� , �35�

where ��� is the rate defined in Eq. �A7� for the bare qubit.
In the expressions for �A, �B, and �qb, the spectral densities
J�A,B,x,z���� are required to be smooth functions at �=� in
order that Ohmic behavior can be assumed locally. The rea-
soning is the same as the one presented in Appendix A.

The qubit-induced damping rate of the two-resonator sys-
tem, �qb of Eq. �35�, constitutes one central result of this
work and has several remarkable features. First of all, we
note that ��� has the same functional dependence on the
qubit mixing angle � as the relaxation rate ��qb� of the bare
qubit, Eq. �13�. However, J�A,B,x,z���� and the corresponding
J�A,B,x,z���qb� are not necessarily equal, thus the values of
both rates are different in general. Second, the rate �qb is of
second order in �� and �� because the qubit-mediated inter-
action responsible for the effective noise channel in Eq. �34�
is a second-order effect. This also explains the, at a first
glance, surprising fact that the qubit induces a decay of the
two-resonator system even though its excited state is never
populated. We can understand this by recalling that the
resonator-resonator interaction is mediated not by real, but
by virtual qubit excitations, which are known to give rise to
second-order effects. Equivalently, we may apply a more
classical picture, which is based on the fact that the
resonator-resonator coupling coefficient gSW of Eq. �30� de-
pends on the qubit-resonator detuning. Hence, the qubit
baths, which cause first-order fluctuations to the qubit level
splitting, induce second-order fluctuations of gSW. The latter
are described by the last term of Eq. �34�.

Remarkably, the associated decay rate �qb is related to the
qubit relaxation , whereas dephasing � would enter the
effective master equation �34� only in fourth order in ���,��
�cf. also Eq. �C17�	. Mathematically, this can be understood
from the structure of the dispersive operator �z,eff of Eq.
�B5�, which couples the system to dephasing noise. To the
order ���,��, this operator contains products of operators
which change the populations of the qubit and resonators
simultaneously. On the one hand, the term �+a, for example,
describes the excitation of the qubit together with the emis-
sion of a resonator photon, a process which is energetically

forbidden at low temperatures for �=�qb−��0. On the
other hand, terms such as �−a† and �−b† have no effect when
the qubit remains in the ground state. By contrast, the opera-
tor �x,eff of Eq. �B4�, which is responsible for the qubit en-
ergy relaxation, contains terms such as �z�a+b� of the order
���,��. These describe a resonator decay without exciting the
qubit, which is energetically favorable at low temperatures.
For this reason, the only remaining contribution to qubit-
enhanced decay up to second order in ���,�� in the effective
quantum master equation for the two resonators, Eq. �34�,
stems from qubit relaxation. The fourth-order contribution to
the dephasing is related to the appearance of corresponding
operators of the order ���,��

2 in �z,eff, which change the states
of the resonators but not that of the qubit.

IV. NUMERICAL RESULTS

We now investigate the validity of the effective Hamil-
tonian �28� with respect to the resonator-resonator coupling
constant, Eq. �29� and the effective quantum master equation
�34� for the resonators. Therefore, we compare the analytical
results derived in the previous sections to numerically exact
results obtained with the Bloch-Redfield quantum master
equation �9� using the full Hamiltonian �5�. For further con-
venience, we assume uniform resonator decay rates, �=�A
=�B. In our numerical simulations we use conservative esti-
mates for the qubit decay rates. This is to stress the effect of
the qubit dissipation channel on the resonators.

A. Rabi oscillations

The observation of Rabi oscillations between the two
resonators is a first feasible application to probe the two-
resonator setup. A system prepared in the product state

g�qb
1�A
0�B is subject to a periodic exchange of the excita-
tion between the resonators as long as their coupling is finite,
gSW�0. The corresponding oscillation time is TRabi
=� /gSW. The initial excitation could be provided to one of
the resonators by means of an ancilla qubit. For this purpose,
suitable protocols have recently been proposed.22,57–59

Figure 3�a� depicts the according behavior of the resona-
tor populations as a function of time. We find the numerically
observed oscillation period to be in good agreement to TRabi.
Note that we have already incorporated the effects of the
dissipative environments modeled by the Bloch-Redfield
master equation �9� �see discussions in the following sec-
tions�. The time evolution of the qubit population ��z� is
plotted in Fig. 3�b�. From this we can verify that the qubit
remains in its ground state after weak initial transients. These
findings substantiate the validity of the effective Hamiltonian
�28� in the dispersive regime.

