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Abstract. We demonstrate the existence of stochastic resonance (SR) in confined systems arising from
entropy variations associated to the presence of irregular boundaries. When the motion of a Brownian
particle is constrained to a region with uneven boundaries, the presence of a periodic input may give rise
to a peak in the spectral amplification factor and therefore to the appearance of the SR phenomenon. We
have proved that the amplification factor depends on the shape of the region through which the particle
moves and that by adjusting its characteristic geometric parameters one may optimize the response of
the system. The situation in which the appearance of such entropic stochastic resonance (ESR) occurs
is common for small-scale systems in which confinement and noise play an prominent role. The novel
mechanism found could thus constitute an important tool for the characterization of these systems and
can put to use for controlling their basic properties.

PACS. 02.50.Ey Stochastic processes – 05.40.-a Fluctuation phenomena, random processes, noise, and
Brownian motion – 05.10.Gg Stochastic analysis methods

1 Introduction

A Brownian particle moving in a threshold-like potential
landscape and subjected to the influence of a periodic
forcing may exhibit a coherent response giving rise to an
amplification of the input at a certain optimal value of
the noise level. This resonant phenomenon, observed in
general in the wide class of periodically modulated noisy
systems, was termed stochastic resonance and constituted
a paradigm shift in the way we think about noise ef-
fects in systems away from equilibrium [1]. In this new
paradigm, the presence of noise does not always consti-
tute a nuisance; on the contrary, it may play a constructive
role [1–12].

Up to now, the phenomenon of SR has been observed
mainly in systems dominated by the presence of a purely
energetic potential or possessing some dynamical thresh-
old [1]. However, when scaling down the size of a system,
the free energy rather than the internal energy becomes
the most appropriate potential, and there are cases in
which changes in the free energy are mainly due to entropy
variations [11,13–18]. This is what occurs in constrained
systems. In the case of a Brownian particle moving in a
confined medium, entropy variations contribute to changes
in the free energy and may under some circumstances be-
come its leading contribution [12,13,17,18]. We will show
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in this work that the unevenness may also give rise to a
stochastic resonance effect and that this effect can be con-
trolled upon variation of the geometrical parameters, char-
acterizing the shape of the cavity in which the Brownian
particle dwells.

Usually, the analysis of SR effects have been performed
by means of pertinent Langevin or corresponding Fokker-
Planck models [19,20]. In confined systems the presence
of boundaries exerts a strong influence in the dynamics
and one has to solve the corresponding boundary value
problem. This task cannot always be easily achieved. The
fact that in many instances boundaries are very intri-
cate enormously complicates the mathematical treatment
of the problem to the extent of becoming a Herculean
task when the boundaries are extremely irregular [21].
This feature demands the implementation of different ap-
proaches entailing a simplification of the analysis [22–24].
Among them, the Fick-Jacobs equation, based on a coars-
ening of the description in terms of a single, relevant
coordinate degree of freedom, accurately performs this
task [17,18,21–23]. This methodology will guide us in this
article to analyze the appearance of the SR effect in pres-
ence of unevenness.

The article is organized in the following way. In Sec-
tion 2, we introduce a model for Brownian motion in a
confined medium. In Section 3, we present a reduction
method which simplifies the complex nature of the 3D/2D
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Fig. 1. Schematic illustration of the two-dimensional structure
confining the motion of the Brownian particles. The symmetric
structure is defined by a quartic double well function, cf. equa-
tion (2), involving the geometrical parameters Lx, Ly and b.
Brownian particles are driven by a sinusoidal force F (t) along
the longitudinal direction and a constant force G in the or-
thogonal direction.

dynamics giving rise to an effective one-dimensional ki-
netic description. Section 4 is devoted to evaluate the tran-
sition rate from the reduced kinetic description, and the
introduction of spectral amplification within the two-state
approximation. In Section 5, we present the results show-
ing the ESR phenomenon. The impact of the geometrical
shape and confinement on the spectral amplification is
discussed in Section 6. Finally, we summarize our main
conclusions in Section 7.

2 Confined Brownian motion

The dynamics of a particle in a constrained geometry sub-
jected to a sinusoidal oscillating force F (t) along the axis
of the structure and to a constant force G acting along
the orthogonal, or transverse, direction can be described
by means of the Langevin equation written, in the over-
damped limit, as

γ
dr

dt
= −Gey − F (t)ex +

√
γ kBT ξ(t), (1)

where r denotes the position of the particle, γ is the
friction coefficient, ex and ey the unit vectors along
x and y-directions, respectively, and ξ(t) is a Gaussian
white noise with zero mean which obeys the fluctuation-
dissipation relation 〈ξi(t) ξj(t′)〉 = 2 δij δ(t − t′) for i, j =
x, y. The explicit form of the longitudinal force is given by
F (t) = F0 sin(Ωt) where F0 is the amplitude and Ω is the
angular frequency of the sinusoidal driving.

