
May 2009

EPL, 86 (2009) 30009 www.epljournal.org

doi: 10.1209/0295-5075/86/30009

Universal fluctuations in subdiffusive transport
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Abstract – Subdiffusive transport in tilted washboard potentials is investigated within the
fractional Fokker-Planck equation approach by making reference to the associated continuous
time random walk (CTRW) framework. The scaled subvelocity is shown to obey a universal law.
The latter is defined by the index of subdiffusion α and the mean subvelocity only. Interestingly
this law depends neither on the size of the system or measurement time, nor on the bias strength
or on the specific form of the washboard potential. These scaled, universal subvelocity fluctuations
emerge due to the weak ergodicity breaking and are vanishing in the limit of normal diffusion. The
results of the analytical reasoning are corroborated by Monte Carlo simulations of the underlying
CTRW.
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Introduction. – A process of directed motion, for
example, the motion of a Brownian particle under influ-
ence of a constant force, can be characterized by its mean
velocity v. The mean velocity is measured using a ruler and
a stopwatch in one of two different setups: One can either
measure the distance l covered within a fixed time interval
T and define the mean velocity as v= l/T or, like it is done
in track-and-field competitions, fix the distance L and
measure the time interval t necessary to cover it, yielding
v=L/t. Thus, one can distinguish between the fixed time
(FT) velocities and the time-of-flight (TOF) velocities.
Both these definitions are known from elementary physics
course and these do not imply any special averaging proce-
dure. However, when the instantaneous velocity exists
(e.g., for normal Brownian motion with inertia) the FT
mean velocity can be considered as the time-average of the
instantaneous velocities over the time span T . The TOF
velocity obeys a somewhat different statistical nature as
it implies the averaging over the random time span. For
our Brownian particle moving under the influence of the
constant force F both setups yield values of (mean) veloc-
ity which in the limit of T →∞ for the FT measurement
or L→∞ for the TOF measurements reach the same
sharp value v. In the “normal” situation the typical time t
necessary to overcome the distance L grows linearly with
L in the TOF setup, and the relative fluctuations of the
corresponding times in individual measurements decay.

On the other hand, the typical distance l covered during
the time T grows on the average linearly with T in the FT
setup, while the relative fluctuations in the distances decay
as well. This implies that monitoring a single particle over
a long path or during a long time yields a sharp value for
its velocity, without any necessity to additionally average
the results over an ensemble of repeated measurements.
The property of a physical observable to reach a sharp
value in a large system or, likewise, for a long observation
time is typically referred to as “self-averaging” property.
For the case of biased anomalous subdiffusion the situ-

ation drastically differs. In what follows the subdiffusive
motion x(t) is modeled by a continuous time random walk
(CTRW) with the waiting time probability density (WTD)
on sites assuming (for t≫ τ) a power law; i.e.,

ψ(t)∼ c(t/τ)−1−α (1)

with a diverging mean waiting time, i.e., with 0<α< 1.
In (1), τ is a characteristic time scale and the prefactor
c= α[τΓ(1−α)]−1 is introduced for the sake of simplicity
of further calculations. For example, charge trans-
port processes in disordered, amorphous media can be
subdiffusive due to a trap-like transport mechanism with a
trapping time distribution [1–6] similar to (1). This consti-
tutes an approximation which can be justified for samples
of macroscopic, but finite size L [3]. The considered CTRW
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model can also be deduced from a Markovian diffusion
model with quenched disorder [7]. The corresponding
averaged current J(t)∝ d〈δx(t)〉/dt, δx(t) = x(t)−x(0),
is a transient which decays to zero upon increasing
time [2,3]. This decay of the current is due to the fact that
with a subdiffusive CTRW the typical displacement under
a constant force F grows as δx∝ tα. In the case of the
measured decaying photocurrent occurring in thin amor-
phous films [3] one can, however, define an anomalous

current as Jα =
∫ t

0
J(t′)dt′/tα =Q(t)/tα, where Q(t) is

the transferred charge. This quantity is quasi-stationary
(at shorter times) and then subsequently fades anyway
when the particles reach the boundaries of the system.
The measured current in a macroscopic sample presents

a multi-particle, ensemble-averaged quantity. Concentrat-
ing on the motion of a single particle, we can introduce
the subvelocity vα as the characteristics of its motion,
namely as vα =Γ(1+α)l/T

