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A one-dimensional bistable flow driven by additive, exponentially correlated Gaussian 
noise is considered. The small relaxation time Fokker-Planck approximations, widely 
used in the recent literature, are derived and possible shortcomings of those approxima- 
tion schemes are discussed. In particular, it is pointed out that higher order non- 
Fokker-Planck type contributions are generally of the same order as the Fokker-Planck 
terms. In principle, those contributions cannot be neglected if the global behavior of the 
probability solutions is to be described accurately. The result for the activation rate 
(Arrhenius factor), as evaluated from the approximative Fokker-Planck schemes, does 
not coincide in leading order in the correlation time z of the noise with a computer 
simulation of the rate at low noise level. This result indicates that the wings of the 
stationary probability /~(x) are in leading order in ~ not recovered correctly from the 
approximative Fokker-Planck schemes. Some implications of our study for adiabatic 
elimination procedures are also discussed. 

1. Introduction 

There has been recent interest in non-linear systems 
subjected to external noise with a finite correlation 
time. In many situations the influence of a finite 
correlation time ~ on the dynamics of a macroscopic 
variable plays a minor role such that an approxi- 
mative Markovian theory, e.g. a Fokker-Planck de- 
scription, modelling the statistical macroscopic flow, 
is justified [1, 2]. On the other hand there exist 
cases where the influence of the bath on the macro- 
scopic flow of an order parameter must be modelled 
with a coloured noise source [3-6]. A well-known 
example of this kind of situation is the phenomenon 
of motional narrowing in magnetic resonance. Kubo 
[4, 7] has shown that a very short correlation time 
of the fluctuating magnetic field yields a vanishing 
effect on the motion of the spin; on the contrary, if 
the fluctuations of the field are large and correlated 
over a long time scale, the motion of the spin is 
greately modified. Another important example is the 
relevant influence of the correlated noise on the 
activation rates in equilibrium systems [8-11] and in 
driven non-equilibrium systems [12]. 
Generally, the finite correlation of the noise will 

have an effect on the form of the stationary proba- 
bility. This fact has been exploited in recent studies 
of so-called colored noise induced transitions [13- 
18]. Because the underlying dynamics are governed 
by a non-Markovian process, the exact master equa- 
tion can be obtained in special cases only [5, 12-14, 
18, 19]. Therefore, one generally must invoke an 
approximation procedure such as the small relax- 
ation time Fokker-Planck schemes put forward by 
the advocates of [14; 15, 20-22]. Moreover, it has 
been pointed out previously on several occasions [1, 
5, 23-25], that with a non-Markovian dynamics, the 
initial preparation procedure, being reflected in the 
statistical properties of the correlated noise [25], is 
of equal importance as the macro-dynamical law 
generated from an initial probability po(X) of the 
macrovariables x(t). Therefore, caution must be 
exercised in interpreting correctly the statistical in- 
formation of the quantities calculated by means of a 
generalized Langevin equation or master equation 
dynamics [5, 25, 26]. 
In Sect. 2, we present the model of an overdamped 
particle motion in a symmetric double-well potential 
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being driven by an exponentially correlated Gauss- 
ian noise source. Section 3 contains the results of the 
commonly used Fokker-Planck approximation 
schemes [14, 15, 20-22, 27]. Possible short-comings 
of those approximation schemes are pointed out. 
The activation rate is considered in Sect. 4. This 
activation rate is evaluated analytically by employ- 
ing the perturbative Fokker-Planck schemes and is 
then compared with the exact results of a computer 
simulation. The conclusions are given in Sect. 5. 

2. Bistable Stochastic Flow Driven by Colored Noise 

In what follows, we consider a stochastic flow of a 
one-dimensional order parameter x(t). We assume a 
symmetric bistable flow modelled by the set of sto- 
chastic differential equations: 

2 = a x - b x 3 + ~  a, b > 0  (2.1 a) 

~= - 1  ~ +tl(t ). (2.1 b) 
T 

t/(t) is a stationary Gaussian white noise source of 
zero mean and correlation function 

<n(t) n(s)> = ~ -  6(t-  s). (2.1 c) 

Integration of (2.1b) yields with ~(t o = 0 ) =  3o 

t 

(t) = ~o e-  t/~ + ~ exp [ -  ( t -  s)/z] r/(s) ds. 
0 

(2.2) 

Assigning to the first two moments of Go the values 
given by the equations 

<~o> =0  (2.3 a) 

