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a b s t r a c t

We study the dephasing of a single qubit coupled to a bosonic bath. In particular, we investigate the case

when the bath is initially prepared in a pure state known as the Schrödinger cat. In clear

contradistinction to the time evolution of an initial coherent state, the time evolutions of the purity

and the coherence factor now depend on the particular choice of the Schrödinger cat state. We also

demonstrate that the evolution of the entanglement of a two-qubit system depends on the initial

conditions in a similar way.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

Controlling the dynamics of open quantum systems is of
crucial importance for the quantum information processing [1]. As
there is no general method for analyzing the non-Markovian
reduced dynamics, the exactly solvable models may provide
important and unbiased results. One of the examples is the
dephasing model [2–6] that describes an idealized case when the
quantum system does not exchange the energy with its environ-
ment. This model has recently been studied in the context of
entanglement dynamics [7–10] and the geometric phases [11]. In
particular, it has been shown in Ref. [8] that the entanglement can
effectively be controlled by an external finite bosonic quantum
system prepared in so-called non-classical states [12].

In this paper we study the complementary case when the
infinite bosonic system is initially prepared in the Schrödinger cat
state. For a finite bosonic system such a state is defined as a
superposition of two coherent states with the same amplitudes
but with phases shifted by p [12]. Here we generalize this notion
to the case of infinite dimensional systems composed of bath and
system dynamics. We show that the reduced dynamics of the
qubit depends on a specific choice of the initial Schrödinger cat
state. This is in clear contrast to the situation when the initial state
is purely coherent. It holds true not only for purity and coherence
of a single qubit but also for entanglement of a two-qubit system.

Due to the decoherence phenomenon, the assumed initial state
of an infinite bosonic bath is inaccessible in the present
experiments. However, the development of experimental techni-
ques allows one to manipulate and control systems devised from
an increasing number of particles [13]. Therefore, the results
presented in this paper may serve as a starting point for
ll rights reserved.
understanding of qubits coupled to large bosonic systems
prepared in a desired quantum state. Our choice of the initial
state is motivated by the fact that multiple Schrödinger cat states
can accurately approximate any quantum state [14,15].
2. Model

We consider a qubit Q , which interacts with the environment
R. The Hamiltonian of the total system reads [2,3]

H ¼ HQ � IR þ IQ � HR þ HI; ð1Þ

where IQ and IR are identity operators in corresponding Hilbert
spaces of the qubit Q and the environment R, respectively. The
qubit Hamiltonian HQ is in the form

HQ ¼ eSz � eðj1S/1j � j � 1S/� 1jÞ; ð2Þ

where the canonical basis of the qubit is fj1S; j � 1Sg and 7e are
the energy levels of the qubit. When Q represents a particle of
spin S ¼ 1=2, the energy e is proportional to the magnitude of the
external magnetic field. The environment is assumed to be a
boson field described by the Hamiltonian

HR ¼

Z 1
0

dohðoÞayðoÞaðoÞ; ð3Þ

where the real-valued dispersion relation hðoÞ specifies
the environment, e.g., hðoÞ ¼ o describes phonon or photon
environment. The operators ayðoÞ and aðoÞ are the creation and
annihilation boson operators, respectively. The coupling of the
qubit to the environment is described by the Hamiltonian

HI ¼ j1S/1j � Hþ þ j � 1S/� 1j � H� ð4Þ

with

H7 ¼7

Z 1
0

doGðoÞ½aðoÞ þ ayðoÞ�; ð5Þ
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where the function GðoÞ is the coupling strength. Without loosing
generality, we assume that it is a real function. The Hamiltonian
(1) can be rewritten in the form

H ¼ j1S/1j � H1 þ j � 1S/� 1j � H�1; ð6Þ

H71 ¼ HR þ H77e: ð7Þ

Since there is no energy exchange (i.e. we use a non-demolition
coupling) between the qubit and the environment, our modeling
corresponds to pure dephasing. Hamiltonians like (7) have been
exploited for description of the inter-conversion of electronic and
vibrational energy [16], the electron-transfer reactions [17], a
quantum kicked rotator [18], chaotic dynamics of a periodically
driven superconducting single electron transistor [19] and the
Josephson flux qubit [20], to mention but a few.
3. Exact reduced dynamics