α in the FT setup, or as
vα =Γ(1+α)L/t

α for the TOF setup. As it will be
elucidated below, the corresponding subvelocities are no
longer self-averaging quantities; i.e., these do not tend
to sharp values for T →∞ or L→∞. Moreover, we
demonstrate that in the limit of a large size L or a large
span T the distributions of vα measured in both setups are
identical and of nonvanishing width. This means that the
subvelocity dynamics exhibits universal fluctuations.
Nevertheless, one can define an ensemble-averaged mean
subvelocity vα =Γ(1+α)〈δx(t)〉/t

α [8,9] which presents
a quasi-stationary quantity for a sufficiently large L
(neglecting finite size effects, i.e., L→∞ when assuming
limit t→∞). We further demonstrate that this mean
subvelocity is the only quantity (apart from α) which
fully determines the distribution of subvelocities in the
individual runs.
The absence of a finite mean trapping time leads to the

weak ergodicity breaking [10–12] in the relevant transport
processes. This feature is at the root for the absence
of self-averaging. In particular, the mean subvelocity
of individual particles (before ensemble averaging) is
a random quantity; this is so because the time and
the ensemble averages are not equivalent. This random
character is also preserved for the measurement of the
diffusion coefficient of individual particles [13,14], where
fluctuations of the corresponding mobility have also
been discussed. It should be noted, however, that the
moving time averaging procedures discussed in those
latter references are different from the ones implied by
the FT or TOF setups introduced here.
Using numerical simulations we show that the same

conclusions hold as well in more complex situations, as,
for example, for a CTRW in a tilted washbard potential,
i.e., the situation discussed in refs. [8,9]. In the continuous
space limit, it is described by the fractional Fokker-Planck
equation (FFPE) [4,8,9]

∂αP (x, t)

∂tα
= κα

∂

∂x

[

e−βU(x)
∂

∂x
eβU(x)P (x, t)

]

, (2)

which we formulate here in the form with the fractional
Caputo derivative ∂αP (x, t)/∂tα = (1/Γ(1−α))

∫ t

0
dt′[t−

t′]−α∂P (x, t′)/∂t′ [5,8]. This equation is equivalent to the
original FFPE of ref. [4] with the Riemann-Liouville frac-
tional derivative acting on the right-hand side. In eq. (2),
U(x) = V (x)−Fx, where V (x+λ) = V (x) denotes a peri-
odic potential with period λ, and F > 0 is the biasing
force; β = 1/(kBT ) is the inverse temperature, and κα is
the subdiffusion coefficient. A self-averaging in time does
not occur [9] and mean subvelocity remains a random vari-
able even in the strict limit T →∞. As we shall show, the
same is valid in the TOF setup: only upon an additional
ensemble averaging does the averaged value of subveloc-
ity coincide with the one given by solving analytically the
fractional Fokker-Planck equation [8,9]. Again, the distri-
bution of subvelocities in individual runs is governed only
by this ensemble-averaged mean subvelocity value and by
the index α of the waiting-time distribution.
It is surprising from a physics point of view that

this universality class does not depend on imposing a
periodic static potential V (x) in addition to an applied
constant force F (what seems feasible experimentally,
e.g., for a situation with charged particles). It also does
not depend on the environmental temperature provided
that α is temperature independent. This universality
feature is similar in nature with an established univer-
sal scaling relation [8,9] between anomalous current and
biased diffusion, originally suggested for free (i.e., in
the absence of a periodic potential) biased subdiffu-
sive CTRW transport [1,2]. This result is derived below
by use of an heuristic argumentation; i.e., by use of
a reduction to a coarse-grained CTRW. On the level
of ensemble-averaged quantities, we therefore obtain a
universal law for the relative fluctuations of (sub-)velocity,
or fluctuations of anomalous current, which can be tested
experimentally.