B. Decay rates

In the following we are interested in understanding quan-
titatively the influence of the reservoirs on the two-resonator
setup. For this purpose we first make an analytical estimation
based on the effective quantum master equation �34�, which
are compared then to numerical results obtained with Eq. �9�.
We investigate the time evolution of particular observables,
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the associated operators of which are constants of motion
with respect to the dynamics of the closed system. Thus, any
dynamics is produced by the dissipators of the quantum mas-
ter Eqs. �9� or �34�, respectively.

At this point we recall that the effective Hamiltonian sim-
ply describes a set of two coupled harmonic oscillators as
long as the qubit remains in its ground state. They are each
coupled to independent noise channels, as well as to a joint
channel of qubit-induced correlated noise via their “center of
mass coordinate.” The latter is defined as the bosonic opera-
tor A+= �a+b� /�2. In addition we define the “relative coor-
dinate” A−= �a−b� /�2. In terms of these normal modes the
oscillators are not coupled. The associated number operators
are constants of motion, �Heff ,A�

† A�	=0. For further
progress we compute the time evolution of the averages
�A�

† A�� using the effective quantum master equation for the
two-resonator system �34�. Here we note that the evolution
of any operator O without explicit time dependence is de-
scribed by the adjoint of the quantum master equation �34�,

�t�O� =
i

�
��Hcav

eff ,O	� + ��D†�a	O� + ��D†�b	O�

+ �qb�D†�a + b	O� , �36�

with

�t�O� = tr��t�O� .

The adjoint Lindblad superoperators D† act on the operator
O, according to

D†�X	O = X†OX −
1

2
�X†X,O	+, �37�

cf. Eq. �33�. Evaluating this relation for the normal mode
number operators O=A�

† A� yields

�A+
†A+��t� = �A+

†A+�t=0e−��+2�qb�t �38�

and

�A−
†A−��t� = �A−

†A−�t=0e−�t. �39�

The normal modes are thus expected to decay exponentially.
Remarkably, these decays should occur at different rates. The
qubit-induced noise channel only couples to the center of
mass, which suffers enhanced decay. This becomes manifest
in the contribution 2�qb to the exponent in Eq. �38�, with the
rate �qb from Eq. �35�. The relative coordinate is not affected
by the qubit noise channel, however, and simply decays with
the resonator decay rate �, see Eq. �39�. Formally, this is
because of

D†�a + b	A−
†A− = 0.

In order to test these analytical estimations based on Eq.
�34�, we consider a decay scenario with the resonators ini-
tially prepared in the Fock states 
1�A �resonator A� and 
0�B
�resonator B�. The qubit is prepared in its ground state 
g�qb.
We calculate numerically the time evolution of the number
operators related to the “center of mass,” �A+

†A+�, and the
“relative coordinate,” �A−

†A−�, and compare the decay char-
acteristics to the ones suggested by Eqs. �38� and �39�, re-
spectively. The results are depicted in Fig. 4 for a particular
set of parameters. We find an excellent agreement of theory
and numerical data. While �A−

†A−� decays at a rate �, the
decay of �A+

†A+� is enhanced by the qubit noise channel,
resulting in a decay rate �+2�qb. The latter finding is af-
firmed in Fig. 5�b�, where we compare the analytical expres-
sion for the decay rate �+2�qb to corresponding numerical
values that are extracted from simulations of a decay sce-
nario according to Eq. �38�. The qubit-induced decay rate �qb
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FIG. 3. �Color online� �a� Rabi oscillations between the resona-
tors at the effective interaction strength gGSW /2�=0.00315 GHz
�numerical value, analytically we find gGSW /2�=0.00328 GHz�:
Occupation numbers of resonator A �solid red lines� and B �dashed
blue lines�. The initial state is 
g�qb
1�A
0�B. �b� Time evolution of
the qubit state in terms of ��z� �solid black lines�. The deviation
from the ground state always lies below 0.5%. Numerical param-
eters: � /2�=3.5 GHz, �Q /2�=4 GHz, � /2�=−6.37 GHz,
g /2�=0.24 GHz, G /2�=0.0022 GHz, T=20 mK. Decay rates:
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Redfield QME �9� and N=3 states in each resonator: Decay of the
expectation values of the number operators corresponding to the
“center of mass coordinate”, �A+
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and dash-dotted lines, respectively�. Decay rates are according to
Eq. �34�. Parameters: see Fig. 3.
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is given by Eq. �35�. Here, we have chosen an explicit de-
pendence on the qubit bias energy �, which is adjustable in
realistic experimental scenarios, while all other parameters
are usually fixed. As indicated by Fig. 5�a�, the dispersive
description can be considered as valid for ���,�,���0.1.
These findings suggest that the effective quantum master
equation for the two coupled resonators �34� describes the
dissipative system behavior adequately in the dispersive
limit.