<r =D/z, (2.3 b) 

we find 

Thus, the system of differential equations in (2.1) is 
equivalent to a non-Markovian Langevin equation 
driven with additive Gaussian correlated noise 

2 = a x - b x 3  +~(t), (2.7) 

with ~(t) obeying the properties in (2.4) and (2.5). 
Because (~(t)) = 0, the deterministic limit (D--, 0) of 
(2.7) is clearly given by 

2 = a x - b x 3 = f(x) (2.8) 

which is derivable from the potential V(x) 

a 2 b 4 V ( x ) = - ~ x  + ~ x .  (2.9) 

Furthermore, we will also implicitly assume that the 
Gaussian noise ~(t) in (2.7) is independent of the 
initial macroscopic random variable X(to)=Xo. 

3. Approximative Fokker-Planck Schemes 

It has been shown previously [5], that an exact 
closed form master equation for a nonlinear flow 
driven by colored noise ~(t) can in general not be 
written down explicitly. With ~(t) being a stationary 
Gaussian process obeying (2.3)-(2.6), the rate of 
change of the probability p~(x) obeys the formally 
exact relation [5, 14, 15] 

fit(x) = - ~  (a x - b x 3) pt(x) 

t 

D 02 ~ds(exp-(t-s)/z)  
+7~o 
�9 ( ~ 6 ( x ( t ) - x ) ~  (3.1) 

\ogts) / 

where 6x(t)/6~(s) denotes the functional derivative. 
This functional derivative obeys an exact integral 
equation [5] which for our case in (2.7) explicitly 
reads 

<~(t)> = 0 (2.4) 

and for the auto-correlation function the time-homo- 
geneous result 

(~ (t) ~ (s)> = D exp [ - It - sl/z]. (2.5) 

Moreover, r is Gaussian and stationary only if 
prepared in Gaussian form consistent with (2.3a) 
and (2.3 b), i.e. 

[ ~- \,/2 r176 .l p(r ~ } ~ - )  exp [ (2.6) 
(2D/z)J" 

, 2 6 x ( O  6~(s)6X(t)=o(t-s)'{l + ! d z [ a - 3 b x  ( z ) ] ~ } "  (3.2) 

On expanding this relation into a Taylor series 
around s - = t ,  and keeping only the first two terms, 
one obtains upon neglect of transients the so called 
short relaxation time Fokker-Planck approximation 
(SRTFPA) 

SRTFPA:  f t ( x ) = - ~ x ( a x - b x 3 ) p t ( x )  

02 
+ D 0~-(1 +z[a-3bx2])pt(x).  (3.3) 
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Originally, (3.3) has been used by Stratonovich and 
Lax [27]. Recently this SRTFPA-scheme has been 
popularized by the authors of [14, 15]. Furthermore, 
if one keeps within a formal Taylor series expansion 
of the functional derivative around s - = t  [14, 15] 
the terms proportional to D z", n > 0, (and only those 
terms), one obtains the so-called "best Fokker-Planck 
approximation" (BFPA) introduced in [15, 22] 

BF PA: fit(x) = - ~ (a x - b x3) Pt(X) 

82 
+ D ~ H(x, z) p~(x) (3.4) 

where with f ( x ) = a x - b x  3, the "effective diffusion" 
H(x,z) is given by [15] (prime denotes differen- 
tiation with respect to x) 

H(x,'c)= f (x)  (l +'cf(x) f--~) -1 1 
f (x)  

= f (x)  ( 1 - z f ( x )  ~-- x 

f (x)  

= 1 + z f ' ( x ) + z  2 
- [(f'(x)) 2 - f (x) f"(x)]  + 0(z3). (3.5) 

At the zeros 2={xl ,xu ,x2}  of the deterministic flow 
(2.8) (extrema of V(x) in (2.9)), one finds 

H(X, z) = 1 + f'(ff) z + (f,(~))2 z2 + (f,(ff))3 z3 + . . .  

