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The fractional Fokker-Planck equation for subdiffusion in time-dependent force fields is derived from the
underlying continuous time random walk. Its limitations are discussed and it is then applied to the study of
subdiffusion under the influence of a time-periodic rectangular force. As a main result, we show that such a
force does not affect the universal scaling relation between the anomalous current and diffusion when applied
to the biased dynamics: in the long-time limit, subdiffusion current and anomalous diffusion are immune to the
driving. This is in sharp contrast with the unbiased case when the subdiffusion coefficient can be strongly
enhanced, i.e., a zero-frequency response to a periodic driving is present.
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I. INTRODUCTION

The theoretical investigation of anomalously slow relax-
ation processes in time-dependent force fields constitutes a
challenge of current research interest which is not free of
ambiguity. It is known that there is no unique physical
mechanism responsible for the occurrence of subdiffusion in
condensed media �1�. One possible mechanism, which will
be addressed in this work, corresponds to disordered glassy-
like media consisting of trapping domains which the trans-
porting particle can dwell for a random time with divergent
mean value �2–4�. The successive residence times in traps
are assumed to be mutually uncorrelated. Diffusion is never-
theless a non-Markovian �semi-Markovian� process exhibit-
ing long �quasi-infinite� time correlations among the particle
positions with a weak ergodicity breaking �5�. This physical
model has been successfully applied, e.g., to explain experi-
ments on transient photocurrents in amorphous semiconduc-
tor films �6,7�. Mathematically, it can be described by a con-
tinuous time random-walk �CTRW� model �3,4� which in the
continuous space limit leads to the fractional Fokker-Planck
equation �FFPE� �8–10�. This latter formulation is incom-
plete, in the sense that no �single event� non-Markovian mas-
ter equation can fully characterize the underlying �multitime
event� non-Markovian stochastic process �11,12�. This non-
Markovian FFPE is very useful nevertheless; it can be de-
rived from a closely associated complete description in terms
of a �ordinary� Langevin equation in subordinated random
operational time �13–15�.

The generalization of the CTRW and FFPE to time-
dependent forces is a nontrivial matter since the force
changes in real physical and not in mathematical operational
time �16,17�. Also, how a field varying in time affects the
distribution of the residence times in the traps is not clear
without specifying a concrete mechanism or some plausible
model, especially when the mean residence time does not
exist �18�. The FFPE describing the dynamics in time-
dependent force fields F�x , t� becomes ambiguous with a fre-
quently �ab�used ad hoc version �19,20� which lacks a clear
theoretical basis �16�. The correct version of the FFPE for
time-dependent fields was first given in Refs. �16,21�: differ-
ently from the FFPE for a time-independent force, in the case

of a time-dependent field the fractional derivative does not
stand in front of the Fokker-Planck operator but only after it.
As we explain with this work in more detail, such a FFPE
can be justified beyond the linear-response approximation
within a CTRW approach only for a special class of dichoto-
mously fluctuating fields. The derivation of the FFPE for
subdiffusion in such time-dependent fields is presented in
Sec. II.

In Sec. III we apply the derived FFPE to study the influ-
ence of time-periodic rectangular fields on subdiffusive mo-
tion. Analytical solutions of the FFPE are confirmed by sto-
chastic Monte Carlo simulations of the underlying CTRW. In
particular, we show with this work that the universal scaling
relation between the biased anomalous diffusion and subcur-
rent �3,4,9,10� is not affected by the periodic driving. Neither
current nor diffusion is influenced asymptotically by the
time-periodic field. This is in spite of the fact that the unbi-
ased subdiffusion of the studied kind can be strongly en-
hanced in the time-periodic field �16,21�.