Furthermore, the stationary value of �A+
†A+� is found to be

different from zero. This stems from a static energetic shift
of the oscillator potential minima due to a small “effective
force.” The latter arises from the resonator-qubit coupling
component ����a+a†��z in the full system Hamiltonian �5�,
which has been eliminated in the effective Hamiltonian
�C17� by the transformation �25�. The dependence between
the original and transformed oscillator creators and annihila-
tors can be expressed as a�†�→a�†�−��. First of all, this shift
explains strong oscillations with frequency � during the time
evolution of the resonator states. In Fig. 4, their effect is
visible, however they are not resolved. The equilibrium value
of the resonator “center of mass” population is shifted ac-
cording to

�A+
†A+� → �A+

†A+� − 4��
2 . �40�

Following the same reasoning, the equilibrium value of
�A−

†A−� is zero.
As a second example, we consider the case of each reso-

nator prepared in a coherent state, 
��=e−
�
2�n=0
� �n

�n!

n� with


�
2 being the average photon number in the resonator. This
scenario is mainly motivated by experiment, where a coher-
ent state in a resonator can easily be prepared via a resonant
drive. To investigate the decay behavior of the “center of
mass” and “relative coordinate” for this scenario, we choose
the initial state 
g�qb
�=1�A
�=0�B. As depicted in Fig. 6, the
predictions of the effective quantum master equation are
again found to be in good agreement with our numerical
simulations, apart from transient effects.

C. Decay of entanglement

The generation of entangled two-resonator states is a key
application of the quantum switch. For this purpose, we re-
call the switching property of the two-resonator setup men-
tioned in Sec. III B, that is, the possibility to switch on and
off the effective coupling between the resonators by balanc-
ing the coupling coefficient gSW given in Eq. �29�. While a
similar approach to create entanglement between two reso-
nators based on Landau-Zener sweeps60 has been previously
discussed in Ref. 52, we focus on the following, suitable
protocol: A finite interaction strength gSW

on is initialized by
tuning the qubit energy flux appropriately. After preparing
the initial product state 
g�qb
1�A
0�B the two-resonator state

��cav evolves according to


��t��cav = cos�gSW
on t�
1�A
0�B + i sin�gSW

on t�
0�A
1�B. �41�

After a time t=Ton has elapsed, gSW is balanced back to zero.
During the whole procedure the qubit remains in its ground
state 
g�qb and does not get entangled with the resonators. In
particular, Ton=� /4gSW results in the entangled two-
resonator state 
�+

i �cav= �
1�A
0�B+ i
0�A
1�B� /�2, whereas
Ton=3� /4gSW

on yields the state 
�−
i �cav= �
1�A
0�B

− i
0�A
1�B� /�2. A photon transfer from one resonator to the
other is accomplished with Ton=� /2gSW

on .
In the above discussions we have disregarded decoher-

ence for reasons of clarification. In realistic scenarios, how-
ever, dissipation and dephasing are present even in the case
of short times Ton, which prevents the creation of perfectly
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FIG. 5. �Color online� Dependence of the parameter �� �a� and
the effective damping rate �+2�qb �b� �black solid lines�, on the
qubit energy bias �. The rate for qubit-enhanced decay �qb is given
by Eq. �35�. The numerically extracted damping rates �red crosses
in �b�	 are related to the decay of the expectation value of the
number operator corresponding to the “center of mass coordinate”,
�A+

†A+�, out of the initial state 
g�qb
1�A
0�B at different �. The dotted
lines mark the limit of validity of the dispersive theory �see text�.
Parameters are chosen as in Fig. 3.
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entangled states according to the above described protocol.
Beyond that, two-resonator entanglement once created, will
decay with time, according to the effective two-resonator
QME �34�. In this context, excess phase noise in the resona-
tors may cause further adverse effects, which are not consid-
ered here �cf. Sec. II A�. Thus, it is important to reveal the
decay characteristics of particular entangled states that could
be created in the two-resonator setup up to a good degree via
specific switch-setting protocols. For this purpose, we first
focus on the decay characteristics of the initial entangled
two-resonator Bell states


���cav =
1
�2

�
1�A
0�B � 
0�A
1�B	 . �42�

To quantify the entanglement we first assume that all dynam-
ics is restricted to the subspace �
00� , 
01� , 
10� , 
11��. Thus,
we face the dynamics of entanglement between two two-
level systems. In this case, the concurrence C represents an
adequate measure of entanglement, given by61 C=max��1
−�2−�3−�4 ,0�. The parameters � j denote the ordered square
roots of the eigenvalues of the matrix �cav��y

