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Abstract. Keeping single-qubit quantum coherence above some threshold value not far below unity is a
prerequisite for fault-tolerant quantum error correction (QEC). We study the initial dephasing of solid-
state qubits in the independent-boson model, which describes well recent experiments on quantum dot
(QD) excitons both in bulk and in substrates of reduced geometry such as nanotubes. Using explicit
expressions for the exact coherence dynamics, a minimal QEC rate is identified in terms of error threshold,
temperature, and qubit-environment coupling strength. This allows us to systematically study the benefit
of a current trend towards substrates with reduced dimensions.

PACS. 03.65.Yz Decoherence; open systems; quantum statistical methods – 78.67.Hc Quantum dots –
63.20.kd Phonon-electron interactions

1 Introduction

Two-level systems with long-lived quantum coherence
are candidate qubits, the units of quantum informa-
tion [1]. Interactions between solid-state qubits and sub-
strate phonons cause decoherence. It seems natural to
fight decoherence by reducing the number of substrate
degrees of freedom, by going from bulk to planar or lin-
ear geometries. In fact, QDs can nowadays be embedded
in confined structures such as freestanding semiconductor
membranes [2,3] or nanotubes and nanowires [4,5]. Such
substrates may allow tailoring the phonon spectrum and,
thus, controlling the qubit dephasing. However, it is not
obvious whether fewer substrate dimensions do mean less
decoherence.

It is interesting to compare photoluminescence mea-
surements of single QDs in bulk environment [6–9] and in
nanotubes [10,11]. In both cases, pure dephasing due to
deformation-potential coupling to acoustic phonons is the
dominant decoherence mechanism [12,13] since relaxation
occurs on a much longer time scale. Using a Markovian
master equation, i.e. approximating dephasing as expo-
nential decay with a coherence time T2, one finds T2 = ∞
for bulk and a finite T2 time for 1D substrates (details
below); this would be an argument against reducing sub-
strate dimensions. However, both in bulk and in reduced
geometries, fast dephasing at short times has been ob-
served as a broad background in spectra [6–9,11,14]. Ac-
cording to reference [11], it is this non-exponential decay
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that may hamper applications for quantum information
processing (QIP) with 1D substrates. But are these really
less ideal?

Future QIP devices will require built-in QEC, as
some decoherence is inevitable. From the information-
theoretical side come stringent requirements for fault-
tolerant QEC: gate error levels ε should be less than
10−3 [15], a value that may be relaxed in the future. Usu-
ally assumptions such as local and Markovian decoherence
go into the derivation of ε. One may criticize these [16,17]
and go beyond them [18]. We start from the other end,
with a given ε and a realistic qubit-bath model.

In this article, we study the minimal rate ωqec at which
single-qubit errors should be corrected, requiring the co-
herence to stay above the threshold value 1−ε. The beauti-
ful experiments on QDs in bulk (3D) [6,8,19] and on nano-
tube excitons (1D) [11] are well explained by the so-called
independent-boson model, and we employ its generic ver-
sion. We present analytical expressions for ωqec and for the
exact coherence dynamics, with the substrate dimension
as a free parameter, that reproduce the measured rich dy-
namics and lead to new predictions: How can parameters
best be changed such that error correction is needed less
frequently?

2 Model

To account for the coupling of the QD to quantized
lattice vibrations, we follow references [7,20] and em-
ploy the independent-boson model with Hamiltonian
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H = H0 + Hqb, where H0 = Δσz/2 +
∑

k �ωkb†kbk de-
scribes the uncoupled system of QD and bosons, with
Pauli matrix σz for the qubit and creation and annihi-
lation operators b

(†)
k for phonons of mode k. We focus on

the dominant deformation-potential coupling to acoustic
phonons with dispersion ωk = vs|k| where vs denotes the
sound velocity. The qubit-boson interaction

Hqb = �σz

∑

k

gk(bk + b†−k) (1)

is characterized by microscopic couplings gk proportional
to Ds

√|k|/2�ρV vs in terms of a deformation potential
Ds for the excitons, the mass density ρ and the vol-
ume V [7,14,21]. The more specialized model of refer-
ences [7,11] takes different deformation potentials and
confinement lengths for electrons and holes into account.
As shown below, our simpler model is already accurate
enough and has the major advantage that explicit ex-
pressions for the coherence decay can be obtained. The
phonon bath gives rise to the spectral density J(ω) =∑

k |gk|2δ(ω− vs|k|) which for deformation-potential cou-
pling and spherical QD symmetry with confinement length
ls has the form

Js(ω) = αsω
sω1−s

c exp(−ω/ωc), (2)

with cutoff frequency ωc = vs/ls and dimensionless cou-
pling strength αs.