II. DERIVATION OF THE FFPE FOR TIME-DEPENDENT
FIELDS FROM THE UNDERLYING CTRW

Since the FFPE does not define the underlying stochastic
non-Markovian process, its generalization to include the in-
fluence of a time-dependent field should start from the un-
derlying CTRW �8,9�. Following the general picture of the
CTRW, we introduce a one-dimensional lattice �xi= i�x�
with a lattice period �x and i=0, �1, �2, . . .. Let us first
assume that there is no time-dependent field. After a random
trapping time �, a particle at site i hops with probability qi

�

to one of the nearest-neighbor sites i�1; qi
++qi

−=1. The ran-
dom time � is extracted from a site-dependent residence time
distribution �RTD� �i���. The corresponding generalized
master equation for populations Pi�t� reads as �7,22,23�

Ṗi�t� = �
0

t

�Ki−1
+ �t − t��Pi−1�t�� + Ki+1

− �t − t��Pi+1�t��

− �Ki
+�t − t�� + Ki

−�t − t���Pi�t���dt�. �1�

The Laplace transform of the kernel Ki
��t� is related to the
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Laplace transform of the RTD �i��� via K̃i
��s�

=qi
�s�̃i�s� / �1− �̃i�s��. In the presence of a time-dependent

field, the kernels become generally functions of both instants
of time and not only of their difference, i.e., Ki

��t− t��
→Ki

��t , t��. One can relate Ki
��t , t�� with the corresponding

time-inhomogeneous RTDs �i
��t+� , t���i

��� 	 t�, which are
conditioned on the entrance time t. However, one always
needs a concrete and physically meaningful model to pro-
ceed further �18�. A simple example is a Markovian process
with time-dependent rates gi

��t�, where �i
��� 	 t�=gi

��t
+��exp�−
t

t+��gi
+�t��+gi

−�t���dt�� and Ki
��t , t��=2gi

��t���t
− t��. This yields in Eq. �1� the standard master equation for
a time-inhomogeneous Markovian process.

The modality how the nonexponential RTDs will be
modified for a time-inhomogeneous process is generally nei-
ther obvious nor simple �18�. In the present case, one can
assume that the trapping occurs due to the existence of di-
rection�s� transverse to the x coordinate. According to the
modeling in Refs. �15,21�, an external field directed along
the x direction would not affect the motion in the transverse
direction�s�. However, it is not correct to think that the RTD
in the trap itself will not be influenced by the time-dependent
field acting in the direction of x, as it will change the rates
for moving toward the left or toward the right when escaping
from the trap. Therefore, the RTD will generally be affected
�for further details, see also Ref. �24��. Obviously, a situation
for which this RTD in the trap surely will remain unaffected
is when the sum of the two escape rates gi=gi

+�t�+gi
−�t� to

escape from the trap—either toward the left or the right—is
time independent. In that case, only the hopping probabilities
qi

��t�=gi
��t� /gi acquire additional time dependence and not

the RTD �i��� itself �16�. This corresponds to the special
class of dichotomously fluctuating force fields F�xi , t�
=F�xi���t�, where ��t�= �1. Beyond this class, at most the
linear-response approximation can work �21�.

Therefore, we restrict our treatment to the above class of
fluctuating potentials. In this case, we can write Ki

��t , t��
=qi

��t�Ki�t− t��, where K̃i�s�=s�̃i�s� / �1− �̃i�s��. Further-
more, we use the Mittag-Leffler distribution for the residence
times �8�,

�i��� = −
d

d�
E��− �	i���� . �2�

Here E��z�=�n=0

 zn /��n�+1� denotes the Mittag-Leffler

function, �� �0,1� is the index of subdiffusion, and 	i
= �gi

+�t�+gi
−�t��1/� is the time scaling parameter; gi

��t�
=qi

��t�	i
�. Then K̃i�s�=	i

�s1−� and we get

Ṗi�t� = gi−1
+ �t�0D̂t

1−�Pi−1�t� + gi+1
− �t�0D̂t

1−�Pi+1�t�

− �gi
+�t� + gi

−�t��0D̂t
1−�Pi�t� , �3�

where the symbol 0D̂t
1−� stands for the integrodifferential op-

erator of the Riemann-Liouville fractional derivative acting
on a generic function of time ��t� as