Theory for the biased CTRW. – We start out
from a CTRW on a one-dimensional lattice with period
length a and the WTD in (1). The walk is biased
and solely nearest neighbors jumps (this assumption is
not restrictive and can be relaxed) occur with force-
dependent splitting probabilities q+ (toward the right)
and q− (toward the left), with q++ q− = 1. After n steps,
the mean displacement is ln = 〈x〉= na(q

+− q−). From
now on, we measure distance l in the units of a∗(F ) =
a(q+− q−). Time will be measured in units of τ and the
subvelocity vα in units of v0(F ) = Γ(1+α)a

∗/τα.
In the fixed time setup, we fix the final time T and ask

for the probability p(n, T ) to make n steps. The answer is
well known (see p. 248 in ref. [2]): in the Laplace domain,
it reads

p̂(n, u) =
1− ψ̂(u)

u

[

ψ̂(u)
]n

. (3)

For u→ 0 (i.e., for T →∞), the leading term expansion of

the Laplace transform of WTD in eq. (1) is ψ̂(u)∼ 1−uα.
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This leads to

p̂(n, u)≃ uα−1exp [n ln(1−uα)]≃ uα−1exp(−nuα) (4)

in the limit of large n→∞. The expression exp(−nuα)
is related to the Laplace transform of the one-sided Lévy
stable law Lα(t) of index α, being L̃(u) = exp(−u

α);
i.e., in the original time domain it corresponds to
n−1/αLα

(

n−1/αt
)

. Considering n as a continuous para-
meter (distance being l= n in units of a∗) and noting
that eq. (4) equals the Laplace transform of

−

∫ T

0

d

dl

1

l1/α
Lα

(

t

l1/α

)

dt,

we obtain, upon applying a change of variable of integra-
tion from t to ξ = t/l1/α,

p(l, T )≃−
d

dl

∫ T/l1/α

0

Lα(ξ)dξ =−
d

dl
Cα

(

T

l1/α

)

.

Here, Cα(x) is the cumulative distribution function of the
one-sided Lévy stable law; i.e.,

p(l, T )≃
1

α

T

l1+1/α
Lα

(

T

l1/α

)

.

This finding presents in essence a well-known result for
the asymptotic behavior of the number of steps in CTRW
at fixed time. Thus, we can extract the distribution for
the FT-subvelocity vα =Γ(1+α)l/T

α via a change of the
random variable from l to vα, yielding in terms of the
scaled subvelocity ζα = vα/v0(F ), for all F > 0,

p(ζα) =
Γ(1+α)1/α

αζ
1+1/α
α

Lα

[

(

Γ(1+α)

ζα

)1/α
]

. (5)

This universal form of the subvelocity distribution
presents a first major result of our study. In this context
it is pertinent to mention that yet another random
quantity, namely the time-averaged mobility of a single
subdiffusive particle obeys the very same law [14]. The
subvelocity here, however, has a quite different physical
meaning, despite the fact that the randomness of both
quantities, i.e., the time-averaged mobility and the subve-
locity, constitutes a manifestation of weak ergodicity
breaking. Notably, the time-averaged mobility vanishes in
the limit T →∞ [14]; in contrast, the subvelocity remains
finite.
Let us demonstrate that this very same result is recov-

ered also within the time-of-flight setup. That is, we are
looking for the asymptotic distribution of times to make
a large number of n steps. The corresponding distance
will assume a sharply peaked distribution around its mean
value which can be identified with the sample size L. The
random time t necessary to traverse the system of length
L in the TOF setup is essentially the time necessary to
make n steps. The overall time to make n≫ 1 steps tends

in distribution to a one-sided Lévy law n−1/αLα
(

n−1/αt
)

.
To see this it is sufficient to notice that the Laplace trans-
form of the probability to find this time is given by p̂(u) =

[ψ̂(u)]n ≃ (1−uα)n ≃ exp[n ln(1−uα)]≃ exp(−nuα). The
distribution of vα is then obtained by the same change of
variable as invoked above to arrive again at the identical
result in (5). Here, the only difference being that t (instead
of T ) is now a random variable and l=L is fixed.
The averaged value of the scaled subvelocity with

probability density (5) is one, ζα = 1, i.e., the subvelocity
in (5) is scaled in fact through its averaged value vα(F ) =
v0(F ). All the higher moments are obtained using the
change of variable y= [Γ(1+α)/vα]