3 Exact dynamics for arbitrary substrate
dimension

Experimentally, a δ-like optical excitation pulse creates a
coherent superposition of the ground state |0〉 (no exci-
ton) and the one-exciton state |1〉. The exciton does not
exist before the fast pulse, so it is safe to assume that
the qubit and the phonon bath initially are in a direct-
product state, with the phonons in a thermal state. After
the initialization, the state of the qubit is determined by
its interaction (1) with the acoustic phonons. Qubit pop-
ulations do not change, but coherences ρ01 may decay by
pure dephasing. We write ρ01(t) = ρ01(0)cs(t), and con-
centrate on the coherence function cs(t) in the following.

By solving the exact dynamics and tracing out the
phonon bath, we find the explicit expression for the qubit
coherence cs(t), i.e. the exciton polarization after a δ-like
excitation pulse. In terms of the scaled temperature θ =
kBT/�ωc, the dynamics is given by cs(t) = exp[−λs(t)],
with the exponent

λs(t) = 8αs(−θ)s−1
[
F (s−1)(θ) − Re F (s−1)(θ[1 + iωct])

]

+ 4αsΓ (s − 1)
(

cos[(s − 1) arctan(ωct)]
(1 + ω2

c t
2)(s−1)/2

− 1
)

,

(3)

where Γ (z) denotes Euler’s Gamma function, F (z) =
log Γ (z) and its n-th derivative F (n)(z) which for posi-
tive n equals the Polygamma function Ψn−1(z). Hereby
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Fig. 1. (Color online) Time evolution of coherence for bulk
structures with s = 3 at different scaled temperatures θ =
kBT/�ωc with α3 = 0.1. Inset: non-monotonic temperature-
dependence of the decay time t∗ for different coupling strengths
α3 = 0.01 (solid), 0.1 (dashed), and 0.8 (dotted). t∗ is defined
as the time at which the coherence has dropped “half-way” to
[1 + c3(∞)]/2, see reference [19].

we generalize previous results for qubit dephasing [7,17]
to spectral densities with arbitrary s = 1, 2, 3, . . .

We will now briefly discuss the qualitatively different
dynamics for 3D, 2D, and 1D substrates, discuss the ac-
curacy of our model, and present new analytical results,
all based on equation (3), before comparing the error cor-
rection rates ωqec for the three geometries.

3.1 Three-dimensional substrates

Dephasing due to acoustic phonons in bulk geometries
is described by equation (3) for s = 3 (for deformation-
potential coupling, the parameter s equals the dimension
of the substrate). While a Markovian master equation for
our model would predict no decoherence at all, the exact
dynamics in Figure 1 exhibits a fast initial decay of co-
herence, after which the coherence stabilizes to the final
value

c3(∞) = exp[−8α3(θ2Ψ1(θ) − 1/2)], (4)

with zero-temperature limit exp(−4α3). Hence consider-
able initial decay may occur even at low temperatures, as
the solid (blue) curve in Figure 1 illustrates. Using the pa-
rameters of references [7,9] for GaAs-based self-assembled
QDs, we obtain the typical values α3 = 0.8 ± 0.3 and
ωc = 5 × 1012 s−1, in close agreement with the experi-
mental results of references [6,19]. For the exciton in the
QD we find l3 = 10 nm, a value in between the known
confinement lengths of electron and hole wave functions.
In reference [19] a decay time t∗ was defined as the time
at which half of the coherence that finally will get lost
is lost. Theory and experiment agreed well on the point
that t∗ behaves non-monotonically as a function of tem-
perature. In the inset of Figure 1, we find for our model
similar non-monotonic behavior, another illustration that
dephasing of real QDs is also well described by our generic
model. Notice the short time scale of the decay, t∗ < ω−1

c .
There is monotonic dependence on other parameters as
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well: t∗ gets longer by making the QD larger, phonon ve-
locity vs slower, or the coupling α3 smaller. As Figure 1
shows, the amount of coherence lost during short times
is considerable for this realistic choice of parameters. If
for QIP applications any phase errors beyond the percent
level have to be corrected, then this should occur well
within t∗.

Experimentally the coherence dynamics is usually in-
ferred from absorption spectra. The Fourier transform of
the highly non-exponential coherence dynamics in Fig-
ure 1 predicts a highly non-Lorentzian spectrum. Since
c3(∞) > 0, the zero-phonon line at frequency Δ/� is even
a delta function, with weight c3(∞) [12]. In practice this
spectral line has a very narrow finite width, finite due
to slow processes not described by the independent-boson
model. However, with QIP in mind, we are more interested
in the fast initial decay, which shows up as the broad back-
ground of the zero-phonon line.