In the presence of confinement, this equation has to
be solved by imposing reflecting (no-flow) boundary con-
ditions at the walls of the structure. For the 2D structure
depicted in Figure 1, the walls are defined by

wl(x) = Ly

(
x

Lx

)4

− 2 Ly

(
x

Lx

)2

− b

2
= −wu(x), (2)

where wl and wu correspond to the lower and up-
per boundary functions, respectively. The characteristic
length Lx refers to the distance between the bottleneck
and the position of maximal width, Ly corresponds to the

narrowing of the boundary functions and b to the remain-
ing width at the bottleneck, cf. Figure 1. Consequently, the
local width of the structure reads: 2 w(x) = wu(x)−wl(x).
This particular choice of the geometry is intended to re-
semble the classical setup for SR in the context of ener-
getic barriers. In fact, in the limit of a sufficiently large
transverse force G, the particle is in practice restricted
to explore the region very close to the lower boundary of
the structure, recovering the effect of an energetic bistable
potential. For the sake of a dimensionless description, we
measure all lengths in units of Lx, i.e. x̃ = x/Lx, ỹ = y/Lx

implying b̃ = b/Lx and w̃l = wl/Lx = −w̃u, temperature
in units of an arbitrary, but irrelevant reference tempera-
ture TR and time in units of τ = γL2

x/kBTR, that is, twice
the time the particle takes to diffuse a distance Lx at tem-
perature TR, i.e. t̃ = t/τ and Ω̃ = Ωτ . We scale forces by
FR = γLx/τ , i.e. the orthogonal force reads G̃ = G/FR

and the sinusoidal force F̃ (t̃) = F (t)/FR. For better leg-
ibility, we shall omit the tilde symbols in the following.
In dimensionless form the Langevin-equation (1) and the
boundary functions (2) read:

dr

dt
= − Gey − F (t)ex +

√
D ξ(t), (3)

wl(x) = − wu(x) = εx4 − 2εx2 − b/2, (4)

where we defined the aspect ratio ε = Ly/Lx and the
rescaled temperature D = T/TR.

3 Reduction of dimensionality

Since the above mentioned dynamics given by equation (3)
with the boundary conditions could not be solved analyti-
cally, we simplified the problem by assuming equilibration
in y-direction and thereby reducing the dimensionality of
the problem [22–25].

First, we consider the case in the absence of the peri-
odic forcing, i.e. F (t) = 0. Then, the 2D dynamics is de-
scribed by the following 2D Smoluchowski equation [19,20]

∂

∂t
P (x, y, t) =D

∂

∂x
e−U(x,y)/D ∂

∂x
eU(x,y)/DP (x, y, t)

+ D
∂

∂y
e−U(x,y)/D ∂

∂y
eU(x,y)/DP (x, y, t),

(5)

with reflecting boundary conditions at the confining walls
and where the potential function is given by U(x, y) =
Gy. Since we are mainly interested in the dynamics in
x-direction, we introduce the marginal probability density
P (x, t) which is obtained by integration over the trans-
verse coordinate:

P (x, t) =
∫

dy P (x, y, t). (6)
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On integrating equation (5) over the transverse direction,
we get

∂

∂t
P (x, t) =

D
∂

∂x

∫
dy

{
e−U(x,y)/D ∂

∂x
eU(x,y)/DP (x, y, t)

}
. (7)

Assuming local equilibrium in the y-direction, we define
the x-dependent effective energy function A(x) (omitting
irrelevant constants) reading

e−A(x)/D =
∫

dy e−U(x,y)/D. (8)

Consequently, the conditional local equilibrium probabil-
ity distribution of y at a given x becomes

ρ(y; x) = e−U(x,y)/D eA(x)/D, (9)

and is normalized for every x. As a result, the two di-
mensional probability distribution can be approximately
expressed as

P (x, y, t) ∼= P (x, t)ρ(y; x), (10)

and the kinetic equation for the marginal probability dis-
tribution, cf. equation (7), becomes

∂

∂t
P (x, t) ∼= D

∂

∂x
e−A(x)/D ∂

∂x
eA(x)/DP (x, t). (11)

In the present case with a constant force G in the negative
y-direction the potential function A(x) reads, cf. equa-
tion (8):

A(x) = −D ln

[∫ wu(x)

wl(x)

e−G y/D dy

]

= −D ln
[
D

G

(
e−Gwl(x)/D − e−Gwu(x)/D

)]
. (12)