The model we study is exactly solvable [2,4,6], i.e., the
Schrödinger equation for the wave function jCðtÞS of the total
system can be solved exactly. Here we follow the method
presented in Ref. [9]. First, one needs to specify an initial state
jCð0ÞS. Let us assume that at the initial time t ¼ 0, the wave
function has the form

jCð0ÞS ¼ ðb1j1Sþ b�1j � 1SÞ � jRS; ð8Þ

where b1 and b�1 determine the qubit initial state and jRS is the
initial state of the environment. Then

jCðtÞS ¼ b1j1S� jc1ðtÞSþ b�1j � 1S� jc�1ðtÞS; ð9Þ

where jciðtÞS ¼ exp½�Hit�jRS ði ¼71Þ can be rewritten in the
form [9]

jc1ðtÞS ¼ e�iL1ðtÞDðgþt � gþÞe�iHRtjRS;

jc�1ðtÞS ¼ e�iL�1ðtÞDðg� � g�t Þe
�iHRtjRS: ð10Þ

The phases L1ðtÞ and L�1ðtÞ are given by

L1=�1ðtÞ ¼7et �
Z 1

0
do g2ðoÞfhðoÞt � sin½hðoÞt�g; ð11Þ

where the abbreviation gðoÞ ¼ GðoÞ=hðoÞ has been introduced.
For any function f , the notation ft stands for

ftðoÞ ¼ e�ihðoÞtf ðoÞ: ð12Þ

For an arbitrary square-integrable function f , the displacement
operator Dðf Þ is defined as [21]

Dðf Þ ¼ exp

Z 1
0

do½f ðoÞayðoÞ � f �ðoÞaðoÞ�
)
:

(
ð13Þ

The reduced qubit dynamics can be obtained for any factoriz-
able initial state of the form

Rð0Þ ¼
X

i;j¼1;�1

pijjiS/jj � jRS/Rj; ð14Þ

where Rð0Þ is the initial statistical operator of the total system and
pij are non–negative parameters. The reduced statistical operator
rðtÞ for the qubit alone can be obtained by tracing the
environment degrees of freedom, namely,

rðtÞ ¼ TrR½RðtÞ�
¼

X
i;j¼1;�1

pijjiS/jj � TrRðe
�iHitjRS/RjeiHj tÞ

¼
X

i;j¼1;�1

pijcjiðtÞjiS/jj; ð15Þ
where TrR denotes the partial tracing over the environment
variables, Hi for i ¼71 is given by Eq. (7) and cjiðtÞ ¼ /cjðtÞjciðtÞS
is a scalar product between the functions jcjðtÞS and jciðtÞS in the
environmental Hilbert space. The initial state of the qubit jy;fS is
commonly parametrized by two angles on the Bloch sphere: the
polar angle y and azimuthal angle f. Then

jy;fS ¼ cosðy=2Þj1Sþ eifsinðy=2Þj � 1S: ð16Þ

In this parametrization b1 ¼ cosðy=2Þ and b�1 ¼ eifsinðy=2Þ (see
Eq. (8)) and the initial density matrix rð0Þ of the reduced qubit
dynamics reads

rð0Þ ¼
cos2ðy=2Þ ð1=2Þsinye�if

ð1=2Þsinyeif sin2
ðy=2Þ

 !
: ð17Þ

From Eq. (15) we obtain the density matrix rðtÞ in the form

rðtÞ ¼
cos2ðy=2Þ ð1=2ÞAðtÞsinye�if

ð1=2ÞA�ðtÞsinyeif sin2
ðy=2Þ

 !
: ð18Þ

All information about influence of the environment on the qubit is
incorporated in the dephasing function AðtÞ ¼ c�1;1ðtÞ.