0D̂t
1−���t� =

1

����
�

�t
�

0

t

dt�
��t��

�t − t��1−� . �4�

���� is the gamma function. In a time-dependent potential
U�x , t�, one can set

gi
��t� = ��/�x2�exp�− ��Ui�1/2�t� − Ui�t���

� ��/�x2�exp���F�xi,t��x/2� , �5�

so that the Boltzmann relation gi−1
+ �t� /gi

−�t�=exp���Ui−1�t�
−Ui�t��� is satisfied exactly and the time independence of
gi

+�t�+gi
−�t�=	i

�=const is also maintained for small �x and a
sufficiently smooth potential. We have used here the notation
Ui�t��U�i�x , t� and Ui�1/2�t��U�i�x��x /2, t�; �=kBT is
the inverse of temperature and � is free fractional diffusion
coefficient with dimension cm2 s−�. By passing to the con-
tinuous space limit �x→0 as in Ref. �9�, one finally obtains,

�

�t
P�x,t� = −

�

�x

F�x,t�
��

+ �

�2

�x2�0D̂t
1−�P�x,t� . �6�

In the latter equation, ��= ����−1 is the fractional friction
coefficient. Our derivation also clarifies that the fractional
derivative does not operate in front of the right-hand side of
Eq. �6�; i.e., in the case of a time-dependent force, this frac-
tional Riemann-Liouville derivative does not act in front of
the Fokker-Planck operator �16,21�. As already discussed in
Ref. �16�, we are not aware of such a physical time-
dependent-driven CTRW which would correspond to such an
ad hoc procedure.

In the following, we use Eq. �6� to study analytically the
subdiffusion in time-periodic rectangular fields. Our study is
complemented by stochastic simulations of the underlying
CTRW using the algorithm detailed in Ref. �10�.

III. DRIVEN SUBDIFFUSION

We consider a dichotomous modulation of a biased sub-
diffusion where the absolute value of the bias is fixed but its
direction flips periodically in time, i.e.,

F�t� = F0��t� , �7�

with

��t� = �+ 1 for n�0 � t � �n + r��0

− 1 for �n + r��0 � t � �n + 1��0.
� �8�

Here �0 is the period of the time-dependent force and n
=0,1 ,2. . .. The quantity r� �0,1� determines the value of
the average force,

F̄ = �F�t���0
= F0�2r − 1� . �9�

For r=0.5, the average bias is zero and we recover the model
investigated in Ref. �16�. Notice that the force F�t� can be

decomposed in the following way: F�t�= F̄+ F̃�t�. The asym-
metric driving,
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F̃�t� = �2F0�1 − r� for n�0 � t � �n + r��0

− 2F0r for �n + r��0 � t � �n + 1��0,
�

�10�

has a zero-mean value, �F̃�t���0
=0, and the driving root-

mean-squared �rms� amplitude is �= �F̃2�t���0

1/2=2F0
�r�1−r�.

For a fixed average bias F̄, this yields

� = 2F̄
�r�1 − r�

2r − 1
, �11�

and therefore one can vary the ratio � / F̄ between 0 for r
=1 and 
 for r=0.5+�, �→0. This offers the way to study

the influence of an asymmetric zero-mean driving F̃�t� with
period �0 and rms amplitude � on the subdiffusion under

constant bias F̄.
Let us begin by finding the recurrence relation for the

moments �xn�t��. Assuming in Eq. �6� the force of the form
�7� with Eq. �8�, multiplying both sides of Eq. �6� by xn, and
integrating over the x coordinate, one obtains,

d�xn�t��
dt

= nv���t�0D̂t
1−��xn−1�t�� + n�n − 1�� 0D̂t

1−��xn−2�t�� ,

�12�

with subvelocity v�=F0 /���n�1�. For n=1, the last term on
the right-hand side of Eq. �12� is absent,

d�x�t��
dt

=
v�

����
��t�t�−1. �13�

Equations �12� and �13� will be used to calculate the average
particle position and the mean-square displacement.