3.2 Two-dimensional substrates

Let us briefly also consider dephasing in planar geometries.
To our knowledge, experiments analogous to [11,19] with
planar geometries have not yet been carried out. The ex-
act dynamics is obtained by setting s = 2 in equation (3).
Again a fast initial decay on a time scale ω−1

c is found. The
coherence c2(t) does not stabilize to a finite value, but van-
ishes algebraically ∝ 1/(ωct)8α2θ, leading to a nontrivially
broadened zero-phonon line in the absorption spectrum.

3.3 One-dimensional substrates

For s = 1, the spectral density Js(ω) becomes ohmic, i.e.
linear in frequency up till the cutoff frequency ωc. This
describes dephasing due to acoustic phonons in 1D ge-
ometries such as nanotubes and nanowires, for which it is
well known that the coherence dynamics strongly differs
from the 3D case [11,14]. Detailed experiments have been
performed only recently [11]. From equation (3) we find
the exact analytical expression

λ1(t) = 8α1{logΓ (θ)−log |Γ (θ[1+iωct])|−1
4

log(1+ω2
c t

2)}.
(5)

For long times t � max{ω−1
c , �/kBT }, this gives

c1(t) = κ(α1, θ) exp(−t/T2), (6)

i.e. exponential decay with coherence time T2 =
�/4πα1kBT . This complete decay corresponds to a zero-
phonon line with finite width [11,14]. Master equations
would give the same T2 time, but not the prefactor

κ(α1, θ) = [2πθ2θ−1/Γ 2(θ)]4α1 , (7)

by which the initial non-exponential decay remains notice-
able also at long times. (See also the interesting discussion
in Ref. [22], where another κ is found.) In the limit θ � 1
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Fig. 2. (Color online) Exact coherence dynamics for a 1D en-
vironment with ohmic spectral density with coupling strength
α1 = 0.01, for several scaled temperatures θ = kBT/�ωc. The
time-axis is scaled by θ. The solid line shows the approximated
exponential decay as given by the T2 time (see text). Inset:
same as main figure, but on a shorter time scale. The arrows
indicate an error threshold ε = 10−3.

we find κ = (2πθ)4α1 . Dephasing cannot be reduced indef-
initely by lowering the temperature. Rather, the duration
of the non-exponential decay is increased. For the experi-
ments in reference [11] with isolated single-wall nanotubes,
we estimate α1 = 0.1±0.05 and ωc = 20×1012 s−1. With
temperatures ranging from 5 K to 32 K, i.e. θ between
0.033 and 0.21, κ assumes values between 0.49 and 0.92.
Thus non-exponential dephasing is important in state-of-
the-art 1D systems, the more so for lower temperatures.

Again, our main interest is the initial decay itself,
rather than its effect at long times. For θ ≤ 1, the time
scale of the non-exponential decay is �/kBT , in clear con-
trast to the temperature-independent t∗ for bulk systems.
Figure 2 shows the typical coherence dynamics of QDs on
1D substrates. We chose α3 = 0.01, an order of magnitude
smaller than in the experiment of reference [11], but non-
exponential decay would be important even then. The fig-
ure shows curves for three different temperatures, as well
as their master-equation approximations exp(−t/T2). The
latter coincide due to scaling of the time axis. By contrast,
the three exact curves do not coincide at all: the low-
temperature curve (θ = 0.01) is systematically lower and
the high-temperature curve higher than their exponential-
decay approximations. The inset of Figure 2 shows that
when asked how long c1(t) manages to stay above 0.999,
the exponential-decay curve may be too optimistic, too
pessimistic, or accurate by chance.

4 Rate of quantum error correction

There is the danger of comparing apples and oranges when
studying the effect of substrate dimensions. Fortunately in
this respect, in state-of-the-art experiments both α3 and
α1 turn out to be of order 10−1 (see above). For current
and future experiments, it is therefore useful to depict the
αs-dependence of dephasing for all three geometries in the
same range αs � 0.1 and smaller.
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Fig. 3. (Color online) Temperature dependence of the quan-
tum error correction rate ωqec for substrate geometries with
spectral densities Js(ω) with different s but equal couplings
αs, for several threshold values ε. In the main figure αs = 0.1,
and αs = 0.001 in the inset, where case s = 2 is not shown.
The y-axes are scaled by

√
ε. Curves are based on equation (3).

Let us now assume that phase errors have to be cor-
rected if coherence drops from cs(0) = 1 to cs(2π/ωqec) =
(1 − ε) for some error threshold ε, i.e. from the exact de-
phasing dynamics (3) we identify the minimal rate ωqec at
which phase errors have to be corrected in order to pre-
serve coherence in an idle qubit. Reference [23] discusses
how to correct phase errors. To be optimistic, we assume
that in each step the error can be corrected perfectly and
instantaneously. The central idea is that structures with
lower rates ωqec are better suited for the implementation
of quantum error correction.