1/α and the relation
∫ ∞

0

yηLα(y)dy=
Γ(1− η/α)

Γ(1− η)
(6)

being valid for any η ∈ (−∞, α) (see ref. [15]). With η=
−2α, one obtains the second moment as

ζ2α =
2Γ2(1+α)

Γ(1+2α)
. (7)

The relative fluctuation of subvelocity δvα =
√

v2α− (vα)
2/vα equals the universal scaling relation

between the averaged subdiffusion current and the biased
diffusion of refs. [1,2,8,9], i.e.,

δvα =

√

δx2(t)

δx(t)
=

√

2Γ2(1+α)

Γ(1+2α)
− 1

= lim
t→∞

√

〈δx2(t)〉

〈δx(t)〉
. (8)

This result is by no means trivial: this is so because (· · ·)
denotes the average over the stationary subvelocity density
p(vα) = p(ζα = vα/vα)/vα, while 〈· · ·〉 is the average over
the time-dependent population probabilities pi(t) of the
lattice sites. This constitutes our second main result: It
shows that weak ergodicity breaking is at the root of
this remarkable scaling relation (8). Put differently, weak
ergodicity breaking is responsible for the startling change
of the law of subdiffusion from 〈δx2(t)〉 ∝ tα —when F =
0— to〈δx2(t)〉 ∝ t2α —when F �= 0; i.e., subdiffusion turns
over into superdiffusion for 0.5<α< 1. We remark in this
context that the scaling relation (8) between the current
and the biased diffusion cannot be employed to deduce the
main result in (5).
In particular, for α= 0.5, eq. (5) simplifies to one-sided

Gaussian form (cf., fig. 1),

p(ζ1/2) =
2

π
exp

(

−
1

π
ζ21/2

)

(9)

and δv1/2 =
√

π/2− 1. For other values of α, a handy
approximation to the subvelocity distribution can be
obtained using the corresponding small x asymptotic
behavior of the Levy-stable distribution [15,16]. It reads

p(ζα)≃A(α)(αζα)
α−1/2
1−α exp

[

−B(α)ζ1/(1−α)α

]

, (10)
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Fig. 1: (Color online) Numerical subvelocity distribution p(vα)
for α= 0.5 in both FT and TOF setups for a periodic potential
V (x) = V0 cos(2πx/λ) and differing bias forces F . vα is scaled
in units of v∗0(F ) = vα(F )/vcr, where vα is given by (11)
and vcr = Fcrκα/(kBT ). The solid lines depict the theoretical
result (9): p(vα) = p(ζα = vα/v

∗

0)/v
∗

0 .

where A(α) = [
√

2π(1−α)Γ(1+α)]−1 and B(α) = (1−
α)αα/(1−α)Γ(1+α)−1/(1−α). For α= 0.5 this approxima-
tion reproduces the exact result in (9). For 0.5<α< 1,
it correctly predicts that the distribution function is
non-monotonic, possessing a maximum (see fig. 2) which
becomes sharp for α→ 1. In this limit, the relative fluc-
tuation vanishes, δvα→ 0, and the velocity distribution
tends to the delta function centered at vα. The correct
value p(0), however, always remains finite for α< 1, imply-
ing that there are always particles which become immobi-
lized. For α� 0.5, p(vα) decays monotonically. Moreover,
for small α→ 0, the distribution becomes nearly exponen-
tial, consistent with δvα→ 1 in this limit (see fig. 3).
All our analytical findings are confirmed by the numer-

ical simulations of the underlying CTRW in a biased cosine
potential U(x) = V (x)−Fx with V (x) = V0 cos(2πx/λ),
using the Mittag-Leffler distribution ψ(τ) and the numer-
ical algorithm detailed in [9]. In doing so, we use here
a different method to extract the numerically exact
generator for the Mittag-Leffler distribution by using the
relation due to Kozubowski [17] (see also ref. [18]). It
is surprising that all these results hold universally, i.e.,
they are independent of the details of periodic potential
and the temperature. This fact is numerically confirmed
with figs. 1–3 for a washboard potential (details are given
below). To elucidate our main finding we next make use
of a reasoning put forward originally in ref. [8].

