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10.1 Introduction

Thermal fluctuations alone cannot create a steady directed transport in an
unbiased system. However, if a system is out of equilibrium, the Second Law of
Thermodynamics no longer applies, and then there are no thermodynamical
constraints on the appearance of a steady transport [1,2]. A directed current
can be generated out of a fluctuating (time-dependent) external field with zero
mean. The corresponding ratchet effect [3-9] has been proposed as a physical
mechanism of a microbiological motility more then a decade ago [4,5]. Later on
the ratchet idea has found diverse applications in different areas [6-9], from
a molecular nanoscale-machine [10] up to quantum systems and quantum
devices [11-17].

When the deviation from an equilibrium regime is small (the case of weak
external fields) one may use the linear response theory in order to estimate
the answer of the system [18-20]. However, due to the linearization of the
response, the current value will be strictly zero since the driving field has
zero bias. Therefore, one has to take into account nonlinear corrections and
then derive the corresponding nonlinear response functional [20, 21}, which
may become a very complicated task, if the nonadiabatic regime is to be
considered.

To obtain a dec-current, one has to break certain discrete symmetries, which
involve simultaneous transformations in space and time. A recently elaborated
symmetry approach [22,23] established a clear relationship between the ap-
pearance of a directed current and broken space-time symmetries of the equa-
tions of motion. Thus, the symmetry analysis provides an information about
the conditions for a directed transport appearance without the necessity of
considering a nonlinear response functional.
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Most theoretical and experimental studies have focused on ratchet real-
izations at a noisy overdamped limit [6-9]. However, systematic studies of
the underlying broken symmetries, and the largest possible values of directed
currents achieved for different dissipation strength, show that the dc current
values typically become orders of magnitude larger in the limit of weak dissipa-
tion [24,25]. The corresponding dynamics is characterized by long space-time
correlations which may drastically increase the rectification efficiency [25, 26].

Fast progress in experimental studies of cold atoms ensemble dynamics
have provided clean and versatile experimental evidence of a ratchet mecha-
nism in the regime of weak or even vanishing dissipation [27,28]. The results
of the corresponding symmetry analysis for the regime of classical dynamics
has already been successfully tested with cold Rubidium and Cesium atoms
in optical lattices with a tunable weak dissipation [29-32]. Further decreasing
of the dissipation strength leads to the quantum regime [27]. Recent exper-
iments have shown the possibility to achieve an optical lattice with tunable
asymmetry in the quantum regime [33]. A Bose-Einstein condensate (BEC)
loaded into an optical potential is another candidate for a realization of quan-
tum ratchets in the presence of atom-atom interactions [28]. While there is
obvious interest in experimental realizations of theoretically predicted sym-
metry broken states, another important aspect of the interface between cold
atoms and the ratchet mechanism is, that new possibilities for a control of the
dynamics of atomic systems by laser fields may be explored [34, 35].

The objective of this work is to provide a general introduction into the
symmetry analysis of the rachet effect using a simple, non-interacting one-
particle dynamics. Despite its simplicity, this model contains all the basic
aspects of classical and quantum ratchet dynamics, and may be used also as
a starting point of incorporating atom-atom interactions.

10.2 Single Particle Dynamics

We start with the simple model of an underdamped particle with mass m,
moving in a space-periodic potential U(x) = U(z + A) under the influence of
the external force x(t) with zero mean:

mi+ & — f(z) —x(t)=0. (10.1)

Here f(z) = —U'(x), fO}‘ f(x)dz = 0, and v is the friction coefficient. Next,
we ask whether a directed transport with nonzero mean velocity, () # 0, may
appear in the system (10.1).