A. Average particle position

Upon integrating Eq. �13� in time with ��t� given by Eq.
�8�, the solution for the average particle position reads as

�x�t�� = �xN +
v�t�

��� + 1�
N�0 � t � �N + r��0

xN� −
v�t�

��� + 1�
�N + r��0 � t � �N + 1��0,�

�14�

with

xN = �x�0�� −
v��N�0��

��� + 1�
+

v��0
�

��� + 1�

��
n=0

N−1

�2�n + r�� − n� − �n + 1��� , �15�

xN� = xN +
2v��0

�

��� + 1�
�N + r��, �16�

N counts the number of time periods passed.

When the average bias is zero, i.e., r=0.5, in the long-
time limit the mean particle position approaches the constant
value

�x�
�� = v��0
�b���/��� + 1� , �17�

with b���=�n=0

 �2�n+1 /2��−n�− �n+1���. The function

b��� changes monotonously from b�0�=1 to b�1�=0. It de-
scribes the initial field phase effect which the system remem-
bers forever when �� �0,1� �see also Ref. �16��. This is one
of the main differences between the anomalous motion in the
absence of a force and in the presence of a time-dependent
field with zero average value.

In Fig. 1, the analytical solution �14� for the mean particle
position �x�t�� obtained from the FFPE �6� is compared with
the numerical solution of the CTRW for different values of r,

i.e., for different values of the average bias F̄. In Fig. 2 the
solution �14� is presented in the long-time limit for various
values of r and �. Figures 1 and 2 demonstrate that in the
presence of an average bias, the mean particle position grows
as t�. For all values of r, the asymptotic value of subvelocity

corresponds to the averaged bias F̄=F0�2r−1�, indicating
that the periodic unbiased field does not affect the subdiffu-

sion current for different values of F̄ and the field rms am-
plitude �.

Furthermore, the results depicted in Figs. 1 and 2 clearly
show the phenomenon of the “death of linear response” of
the fractional kinetics to time-dependent fields in the limit
t→
: the amplitude of the oscillations decays to zero as
1 / t1−� �Eq. �13�� �see also Refs. �21,25��. The amplitude of
the oscillations is larger for larger values of � and of �0;
however, ��1+���x�t�� / t� reaches asymptotically the same
value for any � and �0.
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FIG. 1. �Color online� Average particle position �x�t�� for vari-

ous values of the parameter r �average force F̄�. Symbols represent
the results from the numerical simulations of the CTRW obtained
by averaging over 105 trajectories �for r=0.5 over 106 trajectories�.
Continuous lines represent the analytical solution �14� of the FFPE
�6�. The time period of the rectangular force �7� is �0=1 and the
fractional exponent �=0.5; in numerical simulations, F0 / ���

���
=1 is used. The value r=0.9 corresponds to F̄=0.8F0 and �

=0.6F0; r=0.8 corresponds to F̄=0.6F0 and �=0.8F0; r=0.7 cor-

responds to F̄=0.4F0 and ��0.92F0; r=0.6 corresponds to F̄

=0.2F0 and ��0.98F0; and r=0.5 to F̄=0 and �=F0.
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B. Mean-square displacement

Let us now study the mean-square displacement defined
as

��x2�t�� = �x2�t�� − �x�t��2. �18�

For n=2 one obtains from Eq. �12�,

d�x2�t��
dt

= 2v���t�0D̂t
1−��x�t�� +

2�

����
t�−1. �19�

In order to find the analytical solution for the mean-square
displacement, we use the Laplace-transform method and the
Fourier series expansion for ��t�=��t+�0� given with Eq. �8�,

��t� = �
n=−





fn exp�in�0t� , �20�

with

fn =
1

�0
�

0

�0

��t�exp�− in�0t�dt = �1 − exp�− inr2���/�in��

�21�

and �0=2� /�0. Applying them to Eq. �19� and assuming
�x�0��=0 and �x2�0��=0, we obtain that in the long-time
limit �see Appendix A�,

�x2�t�� =
2v�

2�2r − 1�2

��2� + 1�
t2� +

2�

��� + 1�
t� +

2v�
2�2r − 1�S1

�0
���� + 1�

t�

+
8v�

2 cos���/2�
�2�0

���� + 1� ��2 + �� − �
n=1



cos�nr2��

n2+� �t�,

�22�

here ��x� is the Riemann’s zeta function, S1 is a function of
�, and r as given by Eq. �A7� in Appendix A.