In the following we assume that initially the environment is in
the pure Schrödinger cat state, which is defined by the relation

jRS ¼
1ffiffiffiffi
N
p ½jaSþ eiFj � aS�; ð19Þ

where jaS ¼ DðaÞjOS is the coherent state determined by the
function a ¼ aðoÞ and jOS is the vacuum state of the bosonic
bath. The normalization constant

N ¼ 2þ 2cosðFÞexp �2

Z 1
0

dojaðoÞj2
#
:

"
ð20Þ

The phase F allows to manipulate the initial state of the
environment. In this case, the dephasing function becomes

AðtÞ ¼ N�1½/a�1ðtÞja1ðtÞSþ/a�1ðtÞj � a1ðtÞSeiF

þ/� a�1ðtÞja1ðtÞSe�iF þ/� a�1ðtÞj � a1ðtÞS� ð21Þ

with ja71ðtÞS ¼ expð�iH71tÞjaS. For the sake of brevity we
calculate the explicit form of the dephasing function AðtÞ for the
case of given coherent states jaS determined by real functions
aðoÞ only. As a first main result we find

AðtÞ ¼ N�1A0ðtÞe
�2ietfAþðtÞe

�iF þ A�ðtÞe
iF þ 2cos½4LaðtÞ�g; ð22Þ

where

LaðtÞ ¼

Z 1
0

doaðoÞgðoÞ sinðhðoÞtÞ; ð23Þ

A0ðtÞ ¼ exp �4

Z 1
0

do g2ðoÞ½1� cosðhðoÞtÞ�
)
;

(
ð24Þ

A7ðtÞ ¼ exp �2

Z 1
0

doa2ðoÞ84

Z 1
0

doaðoÞgðoÞ½1� cosðhðoÞtÞ�
)
:

(

ð25Þ

As we show next, the dephasing function AðtÞ determines certain
quantifiers describing various aspects of quantum information.

4. Purity and coherence

We start with basic quantifiers describing the information loss
of the qubit. The first one is the purity defined by

PðtÞ ¼ Trðr2ðtÞÞ ¼ 1
2ðjAðtÞj

2 � 1Þsin2yþ 1: ð26Þ
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Its interpretation is clear: the environment results in a decrease of
the purity. It is equal to 1 for pure states and 1=2 for maximally
mixed states. To quantify coherence, we introduce the coherence
factor CðtÞ which is determined by the evolution of the non-
diagonal elements of the qubit reduced density matrix,

jr12ðtÞj ¼ CðtÞjr12ð0Þj: ð27Þ

Comparison of Eqs. (17) and (18) yields

CðtÞ ¼ jAðtÞj: ð28Þ

The coherence factor is maximal in the absence of the qubit–bath
interaction, i.e., CðtÞ ¼ 1, and vanishes for the case of complete
decoherence, CðtÞ ¼ 0.
5. Entanglement decay

In order to study the influence of the dephasing on the
quantum non-locality, we extend the previous model and include
a second, completely independent, qubit q. The Hamiltonian of
such a composite system thus reads

H ¼ ½HQ þ HR þ HI� � Iq þ Hq; ð29Þ

Hq ¼ IQ � IR � eSz
q: ð30Þ

We assume that the correlations between both the qubits are
encoded in their initial entanglement. For simplicity, we take the
depolarized Bell states as the initial state, i.e.,

rð0Þ ¼ ð1� pÞri þ
p

4
IQ � Iq; i ¼ 1; . . . ;4 ð31Þ

with

r1=2 ¼
1
2½j � 1;1S7j1;�1S�½/� 1;1j7/1;�1j�; ð32Þ

r3=4 ¼
1
2½j � 1;�1S7j1;1S�½/� 1;�1j7/1;1j�: ð33Þ

The depolarization accounts for an imperfect preparation of the
initial state.