If x(t) = &(¢) is a realization of a Gaussian white (i.e. delta-correlated)
noise, obeying via its correlation properties the (second) fluctuation-dissipation
theorem [20], Eq. (10.1) then describes the thermal equilibrium state of a par-
ticle interacting with a heat bath. From the Second Law of Thermodynamics
it follows that a directed transport is absent, independently of the particular
choice of the periodic potential U(z) [4,6,7,24].
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The presence of temporary correlations in x(t) may change the situation
drastically. A simple way to get such correlations is to use an additive periodic
field E(¢),

X =€)+ B®),  E(t)=E¢+T), /0 "Ewai=0. (102)

If £(t) is a realization of a white noise, then the functions —&(t), £(t), and
£(t 4+ ) are also realizations of the same white noise, and their statistical
weights are equal to the statistical weight of the original realization. For what
comes, the noise term &£(¢) will thus not be relevant for the following symmetry
analysis. We consider the symmetries of the deterministic differential equation

mi+vyx — f(z) — E()=0. (10.3)

Eq. (10.3) contains two periodic functions, f(z) and E(t), both with zero
mean. The properties of the symmetries of the Eq. (10.3) are strongly de-
pending on the symmetry properties of these functions.

10.3 Symmetries

10.3.1 Symmetries of a Periodic Function with Zero Mean

Let us consider a periodic function g(z + 27) = g(z) with zero mean,
f02" g(z) dz = 0. This function can be expanded into a Fourier series

g(z) = Z gk - exp(ikz) , (10.4)

k=—o0

where go = 0. We will consider real-valued functions; therefore, gp = g ,..

The function g(z) may possess three different symmetries. First, it can
be symmetric, g(z + z9) = g(—z + 2g), around a certain argument value 2.
For such functions we will use the notation gs. The Fourier expansion (10.4)
contains, after the shift by zq, only cosine terms, so gr(z0) = gx - exp(ikzo)
are real numbers, i.e. gx(20) = 9—«(20).

Second, the function g(z) can be antisymmetric, g{z + z1) = —g(—2z + z1),
around a certain value of the argument, z;. For such functions we will use the
notation g,. The corresponding Fourier expansion (10.4) contains only sine
terms (after the shift by z1), so gx(20) = g - exp(ikzo) are pure imaginary
numbers, and gx(20) = —g—x(20).

Finally, the function g(z) can be shift-symmetric, g(z) = —g(z + ). The
Fourier expansion of a shift-symmetric function gsn(z) contains odd harmonics
only, gom = 0.

It is straightforward to show that a periodic function g(z) can have either
none of the above mentioned symmetries, or exactly one of them, or all three of
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them. Let us consider several simple examples. The function cos(z) possesses
all three symmetries. The function cos(z) 4+ cos(3 z + ¢) always possesses shift-
symmetry and in addition may be simultaneously symmetric and antisymmet-
ric for ¢ = 0, 7. The function cos(z)+cos(2 z+¢) is not shift-symmetric, thus
it will either have no other symmetry at all, except for ¢ = 0, £ (symmetric),
and ¢ = +m/2 (antisymmetric).

10.3.2 Symmetries of the Equations of Motion

The system dynamics in Eq. (10.3) can be described by three first-order
autonomous differential equations,

i:%, 1’7=f(1:)—|—E(’r)——%p, F=1. (10.5)

The phase-space dimension is three. We are looking for symmetrytransforma-
tions §, which do not change the equation (10.5), but do change the sign of
the velocity &. Such transformations map the phase space {z,p, 7} onto itself.
If we find such a transformation, we then apply it to all points of a given
trajectory. We get a new manifold in phase space, which also represents a
trajectory, i.e., a solution of the equations (10.5). The original trajectory and
its image may coincide (or may not).

Let us assume that we have found such a transformation. Next, we consider
the mean velocity, ¥ = lim,—, oo (@ (to + 5) — (o)) /s, on the original trajectory.
If the trajectory and its image coincide, then v = 0. If they are different then
their velocities have the same absolute value but opposite signs. If, in addition,
both the trajectories have the same statistical weights in the presence of a
white noise, then we can conclude that the average current in the system (10.3)
is equal to zero [22].

There are only two possible types of transformations which change the
sign of the velocity &: they include either a time-reversal operation, { — —t,
or a space inversion, £ — —z (but not both operations simultaneously!).

The following symmetries can be identified [22]:

A T
Sat wo—m, totdg, i {fo Bal,
Sy : oz, t——t, if {E,vy=0}, (10.6)

A
S. : $—>x+§, t— —t, if {fsh,Ea,m=0}.