A�y
B��cav

� ��y
A�y

B�
with �cav being the reduced density matrix of the two-
resonator state, and A and B labeling the respective resonator
Hilbert spaces. This representation of the concurrence is
quite general and suitable for numerical investigation. How-
ever, for the initial states 
���cav and linear superpositions
hereof, one can obtain analytical expressions for the decay
characteristics of the concurrence with the help of the effec-
tive quantum master equation �34�. Since the only nonzero
elements of the associated density matrices during the whole
time evolution are �00, �11, �22 and �12, �21 in the basis
�
00� , 
01� , 
10� , 
11�� the concurrence is simply given by

C�t� = 2
�12�t�
 . �43�

It turns out that the decay characteristics of the density ma-
trix element �12 depend on the initial two-resonator state. In
particular, the time evolution of the concurrences C��t� for
the initial density operators �
������
�cav is found as

C+�t� = e−��+2�qb�t, �44�

C−�t� = e−�t. �45�

The reason for this particular behavior is that the state 
�−�cav
lies in a decoherence-free subspace with respect to the dissi-
pator D�a+b	. Thus, it is a robust state in the sense that it
does not couple to the qubit-induced correlated noise
source.62,63 This statement is equivalent to the relation D�a
+b	�
�−���−
�cav=0. On the contrary, the initial state 
�+�cav
is fragile in this respect, since D�a+b	�
�+���+
�cav�0.

In Fig. 7, we compare the numerically calculated time
evolution of the concurrence to the analytical results of Eqs.
�44� and �45�, finding good agreement. While the decay of
C+�t� is enhanced due to the qubit dissipation channel, the
time evolution of C−�t� is determined by resonator dissipa-
tion only �cf. Figure 7�, in analogy to the findings of Eqs.
�38� and �39�. We note that a corresponding behavior has
been reported for correlated states of a chain of coupled qu-
bits interacting with a common bath.64 The numerical result

is found to be shifted with respect to the analytical curves,
since other elements of the density operator, e.g., �33 become
populated as well during the time evolution of the system
state. This non-RWA feature stems from the full numerical
treatment using the system Hamiltonian Eq. �1�.

These findings can now be employed to characterize the
decay of entanglement for the initial states 
��

i �cav. For this
purpose we express them as linear superpositions of the Bell
states 
���cav �Eq. �42�	,


��
i �cav =

1

2
��1 + i�
�+� + �1 � i�
�−�	cav. �46�

Consistently, we find that the analogously defined concur-
rences C�

i can be expressed as a sum of the concurrences of
the initial Bell states �Eqs. �44� and �45�	 as

C+
i �t� = C−

i �t� =
1

2
�e−��+2�qb�t + e−�t� . �47�

This has some interesting consequences. For short times, the
decay out of both initial states 
��

i �cav is merely governed by
qubit-enhanced decay at a rate �+2�qb. In the limit of long
times, however, one finds pure resonator decay at a rate �.
We have confirmed this numerically in Fig. 8 by means of
the concurrence C+

i �t� related to the initial state 
�+
i �cav.

In summary, we point out that it is possible to understand
the time evolution characteristics of the entanglement in the
system on the basis of the effective master equation �34�. We
emphasize that the qubit-induced dissipation channel plays a
crucial, selective role for different classes of initially en-
tangled states.

V. EXTRACTING DAMPING CONSTANTS BY
(CROSS-) CORRELATIONS

In the two-resonator setup, it is possible to measure cor-
relations and cross-correlations in terms of the expectation
values ��a+a†�2�, ��b+b†�2�, and ��a+a†��b+b†�� with
present techniques.65 In the following we propose a method
how to extract the relaxation rates � and �qb out of correla-
tion measurements of such type. We define the oscillator
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FIG. 7. �Color online� Decay of concurrence C+ and C− for the
entangled initial states 
�+�cav and 
�−�cav �solid red lines, thick
curve, and solid blue lines, thin curve, respectively�. The switch-
setting off condition gSW=0 is fulfilled by � /2�=
−8.916 GHz /2�. Here we use G=0.00478 GHz, all other param-
eters are as in Fig. 3. The exponential decay corresponds to Eqs.
�44� and �45� �black dashed and dash-dotted lines, respectively�.
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“positions” XA=a+a† and XB=b+b†. In analogy to Sec.
IV B, we find analytically that the quantity �X−

2�= �XA
2�

+ �XB
2�−2�XAXB� decays at the rate �. For �X+

2�= �XA
2�+ �XB

2�
+2�XAXB� we find a decay with �+2�qb. In Fig. 9, we nu-
merically substantiate these findings for the example of a
coherent initial state 
g�qb
�=1�A
�=0�B, discarding again
transient effects.