In Figure 3 we compare ωqec as a function of tempera-
ture for bulk, planar, and linear substrate geometries. All
couplings are αs = 0.1. Notice that ωqec on the vertical
axis is scaled by

√
ε. We find that the curves for the error

correction tresholds ε = 10−4, 10−3, and 10−2 overlap for
all three geometries. Thus ωqec scales as

√
ε, at least for

current experimental couplings αs = 0.1 and ε ≤ 10−2.
Scaling with

√
ε only holds if the parabolic short-time ap-

proximation cs(t) ≈ 1− ηst
2 is still valid at the time that

cs(t) assumes the threshold value (1 − ε). We find

ηs(αs, θ) = 2αs[2(−θ)s+1Ψs(θ) − s!], (8)

and for a small treshold ε, the error correction rate needs
to be ωqec = 2π

√
ηs/ε. For αs = 0.1, the temperature de-

pendence of ηs and hence of ωqec is completely negligible,
even up to temperatures as high as �ωc/kB. This corrob-
orates that the first stage of pure dephasing is due to vac-
uum noise [17,24]. All rates ωqec corresponding to αs = 0.1
in Figure 3 are high and lie in the range between the cut-
off ωc and the qubit frequency Δ/� � 1015 s−1, since
already the fast initial decay reaches the error threshold.
However, this simple scaling breaks down for very weak
coupling αs = 0.001, as shown in the inset of Figure 3,
where the error correction rate depends on more than the
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Fig. 4. (Color online) Quantum error correction rate ωqec as a
function of coupling αs, for several error thresholds ε. Curves
were made using equation (3). For all three pairs of curves, s =
1 corresponds to the lower, and s = 3 to the upper curve. The
curves for s = 3 stop at critical coupling strengths indicated
by dots: for smaller α3, the coherence c3(t) never decays below
threshold. The temperature is T = 0.01�ωc/kB.

initial parabolic decay. Figure 3 also shows that the rates
for 1D are smaller than for 3D or 2D geometries, although
by factors less than 10. Generally we find the central re-
sult that linear substrate geometries like nanotubes and
nanowires will perform best.

It would be very challenging to implement a quantum
error correction protocol for phase errors at rates as high
as those shown in Figure 3. In our model, lower rates ωqec

could be realized by reducing the cutoff frequency ωc or
the couplings αs. Figure 4 shows the effect of the latter
strategy. For the largest couplings αs � 0.1, the message is
as in Figure 3: given an error level ε, linear substrates have
lower rates ωqec than planar or bulk substrates. As the αs

are decreased, this message is essentially unchanged, un-
til suddenly for bulk substrates α3 becomes so small that
c3(∞) > 1− ε, i.e. the final coherence stabilizes above the
error threshold. In that situation – which can not occur
for 1D substrates – ωqec vanishes: error correction is not
needed. State-of-the-art exciton qubits in QDs have cou-
plings that are more than one order of magnitude larger
than the largest critical coupling shown (i.e. for ε = 0.01).
Obviously ωqec would also become smaller if larger errors ε
were allowed. The challenge is here to come up with QEC
protocols that tolerate larger faults. All in all, Figure 4
shows that for fixed αs = α and ωc, linear substrate ge-
ometries are to be preferred for their lower ωqec, unless
couplings can be substantially reduced.

5 Discussion and conclusions

Inspired by recent measurements [11,19], we have analyzed
the first few percents of loss of quantum coherence of a
solid-state exciton qubit on 3D, 2D, and 1D substrates. It
is mainly this initial decoherence which is important for
QIP applications when supplemented with fault-tolerant
QEC. We proposed and focused on the important quantity
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ωqec, the minimal rate at which quantum errors have to
be corrected. Its temperature dependence turned out to be
negligible. For QD exciton qubits in a bulk substrate, the
coherence may stabilize above the threshold, as for spin
qubits [25], but corresponding couplings α3 are currently
not weak enough.

Let us return to our initial question: is it benefi-
cial for QIP applications to reduce the dimensions of
the substrate, as far as dephasing is concerned? From a
master-equation perspective it is not, and worries about
non-exponential decay were expressed especially for 1D
structures [11]. We have presented analytical solutions of
a generic but accurate independent-boson model to show
how fast initial dephasing occurs for 1D, 2D, and 3D ge-
ometries alike, and identified the minimal rate at which
single-qubit errors have to be corrected. In all cases the
rates are high and fall in between the cutoff and the qubit
frequency, which poses a challenge for QIP applications.
However, we found that qubits on 1D substrates require
the lowest error correction rates.

This work has been supported by the the DFG through SFB
631, by the German Excellence Initiative via “Nanosystems
Initiative Munich (NIM)”, and by the Niels Bohr International
Academy.

References

1. M.A. Nielsen, I.L. Chuang, Quantum Computing and
Quantum Information (Cambridge University Press, 2000)
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