The symmetry S}, requires zero dissipation, v = 0, i.e., it requires the Hamil-
tonian regime, and the symmetry S, can be fulfilled in the overdamped limit
(i.e. m = 0) only. Note that all symmetries require certain symmetry proper-
ties of the function E(t). Usually, an experimental setup allows to tune the
shape of the time-dependent field E(t) easier than the shape of the spatially
periodic potential [36,37]. A proper choice of the force E(t) may break all three
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symmetries for any coordinate dependence of the force f(x). We restrict the
further consideration to the case of a symmetric potential U{x) = 1 — cos(z)
while using a bi-harmonic driving force,

E(t) = Ey cos(t) + Excos(2t +0) , (10.7)

for a symmetry violation. If 6 # 0,7/2,7,37/2 then all three symme-
tries (10.6) are broken and we may count on a nonzero mean velocity, v # 0.

10.3.3 The Case of Quasiperiodic Functions

We generalize the symmetry analysis to the case of quasiperiodic driving field
E(t) [38,39].
We consider a quasiperiodic function g{z) to be of the form

. 0z
9(z) =4z, 22, s28) s Ho = (10.8)

z
where all ratios £2;/£2; areirrational if i # j and §(z1, 20,..., 2427, ..., 2n8) =
g(z1,22,...,2i,...,2n) for any i. Such a function may have numerous sym-

metries. With respect to the following symmetry analysis of the equation of
motion we will list here only those symmetries of § which are of relevance. It
can be symmetric gs(21,22,.-.,2n8) = gs(—21,—22, ..., —2zN), antisymmetric
Gal21,22,...,28) = —ga(—21,—22,...,—2n). It can be also shift-symmetric
for a given set of indices g {i,j,....m} Which means that g changes sign when
a shift by 7 is performed in the direction of each z;, zj,..., zm only, leaving
the other variables unchanged.

The relevant symmetry properties of g are thus studied on the compact
space of variables {z1, z2,...,2n}. The irrationality of the frequency ratios
guarantees that in the course of evolution of z this compact space is densely
scanned by these variables with uniform density in the limit of large z. At the
same time we note that it is always possible to find a large enough value Z
such that -

lim l/ (9(z+ 2) —g(2))* dz < € (10.9)
T—00 T O
with (arbitrarily) small absolute value of €. For a given value of € this defines
a quasiperiod Z of the function g(z).

In order to make the symmetry analysis of the equation of motion trans-

parent, we rewrite it (skipping the noise term) in the following form [39]:

mi +v& — f(z) — E(¢1,82,...,68) =0, (10.10)
(ZB] = w1,
QBZ =w2,

N =wn .
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The function f(z) is also assumed to be quasiperiodic with M corresponding
spatial frequencies.

The following symmetries can be identified, which change the sign of ()
and leave (10.10) unchanged:

t

W . T — —I, ¢i,j,...,m — qbi,j,___7m +a, if {fay Esh,{i,j,...,m}} s
r>x, t——t, if {E’S,*y=0}, (10.11)

O] g_l)z

A .
c: T—zxT+ IR t— —t, if {fon,{1.23,....m}, Eayn =0} .

The symmetry S, is actually a set of various symmetry operations which are
defined by the given subset of indices {4, 7,...,m}.

The prediction then is, that if for a given set of parameters any of the
relevant symmetries (10.11) is fulfilled, the average current will be zero. If
however the choice of functions f(z) and E(t) is such that the symmetries are
violated, a nonzero current is expected to emerge.

10.4 Dynamical Mechanisms of Rectification:
The Hamiltonian Limit

Let us consider the limit v = 0 (Hamiltonian case) [22,26]. Due to time
and space periodicity of the system (10.3) we can map the original three-
dimensional phase space (z,p,t) onto a two-dimensional cylinder, 72 = (z
mod 1, p), by using the stroboscopic Poincaré section after each period T' =
2w /w. For given initial conditions {z(0),p(0)}, we integrate the system over
time T, and then plot the final point, {z(T),p(T)}, on the cylinder 72.