= (1 - f'(ff) J -  1. (3.6) 

Thus, at the locally stable states x l , x  2,xl/2 
= -T-(a/b)n 2 

H(ffl, z) = H(~2, r) = 1/(1 + 2 a J ,  (3.7) 

whereas at the locally unstable state x, 

H(xu, r) = 1/(1 - a r). (3.8) 

A first difficulty with those Fokker-Planck approxi- 
mation schemes emerges via the effective diffusion 
terms in (3.3) and (3.4), which are not necessarily 
positive for all x- values [15]; thereby generating 
generally unphysical boundaries. On the region of 
accessible x-values, as determined from (2.7), the 
probability pt(x) must stay positive (including zero) 
for all times t. Keeping the correlation time of the 
noise fixed, we by definition set the effective dif- 
fusion in (3.3,3.4) zero within the region where it 
takes on negative values. The stationary probability 
/7(x) of the corresponding Fokker-Planck approxi- 

mation scheme is then readily evaluated. For exam- 
ple, by use of (3.4) one obtains 

Z - I  { 
/7(x)--H~,;c) e x p + l i  ~ d y ; O ( H ( x , z ) )  (3.9) 

o n ty ,  z) j 

where the Heaviside step function O(H(x,j)guaran- 
tees the positive support of ig(x). Here and in the 
following we implicitly assume that the noise cor- 
relation time z is small enough such that i~(x) is non- 
vanishing within the bistable region (xr, xz), where 
xr<x 1 and Xl~'X2, XI ~X 2. 
On the other hand, if one formally keeps all the 
terms generated by Taylor expansions of the func- 
tional derivatives 6x(t)/6~(s) around s - = t ,  one ob- 
tains, upon neglect of all transients, for the rate of 
change of the probability pt(x) a Kramers-Moyal 
structure 

,=1 n! (Kn(x,z)pt(x)). (3.10) 

Clearly, due to the neglect of transients, the master 
equations in (3.3, 3.4, 3.10) can be utilized only for 
the evaluation of quantities determined by the 
asymptotic long time behavior of pt(x), such as the 
stationary probability or the leading behavior of a 
mean first pasage time (MFPT) at weak noise (Ar- 
rhenius factor). In this context, a recent paper [15] 
contains a somewhat confusing statement: In view of 
(3.10), (Eq.(2.28) in [15]) one reads: "Therefore, it is 
obvious that Kl(x,  z) and K2(x, z) contain only terms 
with coefficient D z" and in fact contain all such 
terms". From (3.2), however, we have for example 
for the second Taylor coefficient 

d 2 6x(t) 
d s a 5 ~ (s)~- - t  = { ( f ' (x  (t))) 2 _ f (x(t))f" (x(t))} 

- f"(x(t))~(t) ,  f"(x)  = - 6 b x .  (3.11) 

If inserted into the small z-expansion of 6x(t)/6~(s), 
one obtains for the master operator in (3.10) the 
term 

82 { t 
Dz 2 ~  [(f'(x)) 2 ' D ,, 8 - f ( x ) f '  (x)] p,(x) + z f  (x) ~x S 

0 

6x(t) (5 (t -- s) ds} (3.12) " l ~ (  ~ ( x ( t ) - x ) ) e x p -  z �9 

Approximating the term 8x(t)/8~(s) occuring in 
(3.12) by one - see (3.2) - one finds from the last 
term in (3.12) a contribution 

2 2 02 ,, 0 
D ~ ~ x 2 f  (X)~xPt(X). (3.13) 
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This term contributes obviously both to Kl(X ,'c) and 
K2(x,z ) in (3.10) if rearranged into Kramers-Moyal 
form. Thus, the BFPA-scheme does not contain all 
terms which contribute to the Fokker-Planck form; 
only if we simply neglect all terms, which also yield 
a contribution to a Kramers-Moyal moment K,(x,z) 
of order n>2,  are Kl(x,z ) and K2(x,'c ) solely de- 
termined by the terms proportional to D T", yielding 
(3.4). More importantly, with a finite correlation 
time z, one obtains the term in (3.13), which has 
been neglected in (3.3, 3.4), but which is of the same 
order as the terms kept in (3.3, 3.4) (e.g. this follows 
directly from (3.13) by acting on pt(x) using the 
ansatz pt(x, ~)ocexp- ~(x, z)/D). - The term in (3.11), 
as well as any other of the higher order Taylor 
coefficients occuring in the expansion of 6x(t)/6~(s) 
around the "Markovian time-point" t, generates a 
noise dependent term, and thus the same game starts 
over and over again. This results in an infinite hier- 
archy, each with infinite many series with terms 
proportional to D"~", m<n, n > l  (no analytic ex- 
pansion). Therefore, it is a priori not clear to what 
extent the approximations in (Y3), (3.4) give a cor- 
rect description of the tails of/7(x), as determined by 
(3.10), when the correlation time of the noise source 
is non-vanishing. 
The approximation in (3.9), which is based on (3.3) 
or (3.4), respectively, has been checked in special 
cases in [14] (transformations of Gaussian processes) 
and also in [15] and [211, by use of numerical and 
analogue simulations. For certain parameter re- 
gimes, those approximation schemes have provided 
satisfactory results for such quantities like stationary 
moments, location of maxima, etc. This very much 
resembles the case of a truncated Kramers-Moyal 
Fokker-Planck approximation to a Markovian mas- 
ter equation (integral operator), which often yields 
satisfactory results for similar quantities which are 
controled by the maximal weight of the probability 
p(x), despite the fact that/7(x) is not exact. Based on 
the observation that all the Kramers-Moyal terms in 
(3.10) are generally of the same order, one would 
expect that an effective "best" Fokker-Planck ap- 
proximation, modelling correctly the non-Markovian 
long-time behavior, must include also information 
about the higher order Kramers-Moyal moments in 
(3.10). Such a "renormalized" Fokker-Planck ap- 
proximation scheme, modelling the long-time dy- 
namics, has been put forward recently for the case of 
a Markovian master equation dynamics [28, 29]. 
A physical quantity, which sensitively probes the 
form of the stationary probability /5(x), particularly 
in regions of small weight, is an activation rate. By 
use of a transport theory approach [12] to the mas- 
ter equation dynamics (3.10), the leading factor of 