For r=0.5 �average zero bias� the first and third terms in
Eq. �22� are equal to zero. Furthermore, in the long-time
limit the average particle position �x�
�� is a finite constant.
The asymptotic behavior of the mean-square displacement is

thus proportional to t� as in the force free case, however,
characterized by an effective fractional diffusion coefficient
�

�eff� instead of the free fractional diffusion coefficient �,
i.e., ��x2�t��=2�

�eff�t� /��1+�� for t→
. The effective diffu-
sion coefficient is �16�,

�
�eff� = � +

8F0
2

�2��
2�0

���� + 2��1 −
1

2�+2�cos���/2� .

�23�

The driving-induced part of the effective subdiffusion coef-
ficient is directly proportional to the square of driving ampli-
tude F0 and inversely proportional to �0

�. For slowly oscil-
lating force fields, this leads to a profound acceleration of
subdiffusion compared with the force free case: an optimal
value of the fractional exponent � can exist, at which the
driving-induced part of the effective fractional diffusion co-
efficient possesses a maximum �see Fig. 3�.

When r�0.5 �finite average force�, we obtain in the long-
time limit for �x�t��2 �see Appendix B�,

�x�t��2 =
v�

2�2r − 1�2

�2�� + 1�
t2� +

2v�
2�2r − 1�S1

�0
���� + 1�

t� �24�

�S1 is given by Eq. �A7� in Appendix A�. Clearly, the leading
term in Eq. �24� corresponds to the subvelocity in constant

field F̄ �averaged bias�, i.e., the influence of periodic unbi-

ased driving F̃�t� dies out asymptotically, as illustrated in
Fig. 2.

The results �22� and �24� indicate that in the presence of a
rectangular time-periodic force with a finite average value,
the general behavior of the mean-square displacement is
similar to the case of a constant force, i.e., the mean-square
displacement ��x2�t�� consists of terms proportional to t� and
t2�. In fact, for the leading term proportional to t2� in the
mean-square displacement, one obtains the coefficient

1
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r = 0.8

r = 0.9

τ0 = 1
α = 0.2
α = 0.5
α = 0.8

FIG. 2. �Color online� The analytical solution �14� for the aver-
age particle position �x�t�� obtained from the FFPE �6� is presented

for various values of the parameter r �average bias F̄� and anoma-
lous exponent �. The time period of the force is �0=1; however, in
the long-time limit the same asymptotic value is obtained for any

value of �0. The relation between r and F̄ and � is the same as in
Fig. 1.
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FIG. 3. �Color online� Scaled effective fractional diffusion co-
efficient �

�eff� versus fractional exponent � for different driving pe-
riods �0. The average bias is zero �r=0.5�. The analytical prediction
�23� �continuous lines� is compared with the results �symbols� ob-
tained from the numerical simulation of the CTRW by averaging
over 105 trajectories. For �0��0

��8.818 �16�, the effective frac-
tional diffusion coefficient �

�eff���� exhibits a maximum.
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F̄2

��
2  2

��2� + 1�
−

1

�2�� + 1�� .