For E(t) = 0 the system (10.3) is integrable and there is a separatrix in the
phase space which separates oscillating and running solutions. A non-zero field
E(t) destroys the separatrix and leads to the appearance of a stochastic layer
(see Fig. 10.1). In this part of the phase space the system dynamics is ergodic,
i.e., all average characteristics are the same for all trajectories, launched inside
the layer. Therefore, the symmetry analysis is valid for all trajectories on
this manifold. Numerical studies have confirmed this conclusion [22, 23, 26].
Fig. 10.2 shows several trajectories x(t) from chaotic layers and illustrates the
fact that the violation of symmetries causes a directed motion of the particle.

The dynamics within the stochastic layer can be roughly subdivided into
two distinct fractions. The first one corresponds to ballistic flights near the
layer boundaries. They appear due to a sticking effect [40]. A random diffusion
within a chaotic bulk is attributed to the second fraction. A rectification
effect appears due to a violation of the balance between ballistic flights in
opposite directions [26]. This interpretation supports the view, that even in
the presence of damping and noise, the ratchet mechanism relies on harvesting
on temporal correlations of the underlying dynamical system. Ballistic flights
are just such examples of long temporal correlations on a trajectory which
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Fig. 10.1. Poincaré map for the system (10.5), (10.7). The parameters are E1 =
0.252, Ep = 0.052, v = 0. (a) 6 = 0, (b) § = /2

X
oLl 1 |
- -4 20 2 4 19 . .

0 \ 1 N .
0 5 10
1076t

Fig. 10.2. z(¢) for 8 = 0, 7/5,7/2 (lower, middle and upper curves, respectively).
Left upper inset: Poincaré map for a single ballistic flight, # = n/2. Right inset:
zoom of z(t) for the case 8 = 7/2
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is overall chaotic. Therefore it is not surprising, that the ratchet effect is
stronger in the dissipationless limit, since dissipation will introduce finite (and
possibly short) time scales which cut the temporal correlations down. The
averaged drift velocity can be estimated by using a sum rule [41,42]. From
the corresponding approach, which is based on a statistical argument by the
authors of Ref. [41,42], it follows, that a mixed space, i.e., a stochastic layer
with boundaries and embedded regular submanifolds (islands), presents the
necessary condition for a directed transport.

The adding of a non-zero dissipation, v # 0, does not change the situation
drastically [23]. The symmetry analysis is still valid for this case. The phase
space is shared by different transporting and non-transporting attractors with
their corresponding basins of attraction, which are strongly entangled inside
the former stochastic layer region. A symmetry violation causes a desym-
metrization of basins. Finally, a weak noise leads to a trajectory wandering
over different basins, sticking to corresponding attractors, and, finally, to the
rectification effect. The long flights which appear at the Hamiltonian limit
are damped after a characteristic time which is the shorter, the larger the
dissipation strength v is [23,26].

A systematic analysis shows that, under the condition of full symmetry vi-
olation, the approach of the dissipationless limit leads to a drastic increase of
the dc current value [25], which depends on the characteristics of the stochas-
tic layer [26]. It has been shown that, in a full accordance with the symme-
try analysis, the dc current disappears near § = 0,7 for the case of weak
dissipation, and near # = +7/2 at the strong dissipation limit. The value of
the phase 8, at which the current becomes zero, is a monotonous function of
the dissipation strength + [25]. 5

An inclusion of a de-component to the external field, E(t) = E(t) + Eqc,
may lead to a directed transport against a constant bias Fy., even in the
Hamiltonian limit [43].

The abovementioned results have been confirmed in cold atoms exper-
iments, performed in the group of Renzoni [29-31]. In these experiments,
atoms of Cs and Rb have been cooled to temperatures of several mK. An
optical standing wave, created by a pair of counter-propagating laser beams,
formed a periodic potential for the atoms. Finally, a time-dependent force E(t)
has been introduced through a periodic modulation of the phase for one of
the beams. The results of the above symmetry analysis have been verified by
changing the relative phase ¢ and by tuning the effective dissipation strength.

The case of the quasiperiodic driving force E(t) for cold atoms ratchets
also has been studied experimentally [32], with a similar outcome.
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10.5 Resonant Enhancement of Transport with Quantum
Ratchets

A quantum extension of the (dissipationless) system dynamics in Eq. (10.3)
can readily be achieved [44,45]. The system evolution can be described by the
Schrédinger equation,

Io}
ihggl?ﬁ(t)) = H(t)[¥(t)) , (10.12)
where the Hamiltonian H is of the form
2
H(z,p,t) = % + [1 + cos(z)] — zE(t) . (10.13)

The system (10.12) describes a cloud of noninteracting atoms, placed into
a periodic potential (formed by two counter-propagating laser beams) and
exposed to an external ac field (10.7)1.