Making use of the symmetry of our considered structure,
i.e. wu(x) = −wl(x) and the definition of the half width
function w(x) = (wu −wl)/2, the potential function turns
into

A(x) = −D ln
[
2D

G
sinh

(
Gw(x)

D

) ]
. (13)

Equation (11) can then be rewritten as

∂P (x, t)
∂t

=
∂

∂x

{
D

∂P

∂x
+ A′(x)P

}
, (14)

with the potential function A(x) given by equation (12)
(or by Eq. (13) for wl(x) = −wu(x)) and with the prime
referring to the derivative with respect to x. In general, af-
ter the coarse-graining the diffusion coefficient will depend
on the coordinate x, but since in our case |w′(x)| � 1, the
correction can be safely neglected [21,23–26].
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Fig. 2. (Color online) The effective 1D potential A(x) is de-
picted (solid black line) for G = 1 and for different noise
strengths. For comparison the potential functions for the pure
energetic case (dotted blue line), i.e. A(x) = Gwl(x), and
for the pure entropic case (dashed red line), i.e. A(x) =
−D ln[2w(x)], are plotted as well.

It is important to highlight that the potential A(x) was
not present in the 2D Langevin dynamics, but arises due
to the entropic restrictions associated to the confinement.
Then, equation (14) describes the motion of a Brownian
particle in a free energy potential of entropic nature, as
A(x) does not only depend on the energetic contribution of
the force G, but also on the temperature D and the geom-
etry of the structure in a non-trivial way. For a structure
like that depicted in Figure 1, the free energy A(x) forms
a double-well potential, cf. Figure 2. As the width at the
bottleneck of the channel approaches zero, the potential
A(x) diverges.

It is worth to analyze the two limiting situations that
can be obtained depending on the transverse force G.

Energy-dominated situation: for G � 1, equa-
tion (13) yields A(x) = Gwl(x) (neglecting irrelevant
constants) and the 1D kinetic equation (14) becomes
the standard Fokker-Planck equation for Brownian
motion in a purely energetic potential whose shape re-
sembles the lower boundary of the structure,

∂P (x, t)
∂t

=
∂

∂x

{
D

∂P (x, t)
∂x

+ Gw′
l(x)P (x, t)

}
. (15)

Entropy-dominated situation: in the opposite limit,
i.e. for G � 1, the effective potential is dominated by
the purely entropic contribution A(x) = −D ln[2 w(x)]
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and the kinetic equation turns into the Fick-Jacobs
equation [22],

∂P (x, t)
∂t

=
∂

∂x

{
D

∂P (x, t)
∂x

− D
w′(x)
w(x)

P (x, t)
}
. (16)

4 Two-state approximation

It is instructive to analyze the occurrence of stochastic res-
onance in the context of the two-state approximation [27].
Accordingly, the 1D kinetics given by equation (14) can
be approximately mapped into a two-state system with
the two states corresponding to the two wells of the sym-
metric effective potential A(x). An estimate for the tran-
sition rates could be obtained by applying the mean-first-
passage-time (MFPT) approach [28].

4.1 Mean first passage time approach

In order to calculate the transition rate from one state to
the other, one evaluates the inverse of the MFPT to reach
a potential minimum after starting out from the other
minimum of the symmetric and bistable potential A(x).
Then, the transition rate is given by

rMFPT(D, G) =
1

T1(−1 → 1)
, (17)

where T1(−1 → 1) is the first moment of the first pas-
sage time distribution for reaching x = 1 starting out at
x = −1. The nth moment of the first passage time distri-
bution obeys the following recurrence relation [28]

Tn(−1 → 1) := 〈tn(−1 → 1)〉

=
n

D

∫ 1

−1

dx eA(x)/D

∫ x

−∞
dy e−A(y)/D

× 〈tn−1(y → 1)〉 (18)

for n ∈ N and with T0(a → b) = 1 for arbitrary a and b.
Accordingly, within the one dimensional approximation,
cf. equation (14), the mean first passage time (i.e., n = 1)
for the potential function A(x), cf. equation (13), reads

T1 =
1
D

∫ 1

−1

dx eA(x)/D

∫ x

−xl

dy e−A(y)/D

=
1
D

∫ 1

−1

dx csch
(

Gw(x)
D

) ∫ x

−xl

dy sinh
(

Gw(y)
D

)
,

(19)

where xl is the left limiting value at which the boundary
function vanishes. Equation (19) can be evaluated using a
steepest descent approximation leading to the commonly
known Kramers-Smoluchowski rate.
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Fig. 3. (Color online) The transition rate for the escape from
one basin to the other obtained after applying a Two-State
approximation of the 1D problem, cf. equations (17) and (21),
is depicted as a function of the thermal noise D for G = 1.0.
The 2D structure is defined by the boundary function given in
equation (4) with ε = 1/4 and b = 0.02. Here, the Kramers-
Smoluchowski rate (K), i.e. rK, converges to the rate given by
the inverse mean first passage time (MFPT) in the low noise
limit.