Thus, we point out the possibility to extract the resonator
decay rate � by measuring the decay of �X−

2�. This allows in
turn for deducing the rate �qb related to qubit-enhanced de-
cay by measuring the quantity �X+

2�. From the latter measure-
ment, it is further possible to gain information about the

relaxation and dephasing rates of the qubit, ��qb� �Eq. �13�	
and ���→0�, �Eq. �14�	, provided that the system frequen-
cies and resonator-qubit interaction strengths are known.
More details about a possible experimental realization of
such correlation measurements can be found in Refs. 66 and
67.

VI. CONCLUSIONS

We have investigated a two-resonator circuit QED setup
in the dispersive regime, i.e., for a resonator-qubit detuning
much larger than their mutual coupling. There, it is possible
to extract the relevant system dynamics by applying the uni-
tary transformation �23� to the system Hamiltonian �5�. The
resulting effective Hamiltonian �28� reveals that the qubit
gives rise to a switchable coupling between the resonators
via virtual excitations. This dynamical coupling adds to the
direct resonator-resonator coupling. Balancing both contribu-
tions, the resonator-resonator interaction can be set to zero.
Such a qubit-mediated interaction provides a physical real-
ization for a quantum switch between the resonators.

As a principal point, we have focused on the dissipative
system properties that stem from the interaction with differ-
ent environments. For weak system-bath coupling, it is pos-
sible to cast the time evolution of the reduced system state
into a quantum master equation of Bloch-Redfield form, Eq.
�9�. It is usually derived starting from the total microscopic
system-bath Hamiltonian, Eq. �8�. Its character being quite
general, it only offers limited analytic insight. To study the
dissipative dynamics in the dispersive regime, it is preferable
to obtain a more useful, effective analytical description of the
dissipative system dynamics. To this end, we have applied
the unitary transformation Eq. �23� to the total system-bath
Hamiltonian �8� and analogously obtained the transformed,
effective system-bath coupling operators. Applying standard
methods, we have derived a rather complex effective quan-
tum master equation for the system state in the rotated frame.
It can be simplified, however, assuming low temperatures
and recalling that the qubit state does not change, and only
the dynamics of the two-resonator system are of relevance.
By tracing out the qubit degrees of freedom one arrives at the
Lindblad-type quantum master equation �34� for the reduced
two-resonator state.

As a main result, we have found that the qubit induces
decoherence on the resonator-resonator system via an addi-
tional noise channel that acts on the “center of mass coordi-
nate” of the resonators. This effect stems from qubit energy
relaxation and is of second order in the small dispersive pa-
rameters ���,��, whereas pure qubit dephasing only enters in
fourth order. This result anticipates that the operation of the
quantum switch is robust against low-frequency noise in the
two-level system. For reasons of clearness, our findings are
again illustrated in Fig. 10. We have verified our analytical
findings by numerical calculations, where we have taken into
account the full dissipative dynamics according to Eq. �9�.
As detailed in Sec. IV by means of several examples, we
have found an excellent agreement of the presented disper-
sive theory and the numerical results. Here, in particular, we
have investigated the validity of the obtained resonator re-
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laxation rates. With regard to generating entangled states,
which is a key application of the quantum switch, we have
examined the decay mechanisms for different entangled ini-
tial resonator-resonator states.
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APPENDIX A: ENERGY RELAXATION AND PURE
DEPHASING RATES OF THE QUBIT

In this section, we derive a quantum master equation for
the qubit alone, which allows us to identify the energy relax-
ation and pure dephasing rates of the qubit. Considering only
a qubit coupled to individual environments along the �x� and
�z�-axes in the laboratory frame, the qubit-bath Hamiltonian
reads

Htot,qb� = Hqb� + �
	=x,z

Q	�
j

cj
	�dj,	

† + dj,	�

+ �
	=x,z

�
j

�� j
	�dj,	

† dj,	 +
1

2
� , �A1�

where Hqb� = �� /2��z�+ ���Q /2��x�. Applying Eq. �4�, we ob-
tain the diagonal qubit Hamiltonian Hqb= ���qb /2��z and
also the qubit-bath Hamiltonian,

Htot,qb = Hqb + �
	=x,z

�
j

�� j
	�dj,	

† dj,	 +
1

2
�

+ �sin ��z + cos ��x��
j

cj
x�dj,x

† + dj,x�

+ �cos ��z − sin ��x��
j

cj
z�dj,z

† + dj,z� . �A2�

Starting from the density matrix �tot,qb associated with Htot,qb
and following the lines of Ref. 55, the Lindblad quantum
master equation for the reduced qubit density operator �qb
=Trbath��tot,qb	 can be derived. To this end, the spectral de-
compositions �−���=���qb−���−, �+���=���qb+���+,
and �z���=�����z of the qubit-bath coupling operators are
required. Omitting the explicit time dependence of �qb for
simplicity, we find