Because of the time and space periodicity of the Hamiltonian (10.13), the
solutions [, (t + to)) = U(t, to)|Wa(to)) of the Schrédinger equation (10.12)
can be characterized by the eigenfunctions of the Floquet operator U(T,tg)
which satisfy the Floquet theorem |1, (t)) = exp(—iEut/T )| (1)), |dalt +
T)) = |¢a(t)) (here tg is the initial time). The quasienergies E, (—7 < E4 <
7) and the Floquet eigenstates can be obtained as solutions of the eigenvalue
problem of the Floquet operator

U(T, to)|da(te)) = e ' Eo|pqlte)) (10.14)

with o denoting the band index and with k being the wave vector [44-47].
An initial state can be expanded over Floquet-Bloch eigenstates, |¥(to)) =
Za’k Cok(to)|¢a,x) and the subsequent state’s evolution is encoded in the
coefficients {Cy i }. We restrict further consideration to the case x = 0 which
corresponds to initial states where atoms equally populate all (or many) wells
of the spatial potential.

The mean momentum expectation value,

t

J(tp) = lim % ((7, t) D) (T, to)) d7 | (10.15)

t—00 to

measures the asymptotic current. Expanding the wave function over the Flo-
quet states the current becomes

J(to) = > _(P)alCalto)l? (10.16)

a

where (), is the mean momentum of the Floquet state |¢q) [44-46].

! The dissipation may be included into quantum dynamics by coupling the sys-
tem (10.13) to a heat bath, Haiss(z,p,t,{q}) = H(z,p,t) + He(z,{q}). Here
Hg(z,{q}) describes an ensemble of harmonic oscillators {q} at thermal equilib-
rium interacting with the system [11].
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- 10.01520

0.01

Fig. 10.3. (a) Poincaré section for the classical limit, (10.7), (10.13), (b)—(f) Husimi
representations for different Floquet eigenstates for the Hamiltonian (10.13) with
A = 0.2 (momentum is in units of the recoill momentum, p. = Akr, with kL = 1).
The parameters are £y = F» = 2, w = 2, = —x/2 and to = 0 for (b)—(e), and
E, =326, B =1,w=23,0=—-n/2and t, = 0 for (f)

The analysis of the transport properties of the eigenstates shows that the
quantum system inherits the symmetries of its classical counterpart [44,45]. In
particular, the symmetries of the classical equations of motion translate into
symmetries of the Floquet operator. The presence of any of these symmetries
results in a vanishing the time-averaged expectation value of the momentum
operator for each Floquet eigenstate: {p), = 0. Thus, if one of the symmetries,
S.. Sp (10.11), holds then (p)s = 0 for all a. Consequently J(tg) = 0 in this
case.

By using the Husimi representation [48,49] we can visualize different eigen-
states in the phase space, {z,p, 7} and establish a correspondence between
them and the mixed phase space structures for the classical limit (Fig. 10.3).

Since the Schrédinger equation (10.12) is linear, the system maintains
a memory of the initial condition for infinite times [50]. The asymptotic
current value depends on the initial time, tg, and on the initial wave func-
tion, ¥(to). For a given initial wave function, [} = |0), we can assign a
unique current value by performing an averaging over the initial time tg,
J=1/T fOT J(to) dto [44,45]. Fig. 10.4 shows the dependence of the average
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Fig. 10.3. (a) Poincaré section for the classical limit, (10.7), (10.13), (b)—(f) Husimi
representations for different Floquet eigenstates for the Hamiltonian (10.13) with
h = 0.2 (momentum is in units of the recoil momentum, p; = fik, with ky, = 1).
The parameters are F1 = F> = 2, w = 2, § = —7/2 and to = 0 for (b)—(e), and
E1 =326, E;=1,w=3,6=—7/2and to = 0 for (f)

The analysis of the transport properties of the eigenstates shows that the
quanturmn system inherits the symmetries of its classical counterpart [44,45]. In
particular, the symmetries of the classical equations of motion translate into
symmetries of the Floquet operator. The presence of any of these symmetries
results in a vanishing the time-averaged expectation value of the momentum
operator for each Floquet eigenstate: (p), = 0. Thus, if one of the symmetries,
S., Sp (10.11), holds then (p)o = 0 for all . Consequently J(to) = 0 in this
case.