the rate is solely determined by the ratio 
F(x,)/F(xl,2) of the stationary probability [12, 29] 
(independently, this follows also from the asymptotic 
analysis of the MFPT of the underlying two-dimen- 
sional Fokker-Planck process in (2.1) - see [30, 31]); 
i.e. details of the boundary conditions reflect them- 
selves only in prefactors of rate expressions. The 
study of this activation rate will be the subject of the 
next section. 

4. Activation Rates 

The activation rates of bistable flows present in- 
teresting physical quantities which depend crucially 
on the detailed form of the stationary probability 
/~(x). Most naturally, one would like to evaluate the 
rate via a transport theory approach of the type 
used for dichotomic Markov noise [12]. In the ab- 
sence of an exact master equation (3.10) modelling 
the long time behaviour of x(t), this approach is of 
no use here. Alternatively, we could evaluate the 
MFPT at weak noise of the underlying two-dimen- 
sional Fokker-Planck dynamics in (2.1) [30, 31]. 
However, because a detailed balance does not hold 
for (2.1), the standard methods [32-34] fail and the 
more general method of [30] and [31] is rather 
cumbersome, because the stationary probability 
p(x,~) must first be determined. If T denotes the 
MFPT (mean first passage time) to reach the barrier 
top, the activation rate is estimated as 

r = 1/2 T (4.1) 

where the factor 1/2 takes into account that the 
random walker has equal chance to either continue 
to the adjacent stable state or return to the old 
stable state. 
The approximations in (3.3), (3.4) are of course 
meant to be useful small relaxation time approxi- 
mations for the stationary dynamics. In what fol- 
lows, we then look upon (3.3), (3.4) as a Fokker- 
Planck approximation to the long time dynamics of 
the (unknown) master equation dynamics (3.10). 
Then, within the assumption of a small enough re- 
laxation time -c, yielding a positive diffusion /)(x) 
=DH(x) within the bistable region [xl ,x2] ,  the 
MFPT T(x) can be readily evaluated [35, 36]. If x = 
- o v  is a (natural) reflecting boundary and x = x, = 0 
an absorbing state, one finds [35, 36] for the MFPT 
T(x) of a walker which started out at x ( 0 ) = x < 0  

T(x)=i dy i x P(Y) D(Y) -~o F(z) dz. (4.2) 

/5(x) denotes the stationary probability of the corre- 
sponding Fokker-Planck equation (3.4) or (3.3) re- 
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spectively, and /)(x) is the corresponding diffusion 
coefficient, i.e. D(x)=DH(x) or O(X)=D(I+z(a- 
3bx2)) if (3.3) is utilized. For  a weak noise, i.e. 
D <a2/b we can evaluate (4.2) by use of the method 
of steepest descendent. With the BFPA, (3.4), one 
obtains 

rc ( l +az ~ 1/2 
T = a ~  ~l--~a~! exp(Ad?/D) (4.3a) 

where with ( 3 . 5 )  

~f~ f(y) dy -(.Ib),/~ 
A 0 H(y) = o~ f(y) I-1 - ' c f ' ( y )  

+ z2f(y)f"(y) + O(m3)] dy 
a 2 

- 4 b (1 - a 2 z 2) + O ( z 3 ) .  (4.3b) 

Most importantly, the term linear in ~ vanishes ex- 
actly. By use of (3.3) one finds instead 