This coefficient is the same as in the case of the subdiffusive
motion under the influence of a constant force if the value of

the constant force would be F̄.
Furthermore, similarly to the case of a constant bias, the

asymptotic scaling relation holds �r�0.5, F̄�0� between the
mean-square displacement and average particle position. In
the limit t→
, the mean-square displacement grows as
��x2�t��� t2� and

lim
t→


��x2�t��
�x�t��2 =

2�2�� + 1�
��2� + 1�

− 1, F̄ � 0. �25�

It is illustrated by Fig. 4, where the analytical curve �Eq.
�25�� is compared with the numerical results. The universal-

ity of relation �25� under the unbiased driving F̃�t� means
that the biased diffusion is not affected by the driving. This is
in sharp contrast with the unbiased diffusion in Fig. 3.

IV. CONCLUSION

With this work, we presented the derivation of the FFPE
�6� for a special class of space- and time-dependent force
fields from the underlying CTRW picture. Our derivation
shows along with the corresponding discussion that it is dif-
ficult to justify this equation for time-dependent forces dif-
ferent from F�x , t�=F�x���t� with ��t�= �1 beyond the
linear-response approximation. Using the FFPE �6�, we dem-
onstrated that the universal scaling relation �25� for a biased
subdiffusion is not affected by the additional action of a
time-periodic zero-mean rectangular driving; neither is the
asymptotic anomalous current nor the anomalous biased dif-
fusion. We conjecture on physical grounds that this result is
general and it is valid also for other forms of driving with
zero-mean value. This driving immunity is due to the fact
that the CTRW subdiffusion occurs in a random operational
time which has no finite mean value, whereas any physical

field changes in the real physical time. The CTRW-based
subdiffusion fails to respond asymptotically to such time-
dependent fields, while on its intrinsic random operational
time scale any real alternating field is acting infinitely fast
and it makes effectively no influence in a long run �16,17�,
unless the rate of its change is precisely zero. This is the
main reason for the observed anomalies. The remarkable en-
hancement of the unbiased subdiffusion within the CTRW
framework by time-periodic rectangular fields is rather the
exception than the rule.

Finally, besides the case with amorphous semiconductors
mentioned in Sec. I, the results presented in this work may as
well be of use when investigating how various chemical,
physical, and biological systems where an anomalous hydra-
tion phenomenon occurs respond to an external driving: in-
deed, hydrating water is known to behave in certain situa-
tions subdiffusively �26�.
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APPENDIX A

Using the property L�df�t� /dt�=sL�f�t��− f�0� and as-
suming the initial conditions �x�t��=0 and �x2�t��=0, we ob-
tain from Eq. �19�,

L��x2�t��� =
2�

s�+1 +
2v�

s
L���t�0D̂t

1−��x�t��� . �A1�

Considering that

L�0D̂t
1−��x�t��� = s1−�L��x�t��� = s−�L�d�x�t��/dt� ,

one obtains,

L���t�0D̂t
1−��x�t��� = �

n=−




fn

�s − in�0�� Ls−in�0�d�x�t��
dt

� ,

�A2�

where the symbol Ls−in�0
denotes the corresponding Laplace

transform at the shifted argument s− in�0. Using Eq. �13�
with Eq. �20�, it follows:

Ls−in�0�d�x�t��
dt

� = v� �
m=−




fm

�s − i�0�n + m��� . �A3�

Inserting Eqs. �A2� and �A3� into Eq. �A1�, we obtain,
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t→

∞
〈δ

x(
t)

2 〉/
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(t
)〉

2

α

r = 0.6, τ0 = 0.1
r = 0.7, τ0 = 10
r = 0.8, τ0 = 1
r = 0.9, τ0 = 20

FIG. 4. �Color online� The asymptotic scaling relation �25�.
Symbols correspond to the numerical results obtained from the
CTRW for different values of r �r�0.5� and �0. Solid curve corre-
sponds to the analytical result �25�. Different values of the param-

eter r correspond to different values of the bias F̄ and the periodic
field rms �, as described in Fig. 1. The field parameters do not
influence the results within the statistical errors.
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L��x2�t��� =
2�

s�+1 +
2v�

2

s
�

n=−




fn

�s − in�0��

� �
m=−




fm

�s − i�0�n + m��� . �A4�

In Eq. �A4� let us separate the terms m=0 and n=0,

L��x2�t��� =
2�

s�+1 +
2v�

2 f0
2

s2�+1 +
2v�

2 f0

s�+1 �
m=−


m�0



fm

�s − im�0��

+
2v�

2

s
�

n=−


n�0



fn

�s − in�0�� �
m=−




fm

�s − i�0�n + m��� .