�̇qb = −
i

�
�Hqb,�qb	 + ��qb���−�qb�

+ −
1

2
��+�−,�qb	+�

+ �− 
�qb
���+�qb�
− −

1

2
��−�+,�qb	+�

+ ��� → 0���z�qb�z − �qb	 . �A3�

Here, �−= 
g��e
 and �+= 
e��g
 are the fermionic qubit anni-
hilation and creation operators. The energy level transition
and the pure dephasing rates are given by

��� = !x���cos2 � + !z���sin2 � , �A4�

���� = !x���sin2 � + !z���cos2 � , �A5�

respectively, and depend on the bath correlation functions

!	��� = �J	���„n	��� + 1… , �" 0

J	�
�
�n	�
�
� , �# 0,
� �A6�

where n	���=1 / �e��/kBT	−1� is the Bose distribution func-
tion of bath with label 	� �x ,z�. Because the quantum
switch operates in the limit of low temperatures, kBT	

���qb, the Bose-factor n	��� vanishes for frequencies of
the order of �qb. However, for �→0, n	��� tends to diverge.
This can be relevant in the experimentally important case of
1 / f noise,31–33 which would require a treatment beyond the
framework of a Markovian master equation, exceeding the
scope of this work. Instead, we avoid the divergence problem
by choosing Ohmic spectral densities �Eq. �11�	 for low fre-
quencies ���qb. In many cases, this assumption is
reasonable.68–70 Provided that both baths have the same tem-
perature T=T�x,z�, we obtain

��" 0� = Jx���cos2 � + Jz���sin2 � , �A7�

��# 0� � 0, �A8�

��� → 0� =
kBT

�
��z cos2 � + �x sin2 �� . �A9�

These rates are functions of the mixing angle �. Equation
�A7� constitutes the main result of this section. For �=�qb, it
establishes the connection between the energy relaxation rate

o(λ4) κqb [o(λ2)]

κBκA

FIG. 10. �Color online� Sketch of the relevant decay mecha-
nisms affecting the quantum switch. The qubit induces extra deco-
herence in higher dispersive order to the effective resonator-
resonator dynamics. The arrows mark the decoherence channels,
labeled by the corresponding decay rates ��A,B,qb�. Decay processes
of fourth order in the parameters ���,�,�� are not displayed
individually.
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in the energy eigenframe and the dissipative baths defined in
the laboratory frame. The Markovian description of Eq. �A3�
remains justified as long as the spectral densities J�x,z���� are
smooth functions in �qb. This allows one to apply a linear
approximation in an infinitely small interval around �qb,
which yields an effectively Ohmic description. We finally
note that in the special case of noise coupling purely via the
laboratory z axis �e.g., a flux qubit exposed to flux noise� the
result ��qb�=Jz��qb�sin2 � is in agreement with findings
from other works.32,48,49 For the sake of completeness we
mention that the master equation �A3� together with the rates
�A7�–�A9� reproduce the well-known results concerning re-
laxation and pure dephasing times, �T1�−1=��"0� and
T�

−1=���→0�, respectively.

APPENDIX B: EFFECTIVE BATH COUPLING
OPERATORS

To obtain the quantum master equation for the reduced
system state, it is necessary to transform the total system-
bath Hamiltonian to the dispersive picture via the transfor-
mation Htot,eff=U†HtotU, with U given in Eq. �23�. The effec-
tive system Hamiltonian having been derived in Sec. III B,
we need yet to find the transforms �23� of the system-bath
coupling operators Q	 to the dispersive frame. Up to second
order in ���,�,��, they read as

Q	,eff = U†Q	U = Q	 + �Q	,��D + ��S + ��W	

+ ��Q	,��D + ��S + ��W	,��D + ��S + ��W	

+ O����,�,��
3 � 	 � �A,B,x,z� . �B1�

Each of the effective bath coupling operators Q	,eff is repre-
sented by of a sum of operators,

Q	,eff = �
j	

Qj	
.