By using the Husimi representation [48,49] we can visualize different eigen-
states in the phase space, {z,p, 7} and establish a correspondence between
them and the mixed phase space structures for the classical limit (Fig. 10.3).

Since the Schrédinger equation (10.12) is linear, the system maintains
a memory of the initial condition for infinite times [50]. The asymptotic
current value depends on the initial time, {5, and on the initial wave func-
tion, ¥(to). For a given initial wave function, |¢) = |0), we can assign a
unique current value by performing an averaging over the initial time tg,
J=1/T fOT J{tg) dto [44,45]. Fig. 10.4 shows the dependence of the average
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Eq

I

-3 -2 -1 0 1 2 3

Fig. 10.4. (a) The average current J (in units of the recoil momentum) vs. # for
different amplitude values of the second harmonic, E2: 0.95 (pointed line), 1 (dashed
line) and 1.2 (solid line). Insets: relevant details of the quasienergy spectrum versus
6 in the resonance region for E; = 1 (top right) and E; = 1.2 (bottom left). The
parameters are 1 = 3.26 and w = 3. (b) The average current J (in units of the
recoil momentum) vs. 6 for £, =3, Fo = 1.5 andw =1

current on the asymmetry parameter 6. Sharp resonant peaks for F, = 1.2
where the current value changes drastically are associated with interactions
between two different Floquet eigenstates. The Husimi distributions show that
one state locates in the chaotic layer, and another one in a transporting island.
Off resonance the initial state mainly overlaps with the chaotic state, which
yields some nonzero, yet small, current. In resonance Floquet states mix, and
thus the new eigenstates contain contributions both from the original chaotic
state as well as from the regular transporting island state. The Husimi dis-
tribution of the mixed state is shown in Fig. 10.3f, the strong asymmetry is
clearly observed. The regular island state has a much larger current contribu-
tion, resulting in a strong enhancement of the current.

To conclude this section, we would like to emphasize the following two
points. For both cases, i.e., the classical and the quantum one, the overall, total
current over the whole momentum space is zero [41,42]. Thus, it is essential
to have the initial state prepared localized near the line p = 0, because for
broad initial distributions the asymptotic current tends to zero. However, if
the dynamics is restricted to the lowest band of the periodic potential, no
current rectification does occur [51].
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10.6 Summary

This surveyed symmetry analysis, originally put forward in Refs. [22,23], pro-
vides a general toolbox for the prediction of dynamical regimes for which one
can {or cannot) obtain the rectification and directed current phenomenon for
a given transport dynamics. First, one has to set up the equations of motions
and define a observable (current, magnetization, angular velocity, energy flux,
etc.) which should become nonzero, in terms of these dynamical variables.
Then, one examines whether there exist transformations (symmetries) which
change the sign of the observable and at the same time leave the equations
of motion invariant. Upon breaking all the symmetries one can expect the
emergence of a non-zero, directed current. This strategy has been successfully
tested with Josephson junctions (fluxon directed motion) [52,53] and as well
with paramagnetic resonance experiments (spin magnetization by a zero-mean
field) [54,55].

Herein, we focused only on the one-dimensional case. By use of more laser
beams, experimentalists can fabricate two- and three-dimensional optical po-
tentials [28]. By changing the relative phase between lattice beams, 2D- and
3D-potentials with different symmetries and topologies can be achieved [56,
57]. This fact incites for an extension of the present ratchet studies into higher
dimensions.

Moreover, for the phenomenon of Bose-Einstein-condensation (BEC) of
cold gases, interactions between atoms become essential and nonlinearities
start to play an important role [28]. Many features of BEC dynamics are
manifestations of general concepts of nonlinear physics, such as soliton cre-
ation and propagation. These collective excitations can then themselves be
subjected to a ratchet transport mechanism [58].
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