(1 + 2a 77~ 1/2 
T = a ~  ~ \ ~ ]  exp(A(o/D) (4.4a) 

with 

A' ~1 f(y)dy 

a 2 

= ~ (1 - a 2 z2/2) + O(~3). (4.4b) 

Because (3.3) takes into account only the term of 
order D~, the term of order z2 in (4.4b) is, of course, 
meaningless. Again, the term of order z in A q5 van- 
ishes. For  v = 0  both results (4.3) and (4.4) coincide 
and r = l / 2 T  equals the well-known Smoluchowski 
ra te /35 ,  36]. 
Most importantly, we note that the Arrhenius factor 
of T(x) 

exp(A4/D) (4.5) 

does not exhibit a correlation time dependence in first 
order in z! Based on the SRTFPA in (3.3), the 
advocates of Ref. 15 construct an approximation for 
the stationary probability of (3.3) of the form [-15, 
16] 

/~(x) = Po (x) + ~ P l (~) + O(z2) (4.6) 

where po(x) is the white noise stationary probability 
po(X), which in our case reads 

Po (x) = Z -  1 exp - -  . (4.7) 

By use of their result in (2.23) of [15], one obtains in 

our case (2.7) 

p(x)=po(x){ l+z[C-(a-3bx  2) 

1 _bx3)2 ]}  
2D ( ax  

where 

(4.8) 

1 § 

C = - 2 ~  ~ (ax-bx3)2po(x)dx<O. (4.9) 
- o o  

This approximation for /7(x) is not necessarily posi- 
tive. Considering (4.8) as a short-time approximation 
in first order, the bracket in (4.8) is now exponen- 
tiated [15]. This ad hoc [153 exponentiation guaran- 
tees a positive ig(x), which explicitly reads 

p(x)=po(x) 

Dz 
�9 exp - 

[ICl+(a-3bx2)+21~(ax-bx3)2]). 

D 
(4.10) 

If we take (4.10) seriously, we would obtain a rele- 
vant factor of T given by 

~(x 1) a2/4b+3Dza 
/7(x = 0) - exp D 

=exp,3 a  exp t 

In this case, the relevant factor does exhibit a de- 
pendence on z, but in the form of a mere prefactor 
correction, exp(3az). The results in (4.3), (4.4) and 
(4.11) are in clear contrast to a result found for 
symmetric dichotomic noise where the Arrhenius 
factor increases with increasing correlation time 
[121. In view of the absence of a term proportional 
to -c in the Arrhenius factors (4.3), (4.4), (4.11), we 
performed a numerical simulation for T based on 
the bistable flow (2.7). The results are given in Fig. 1. 
In contrast to our forecastings in (4.3), (4.4) and 
(4.11) Aq5 is increasing with increasing correlation 
time z. The increase is proportional to first order in 

and is not really dependent on the small noise 
parameter D. These results imply the following con- 
clusions: 
(i) Because the calculated Arrhenius factors disag- 
ree with the simulation, the Fokker-Planck approxi- 
mation schemes in (3.3), (3.4) cannot be correct in 
leading order in z if viewed as a long time approxi- 
mation to the master equation dynamics (3.10). In 
other words, the stationary probability/~(x), (3.9), of 
(3.4) cannot be equal to the exact stationary proba- 
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Fig. 1. A q~, defined in (4.5), versus the noise auto-correlation time 
~. The computer simulation of (2.1) has been carried out by 
applying the numerical algorithm of Ref. 15 with an integration 
step of 0.01. The values of the parameters are a=b= 1, D=0.1 (o) 
and D=0.05 (,). T is the average over 1,000 first passage times 
occurred from the initial conditions (2.6) for ~-o and p(x,0)= 
5 (x - x  ~) for x. The maximum error bar in our numerical simulation 
is estimated to be about 10 %. The arrow denotes the white noise 
limit, A 4~ (z = O) 

bility/~(x) in leading order in z as determined from 
(2.7) or, equivalently, from the (unknown) master 
equation dynamics (3.10). 
(i i)  The approximation in (4.11) based on the ad 
hoc exponentiation scheme of (4.6) can also not be 
correct in leading order in z if compared with the 
exact probability. This fact is not remedied if (4.6) is 
used in connection with (3.4) instead of (3.3); the 
correlation time ~ is merely substituted by a "renor- 
malized" correlation time z R [151. 