For the resonator-bath coupling operators QA=a+a† and
QB=b+b†, we obtain the dispersive transforms as

QA,eff = �a + a†�eff = a + a† + ��� − ����x − 2���z

+
1

2
���

2 − ��
2 ��a + b + a† + b†�

+ ����� + ����x�a + b + a† + b†� , �B2�

QB,eff = �b + b†�eff = b + b† + ��� − ����x − 2���z

+
1

2
���

2 − ��
2 ��a + b + a† + b†�

+ ����� + ����x�a + b + a† + b†� . �B3�

The dispersive transforms of the qubit-bath coupling opera-
tors Qx,eff=�x,eff and Qz,eff=�z,eff are obtained as a combina-
tion of those of the qubit operators �x� and �z� in the labora-
tory basis, according to Eq. �4�. The latter assume the form

�x,eff� = �x + ��� + ����z�a + b + a† + b†� − 2����+�a + b�

+ �−�a† + b†� − �+�a† + b†� − �−�a + b�	

− ���� + ���2 − 4��
2 ��x��a† + b†��a + b� + 1	

+ �2��
2 − ��� + ��������−�a† + b†�2 + �+�a + b�2	

+ ����� − ����z�a + b + a† + b†� + �2��
2

− ��� + ��������−�a + b�2 + �+�a† + b†�2	 , �B4�

�z,eff� = �z − 2����+�a + b� + �−�a† + b†�	 − 2����+�a† + b†�

+ �−�a + b�	 − 2�z���
2 + ��

2 ���a† + b†��a + b� + 1	

+ 4����� − ����x��a† + b†��a + b� + 1	

+ 4������+�a + b�2 + �−�a† + b†�2	 + 4������−�a

+ b�2 + �+�a† + b†�2	 − 2�����z��a + b�2 + �a† + b†�2	 .

�B5�

APPENDIX C: EFFECTIVE QUANTUM MASTER
EQUATION IN THE DISPERSIVE LIMIT

Starting from the Bloch-Redfield quantum master equa-
tion �9�, we move to an interaction picture with respect to the
system and the individual reservoirs. Here, the coupling op-
erators Q	 have to be replaced by their dispersive transforms
Q	,eff found in Appendix B. Now, we introduce the spectral
decompositions

Q	,eff � �
j	

Qj	
= �

j	

�
�

Qj	
��� . �C1�

The Qj	
are the summands of the effective coupling opera-

tors as detailed in Eqs. �B2�–�B5�. The spectral components
Qj	

��� are obtained by expanding the Qj	
in terms of the

eigenstates of the effective Hamiltonian �28�, which we cast
in entirely diagonal form for this reason,

Heff = ��̂̃+�A+
†A+ +

1

2
� + ��̃−�A−

†A− +
1

2
� +

� ̃

2
, �C2�

Here we have defined

�̂̃+ = � + G + 2���� + �����z, �C3�

�̃− = � − G , �C4�

 ̃ = �qb + 2���� + ���� , �C5�

and introduced via a linear transformation the normal modes

A+ =
1
�2

�a + b�, A− =
1
�2

�a − b� . �C6�

The eigenstates of the effective Hamiltonian �C2� can be
considered as re-defined Fock states,
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Heff
nml� =
� ̃

2
�− 1�l+1
l� + ��̃+�l��n +

1

2
�
n�

+ ��̃−�m +
1

2
�
m� . �C7�

Here, �n ,m�= �0,1 ,2 , . . .� denote the oscillator excitations �or

resonator photon numbers�, and �̃A�l� can assume the values

�̃+�l� = � + G + 2���� + �����− 1�l+1 �C8�

with l=1 or l=0 for the qubit being in the excited or ground
state, respectively. With this at hand we find the spectral
decompositions of the effective coupling operators via the
ansatz

Qj	
��� = �

nml
�

n�m�l�

���nml
n�m�l� − ��

�
nml��nml
Qj	

n�m�l���n�m�l�
 , �C9�

where �nml
n�m�l� denotes the energy difference between the

states 
n�m�l�� and 
nml�. For illustration we list the explicit
expressions for the spectral decompositions of some compo-
nents,

A+��� = A+
0��0
�„� − �̃+�0�… + A
1��1
��� − �̃+�1�� ,

�C10�

A−��� = A−��� − �̃−� , �C11�

�−��� = �−�
n


n��n
��� − ��qb + �2n + 1����
2� + ��

2��	� ,

�C12�

�z��� = �z���� . �C13�

The decompositions of operator products such as �−A+
† etc.

are obtained analogously via the relation Qj	
† ���=Qj	

�−
�
�.
With this and Eq. �C1�, we recast the Bloch-Redfield quan-
tum master equation �9� into the form

�̇�t� = −
i

�
�Heff,��t�	 + �

	
�

j	,k	

�
�,��

ei���−��t!	���

� „Qj	
�����t�Qk	

† ���� − Qk	
† ����Qj	

�����t�… + H.c.,

�C14�

where !	��� is the one-sided Fourier transform

!	��� � �
0

�

d�ei��K	��� �C15�

of the bath correlation function K	��� given in Eq. �10�. One
usually neglects the Cauchy principal value of the integral
and can then rewrite Eq. �C15� as

!	��� = �J	���„n	��� + 1… , �" 0

J	�
�
�n	��� , �# 0,
� �C16�

with the spectral density J	��� and the Bose distribution
function n	���=1 / �e��/kBT	−1�, depending on the tempera-
tures T	.