In a general case, the state of an open system is mixed. To
quantify its entanglement, several useful measures have been
proposed [22]. One of the operational measures is the negativity,
defined by NðrÞ ¼ maxð0;�

P
iliÞ, where li are the negative

eigenvalues of the partially transposed density matrix of two
qubits [23]. For the model under consideration the negativity can
straightforwardly be evaluated for an arbitrary evolution time t.
One obtains

NðrðtÞÞ ¼ max 0;
1� p

2
jAðtÞj �

p

4

� �
: ð34Þ

The negativity is positive for an entangled mixed state, whereas it
vanishes for unentangled states. Moreover, it presents an
entanglement monotone and can be used to quantify the degree
of entanglement.
6. Discussion

The main quantifiers like purity (26), coherence factor (28) or
negativity (34) depend directly on the dephasing function AðtÞ.
Therefore, we start with discussing its properties in further detail.
The dephasing function depends on the qubit–environment
coupling via the functions gðoÞ ¼ GðoÞ=hðoÞ and aðoÞ. The latter
one defines the initial Schrödinger cat state. For convenience, we
can assume that both functions are real. We also introduce the
new function JðoÞ � o2g2ðoÞ. Then, the comparison of the
function A0ðtÞ (see Eq. (24)) with the standard expression for
the decoherence function (see e.g. Ref. [6, Eq. (4.51)]), allows one
to identify JðoÞ as the spectral density. In the literature, there are
several examples of JðoÞ in use. A frequently used one is the
generalized Drude form defined by [2]

JðoÞ ¼ l o1þmexpð�o=ocÞ; ð35Þ

where m4� 1 and oc is the cut-off frequency. The case m 2 ð�1;0Þ
corresponds to a sub-ohmic, m ¼ 0 to the conventional ohmic and
m 2 ð0;1Þ to a super-ohmic environment.

One can observe that the long-time limit is given by

A0 ¼ lim
t-1

A0ðtÞ ¼ exp �4

Z 1
0

do JðoÞ=o2

)
:

(
ð36Þ

The integral in this expression is infinite for a sub-ohmic and an
ohmic environment. Then A0 ¼ 0 and the dephasing function
diminishes to zero, limt-1AðtÞ ¼ 0. Consequently, purity (26),
coherence factor (28) and negativity (34) asymptotically take on
the following asymptotic long-time values:

P ¼ 1� 1
2 sin2 y; C ¼ 0; N ¼ 0: ð37Þ

One can see that for the sub-ohmic and ohmic environments all
the quantifiers are independent of any particular choice of jaS. It
means that in the long-time regime the qubit properties do not
depend any longer on the initial Schrödinger cat state. The super-
ohmic case is more intriguing because A040. As it follows from
the expression for the normalization constant N (see Eq. (20)), the
function aðoÞ is square-integrable. Starting from the Cauchy–Sch-
warz inequality one also can find that integrals (23) and (25) exist,
are finite and their values depend on the function aðoÞ. In
consequence, the dephasing function depends on both a and F,
i.e. on the initial state of the environment. Therefore, all
characteristics (26), (28) and (34), do depend on the initial
environment state, provided the environment is super-ohmic.

It is instructive to compare Eq. (22) with the dephasing
function obtained for an initial, purely coherent state jRS ¼ jaS of
the environment. In this case the dephasing function AðtÞ becomes

AðtÞ ¼ expð�2ietÞexp½�4iLaðtÞ�A0ðtÞ: ð38Þ

In clear contrast to the initial Schrödinger cat state, jAðtÞj now
depends only on A0ðtÞ. This fact implies that purity (26), coherence
factor (28) and negativity (34) are independent of the initial state
of the environment also for a super-ohmic bath.
7. Conclusions

Dephasing characteristics of qubits coupled to a bosonic
environment and prepared in a Schrödinger cat state has been
investigated. The properties of the reduced dynamics, as reflected
in the purity and coherence factor, have been shown to exhibit an
explicit phase-dependence F as a parameter of the Schrödinger
cat state. Qualitatively the same behavior has been obtained for
the entanglement feature, being quantified by the negativity. The
main conclusion is the following: if the initial state of the
environment is the coherent (or vacuum) state then the informa-
tional quantifiers do not depend on the initial state. However, if
the initial state is a linear combination of two coherent states as
the Schrödinger cat state then such quantifiers as the purity,
coherence factor or the negativity do depend on the initial
state—via the function a and the phase F—of the environment, at
least in the short-to-intermediate time regime. For the super-
ohmic environment this result holds true also in the long-time
limit. Moreover, the F-dependence allows one to selectively
control the dephasing characteristics and the entanglement
characteristics.