�A5�

In the long-time limit, i.e., in the limit s→0, in the double
sum only terms with m=−n contribute, thus giving,

L��x2�t��� �
2�

s�+1 +
2v�

2 f0
2

s2�+1 +
2v�

2 f0

�0
�s�+1 �

m=−


m�0



fm

�− im��

+
2v�

2

�0
�s�+1 �

n=−


n�0


 	fn	2

�− in�� . �A6�

Let us compute the sums. Considering that

�
m=−


m�0



fm

�− im�� = �
m=1


  fm

�− im�� +
f−m

�im��� ,

and replacing here fm from Eq. �21�, one obtains,

�
m=−


m�0



fm

�− im�� =
2

�
���1 + ��sin���/2�

− �
m=1



sin��� − 4mr��/2�

m1+� � � S1, �A7�

here ��x� is the Riemann’s zeta function. Analogously,

�
n=−


n�0


 	fn	2

�− in�� =
4

�2cos���/2���2 + �� − �
n=1



cos�nr2��

n2+� � .

�A8�

Replacing these sums into Eq. �A6� and considering that f0
=2r−1 �see Eq. �21� together with Eq. �8��, we get,

L��x2�t��� �
2v�

2�2r − 1�2

s2�+1 +
2�

s�+1 +
2v�

2�2r − 1�S1

�0
�s�+1

+
8v�

2

�2�0
�s�+1cos���/2�

���2 + �� − �
n=1



cos�nr2��

n2+� � . �A9�

Taking here the inverse Laplace transform, one obtains the
expression for �x2�t�� in the long-time limit �Eq. �22��.

APPENDIX B

Using Eq. �13�, the quantity �x�t��2 can be written in the
following way:

�x�t��2 =
2v�

2

�2����0

t

dt��
0

t�
��t��t��−1��t��t��−1dt�. �B1�

Exploiting the property L�
0
t f�t��dt��=s−1L�f�t��� and denot-

ing t�= t and t�= t�, we can write,

L��x�t��2� =
2v�

2

�2���s
L���t�t�−1�

0

t

��t��t��−1dt��
=

2v�
2

�2���s �
n=−





fn �
m=−





fm

� Ls−in�0�t�−1�
0

t

t��−1 exp�im�0t��dt�� .

�B2�

For �=1, the latter equation gives,

L��x�t��2� =
2v�

2

s
�

n=−




fn

s − in�0
�

m=−




fm

s − i�0�n + m�
.

�B3�

Comparing this result with Eq. �A4� we see that
L���x2�t���=2� /s2, and thus ��x2�t��=2�t, as it should be
for the normal Brownian motion.

For 0���1, it is more convenient to proceed as follows.
Let us calculate the Laplace transform of �x�t��. Considering
that L��x�t���=s−1L�d�x�t�� /dt�, one obtains �see Eq. �A3��,

L��x�t��� = v� �
n=−




fn

s�s − in�0��

=
v�f0

s1+� + v� �
n=−


n�0



fn

s�s − in�0�� . �B4�

In the limit t→
, i.e., s→0, the latter equation becomes,

L��x�t��� =
v�f0

s1+� +
v�

s
�

n=−


n�0



fn

�− in�0�� . �B5�

Taking into account Eq. �A7� we can write,
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L��x�t��� =
v�f0

s1+� +
v�S1

�0
�s

. �B6�

Taking here the inverse Laplace transform we have for
t→
,

�x�t�� =
v��2r − 1�
��� + 1�

t� +
v�S1

�0
� . �B7�

From here, one obtains the result �24� for �x�t��2.
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