5. D i s c u s s i o n  and C o n c l u s i o n s  

We presented a study of a simple nonlinear bistable 
flow which is driven by exponentially correlated, 
additive Gaussian noise and evaluated the leading 
behavior of the activation rate at low noise. This 
leading term of the activation rate is determined by 
the leading order of the ratio of the stationary prob- 
ability, taken at the locally unstable state x = x  u and 
the metastable state x = x  1 (or x2). Our numerical 
results for this leading term indicate that the com- 
monly used Fokker-Planck approximation schemes 
[14, 15, 22, 27] yield a stationary probability p(x, ~) 
in which the tails are not recovered correctly. This 
important short-coming should not come as too big 
a surprise. The exact relation in (3.1) inherits via the 
functional derivative 6x(t)/5~(s) a rather complex 
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structure. This functional derivative embodies the 
complex nonlinear dependence of x(t) on the pre- 
vious noise history {~(s), t o < s < t } .  This complexity 
becomes exposed immediately if one attempts to 
expand this nonlinear functional around the "Mar-  
kovian" time-point s - =  t (see Sect. 3), which in turn 
yields a never ending infinite hierarchy of infinite 
many contributions. This is the price being paid by 
having reduced the underlying two-dimensional 
phase - space dynamics (x(t), ~(t)), (2.1), onto a one- 
dimensional, but non-Markovian dynamics. In par- 
ticular, it should also be kept in mind, that for a 
nonlinear, nonequilibrium dynamics of the type in 
(2.1), even the asymptotic dynamics at a low noise 
level is almost never integrable [30b, 37]. 
All of that clearly causes headaches for the theorists; 
- an "a priori" use of those perturbative (truncated) 
Fokker-Planck schemes [14, 15, 22, 27], together 
with related perturbative methods for the probability 
itself [15, 16, 38] is generally somewhat suspect. 
Those cases, for which the effective Fokker-Planck 
structure becomes exact, can be related to nonlinear 
(eventually also time-dependent) transformations of 
non-Markovian Gaussian processes [-5, 14, 19]. In 
general, the master equation has the structure of an 
integral operator, (3.10), and a Fokker-Planck ap- 
proximation to the long-time behavior should then 
also include information about the integral operator 
structure [28, 29] if the global behavior of stationary 
probabilities is to be described accurately. 
Part of the above reasoning equally well applies to 
the numerous papers written on the subject of sys- 
tematic adiabatic elimination procedures such as e.g. 
the study of corrections to the Smoluchowski equa- 
tion and alike [-39]. The bulk of those papers im- 
plicitly contain some of the same assumptions in- 
herent in the derivation of the approximative Fok- 
ker-Planck schemes in (3.3), (3.4) [14, 15, 22, 26, 27, 
39]. Furthermore, related there is also the problem 
of correct initial values; i.e. initial preparation effects 
[23b, 25, 40, 41]. Different initial preparation 
schemes (for the details see in Refs. 23 b, 25) give rise 
to different (memory-dependent or time-convolution- 
less) master equations propagating the single-event 
probability Pt [5, 25], and related, different non- 
Markovian Langevin equations [25]. It should be 
noted, that the non-white noise properties, such as 
the conditional average ~ ( t ) l x ( t o ) = x  ) (or also in- 
itial correlations ~( to )X( to ) ) )  depend on the initial 
preparation scheme. The preparation scheme con- 
sistent with (3.1) refers to a "correlation-free" initial 
preparation; i.e. the initial probability pr(~o,X ) of 
the total system factorizes 

pT (~o, x)= 0(40) po(X) 
where P(~o) denotes the Gaussian in (2.6) and po(X) 
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denotes the (otherwise arbitrary) initial macroproba- 
bility. Also, the dependence of the stochastic kernels 
on the initial preparation [5, 25] does in general not 
die out (because the initial preparation, determining 
e.g. the projector operator kernels, is not being 
propagated in time); nevertheless, with an ergodic 
behavior [1], the single-event probability Pt ap- 
proaches the stationary probability, limpt=~, which, 

of course, is not dependent on the initial preparation 
scheme./7(x) just represents the zero-mode of gener- 
ally preparation dependent [25] limiting (Limt~oe)  
master operators of the type in (3.10), where the 
transient terms have died out. Therefore, if the noise 
source has a nonvanishing correlation time z, the 
limiting (non-Markovian)master operators of the 
type in (3.3), (3.4) and (3.10) yield information about 
quantities which involve zero-modes only; e.g. the sta- 
tionary probability if(x), or current carrying sta- 
tionary non-equilibrium probabilities [9-12], which 
clearly also do not depend on the initial preparation. 
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