ARTICLE IN PRESS

J. Dajka et al. / Physica E 42 (2010) 374–377 377
Acknowledgments

The work supported by Polish Ministry of Science and Higher
Education under the Grant no. 202 131 32/3786. We also gratefully
acknowledge (P.H.) the financial support by the German Excel-
lence Initiative via the ‘‘Nanosystems Initiative Munich (NIM)’’
and the DFG through the collaborative research centre SFB 631.

References

[1] R. Alicki, Controlled open quantum systems irreversible quantum dynamics,
Lecture Notes in Physics, vol. 622, Springer, Berlin, 2003.

[2] J. Łuczka, Phys. A 167 (1990) 919.
[3] H. Spohn, Comm. Math. Phys. 123 (1987) 277;

R. Alicki, Open Syst. Inform. Dyn. 11 (2004) 53.
[4] G.W. Unruh, Phys. Rev. A 51 (1995) 992.
[5] G.M. Palma, K.A. Suominen, A.K. Ekert, Proc. Roy. Soc. London Ser. A 452

(1996) 567.
[6] H.-P. Breuer, F. Petruccione, The Theory of Open Quantum Systems, Oxford

University Press, Oxfrord, 2002.
[7] J. Dajka, M. Mierzejewski, J. Łuczka, J. Phys. A Math. Theor. 40 (2007) F879.
[8] J. Dajka, M. Mierzejwski, J. Łuczka, Phys. Rev. A 77 (2008) 042316.
[9] J. Dajka, J. Łuczka, Phys. Rev. A 77 (2008) 062303.
[10] R. Doll, M. Wubs, P. Hänggi, S. Kohler, Europhys. Lett. 76 (2006) 547;

R. Doll, M. Wubs, P. Hänggi, S. Kohler, Phys. Rev. B 76 (2007) 045317.
[11] J. Dajka, M. Mierzejewski, J. Łuczka, J. Phys. A Math. Theor. 41 (2008) F012001;

J. Dajka, J. Luczka, J. Phys. A Math. Theor. 41 (2008) F442001.
[12] C.C. Gerry, P.L. Knight, Introductory Quantum Optics, Cambridge University

Press, Cambridge, 2006.
[13] S. Haroche, M. Brune, J.-M. Raimond, European Phys. J. Special Topics 159

(2008) 19.
[14] P. Domokos, I. Ianszky, P. Adam, T. Larsen, Quantum Opt. 6 (1994) 187.
[15] J. Janszky, A. Petak, C. Sibilia, C. Bertolotti, P. Adam, Quantum Semiclass. Opt. 7

(1995) 145.
[16] J.J. Markham, Rev. Modern Phys. 31 (1956) 956;

S.H. Lin, J. Chem. Phys. 44 (1966) 3759.
[17] J. Tang, Chem. Phys. 188 (1994) 143.
[18] S.A. Gardiner, J.I. Cirac, P. Zoller, Phys. Rev. Lett. 97 (1997) 4790.
[19] S. Montangero, A. Romito, G. Benenti, R. Fazio, Europhys. Lett. 71 (2005) 893.
[20] E.N. Pozzo, D. Dominguez, Phys. Rev. Lett. 98 (2007) 057006.
[21] O. Brattelli, D.W. Robinson, Operator Algebras and Quantum Statistical

Mechanics, Springer, Berlin, 1997.
[22] F. Verstraete, K. Audenaert, J. Dehaene, B. De Moor, J. Phys. A Math. Gen. 34

(2001) 10327;
G. Vidal, R.F. Werner, Phys. Rev. A 65 (2002) 032314.

[23] A. Peres, Phys. Rev. Lett. 77 (1996) 1413.


	Dephasing of qubits by the Schrödinger cat
	Introduction
	Model
	Exact reduced dynamics
	Purity and coherence
	Entanglement decay
	Discussion
	Conclusions
	Acknowledgments
	References