Theory for washboard potentials. – We dilate the
lattice by introducing many more points with separation
∆x→ 0. The residence time distributions on every
point are chosen to be Mittag-Leffler distributions [5]
with different time scaling parameters τi = 1/νi. This
distribution belongs to the same class in (1). Each point
i is characterized also by the right and the left nearest-
neighbor jump probabilities q±i = g

±

i /(g
+
i + g

−

i ), and by
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FT
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Fig. 2: (Color online) Numerical subvelocity distribution
p(vα) vs. the analytical approximation in eq. (10) and the exact
result in eq. (5) for α= 0.8. The same scaling applies as in fig. 1.
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Fig. 3: (Color online) Same as in fig. 1 for α= 0.2.

the fractional forward and backward rates, g±i = q
±

i ν
α
i ,

respectively. These quantities follow from the potential
U(x) as g±i = (κα/∆x

2)exp[−β(Ui±1/2−Ui)] so that

the Boltzmann relation g+i−1/g
−

i = exp[β(Ui−1−Ui)] is
fulfilled. Here, Ui ≡U(i∆x), Ui±1/2 ≡U(i∆x±∆x/2),

and νi = (g
+
i + g

−

i )
1/α. The generalized master equation

for such a CTRW is [5,8]

∂αPi(t)

∂tα
= g+i−1Pi−1(t)+ g

−

i+1Pi+1(t)− (g
+
i + g

−

i )Pi(t).

In the spatial continuous limit ∆x→ 0, it yields the FFPE
(2). In this way, we simulate the stochastic dynamics
associated with (2) on a sufficiently dense grid with step
∆x, using the Monte Carlo algorithm from [9].
We next consider a periodic potential with period λ

subjected to a finite bias force F . One can course-grain
the corresponding limiting CTRW and map it onto a new
biased CTRW with the lattice period λ, i.e., we average
over spatial period λ. The precise form of the coarse-
grained WTD is not known. However, it belongs to the
same class as (1); only the time parameter τ is corres-
pondingly changed together with the coarse-grained split-
ting probabilities q±. We note that such course-graining
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of Markovian, normal diffusion in washboard potentials
yields a non-Markovian CTRW that gives rise to such
profound effects as giant acceleration of diffusion [19,
20]. In clear contrast, our original CTRW constitutes
a non-Markovian, weakly non-ergodic stochastic process,
possessing infinite memory. Coarse-graining it further does
not change the universality class because no correlations
between the residence times in non-overlapping spatial
domains occur.
For arbitrary periodic tilted potentials, the result for the

ensemble-averaged subvelocity was obtained in refs. [8,9].
It reads

vα(F ) =
καλ [1− exp(−βFλ)]

∫ λ

0
dx
∫ x+λ

x
dy exp(−β [U(x)−U(y)])

. (11)

In all our numerical simulations we used the archetype
cosine potential V (x) = V0cos(2πx/λ). The grid contains
200 points within each spatial period. A scaled temper-
ature of kBT = 0.1V0 is used throughout and the force F is
scaled in units of the critical force Fcr, where with F >Fcr
the potential U(x) becomes monotonic without barriers
in between. The number of particles is N = 105. The
different lines for fixed α and different bias values F are
due to the different values of the scaling parameter vα(F ),
calculated in accordance with (11). In accordance with our
theory, all the related lines perfectly coincide (not shown)
after re-scaling vα→ ζα = vα/vα(F ), p→ p · vα(F ), for all
F > 0. The numerical results thus corroborate well with
theory.
In conclusion, a prominent finding of this work is that

the feature of weak ergodicity breaking is responsible for
the universal scaling relation (8) between the anomalous
current and the subdiffusion occurring in arbitrary tilted
periodic potentials. This intriguing result follows from
the universal law for the theoretically deduced subve-
locity distribution in (5), this being the main result of
this work.
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