Inserting the explicit expressions for the spectral decom-
positions into the quantum master equation �C14�, we find
two different classes of oscillating terms. The first oscillate at

high frequencies such as e�i�̃A/Bt ,e�i�qbt ,e�i�t ,e�i�t, i.e.,
vary on time scales of the intrinsic system evolution,
whereas the second oscillate slowly at frequencies ��

2�
+��

2� and multiples. This difference enables one to perform
a semisecular approximation similar to the approach in Ref.
56. Here, we assume that all rapidly oscillating terms of the
first class can be averaged to zero. This is justified since the

time scales of intrinsic system evolution given by ��̃�A,B��−1

etc. are typically much smaller than the relaxation time
scales, on which the system state varies notably. This, how-
ever, is not the case for terms of the second class, which we
keep consistently. We emphasize that our approach goes be-
yond the standard way of obtaining a Lindblad quantum
master equation. The latter would imply a full secular ap-
proximation, neglecting all oscillating contributions and only
keeping terms with �=�� in Eq. �C14�.

Furthermore, we may simplify the bath correlation func-
tions,

!„�̃A�0�… � !„�̃A�1�… � !��̃B� � � ,

!„�qb + n���
2� + ��

2��… � !��qb�

for small occupation numbers n, and assume an overall tem-
perature T=T�A,B,x,z�. In the low-temperature regime, T
� �� /kB�min��qb,� ,��, it is appropriate to neglect all con-
tributions to Eq. �C14� with negative frequencies because of
!	��#0��0, i.e., no energy is absorbed from the baths.
This automatically yields !	���=J	���. In the low-
frequency region of the qubit baths, we assume Ohmic spec-
tral behavior, J�x,z����=��x,z��. As detailed in Appendix A,
this implies !�x,z���→0�=��x,z�kBT /�.

We eventually obtain the effective quantum master equa-
tion for the reduced system state

�̇ = −
i

�
�Heff,�	 + JA���D�a	� + JB���D�b	�

+ ��� + ���2�Jx���cos2 � + Jz���sin2 ��D��z�a + b�	�

+ Jx��qb�D��−�cos � − �cos ��− 4��
2 + ��� + ���2�

+ 4 sin ������ − ������a† + b†��a + b� + 1��	�

+ Jx��qb�D��−�− sin � + �sin ��− 4��
2 + ��� + ���2�

− 4 cos ������ − ������a† + b†��a + b� + 1��	�

+ 4�Jx������ cos � + �� sin ��2 + Jz������ cos �

− �� sin ��2�D��−�a† + b†�	� + 4�Jx������ cos �

− �� sin ��2 + Jz������ cos � + �� sin ��2�D��−�a + b�	�

REUTHER et al. PHYSICAL REVIEW B 81, 144510 �2010�

144510-14



+ �kBT/����x sin2 � + �z cos2 ��D��z�1 − 2���
2 + ��

2 �

���a† + b†��a + b� + 1��	� , �C17�

where we have omitted the time dependence of the density
operator � and used the notation D�X	�=X�X†− 1

2 �X†X ,�	+
with the anticommutator �A ,B	+=AB+BA.

We have neglected terms ����,�,��
2 J�A,B���� and higher or-

ders of ���,�,�� in Eq. �C17�. This is justified, since the reso-
nators typically employed in experiment possess a high qual-
ity factor and therefore feature small decay rates. On the
other hand, it is necessary to keep terms proportional to
���,�,��

2 J�x,z����, because typical qubit dephasing and relax-
ation rates exceed those of the resonators by several orders of
magnitude with conservative estimates. In general, it is ap-
propriate to neglect all terms of the order of ���,�,��

3 and

higher. Due to the dissipator relation D��X	=�2D�X	 we
thus may already discard any contributions to the system-
bath coupling operators of order ���,�,��

2 in Eqs. �B2�–�B5�.
In Sec. III A we have motivated the experimental advan-

tage of keeping the qubit in its ground state without own
dynamics. This enables us to simplify Eq. �C17� further by
tracing out the qubit degrees of freedom. To this end, we take
into account Tr��z
g��g
�=−1 and the partial trace relation

Tr1�D�A1 � A2	�� = Tr1�A1
†A1D�A2	�� , �C18�

with A1 and A2 acting each on a different Hilbert subspace,
and Tr1� · � denoting the partial trace with respect to one sub-
space. Finally, we arrive at the effective quantum master
equation for the tow-resonator state, Eq. �34�. The qubit de-
coherence rates x and � are identified following the dis-
cussion in Appendix A.
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