4.2 Kramers-Smoluchowski rate

For a potential A(x) with a barrier height ΔA � D
the escape rate of an overdamped Brownian particle from
one well to the other in the presence of thermal noise,
and in the absence of a force, is given by the Kramers-
Smoluchowski rate [27–30], reading in dimensionless units,

rK(D) =

√
A′′(xmin)|A′′(xmax)|

2π
exp

(−ΔA

D

)
, (20)

where A′′ is the second derivative of the effective potential
function with respect to x, and xmax and xmin indicate the
position of the maximum and minimum of the symmetric
potential, respectively.

For the potential given by equation (13) and the shape
defined by equation (4), the corresponding Kramers-
Smoluchowski rate for transitions from one basin to the
other reads [18]

rK(D) =
Gε

π

√
2 sinh

(
Gb
D

)
sinh

(
G(b+2ε)

D

)

sinh2
(

G(b+2ε)
2D

) . (21)

Note that the Kramers-Smoluchowski approximation
yields good results for barrier heights ΔA much larger
than the thermal energy that in the present scaling is given
by D. In fact, for ΔA � D the Kramers-Smoluchowski
rate rK approximates accurately the rate rMFPT evaluated
numerically from the MFPT expression (19), as depicted
in Figure 3.
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5 Role of the transverse force G

In Section 3 we introduced the Fick-Jacobs equation to
approximatively describe the Brownian motion in a 2D
structure like that depicted in Figure 1 using a simpli-
fied 1D modeling with an effective bistable potential. This
potential exhibits a barrier the particle has to overcome
noisily in order to make a transition from one well to the
other. For a sinusoidal driving force applied in x-direction,
i.e. F (t) = F0 sin(Ωt), a synchronization effect between
the oscillatory forcing and the noise-induced transitions
over the entropic potential barrier takes place and was re-
ported previously in reference [18]. Under these circum-
stances and in the presence of a finite orthogonal, i.e.
transverse force G, increasing the noise level results in
a noise-amplified response signal. The improvement of the
response is quantified in the following by the spectral am-
plification factor η, which is the ratio of the power stored
in the response of the system at the driving frequency Ω
and the power of the sinusoidal driving signal. The occur-
rence of the Entropic Stochastic Resonance effect mani-
fests in the presence of an optimal dose of noise for which
the spectral amplification is maximal [18].

5.1 Two-state modeling

It is straight forward to derive an analytic expression
for the spectral amplification within a two-state model-
ing. The sinusoidal driving modulates the transition rates,
which are given either by rMFPT or rK (cf. Sect. 4). Within
a first order perturbation theory in the ratio of driving
amplitude F0 and noise level D, it is possible to find a
closed expression for the response of the two-state system
and accordingly for the spectral amplification factor that
reads [1,30]:

η =
1

D2

4 r2
Rate(D)

4 r2
Rate(D) + Ω2

, (22)

where rRate is the transition rate of the unperturbed
two-state system and is given by equation (17), or ap-
proximately by equation (20).

5.2 1D modeling

Avoiding the approximations involved in the two-state
modelling, the system’s response could also be obtained
directly from the numerical integration of the 1D kinetic
equation. In the presence of an oscillating force F (t) in
x-direction there is an additional contribution to the effec-
tive potential in equation (14) and the 1D kinetic equation
in dimensionless units reads [18]

∂P (x, t)
∂t

=
∂

∂x

{
D

∂P

∂x
+ (A′(x) − F (t))P

}
. (23)

By spatial discretization, using a Chebyshev collocation
method, and employing the method of lines, we reduced

0

250

500

750

ηη

0 0.05 0.1 0.15

DD

K

MFPT

1D modelling

Ω = 0.0001

Fig. 4. (Color online) A detailed comparison of the behavior
of the spectral amplification factor obtained numerically from
the 1D modeling (solid line), cf. equations (23) and (25), and
within the two-state approximation (Eq. (22)), using either
the Kramers-Smoluchowski rate (K) (dotted line) or the rate
obtained directly from the mean first passage time (MFPT)
(dashed-line). Here, the transverse force is G = 1.0, and the
structure is defined by equation (4) with an aspect ratio ε =
1/4, and a bottleneck width b = 0.02.

the kinetic equation to a system of ordinary differential
equations, which was then solved using a backward differ-
entiation formula method [31]. As a result, we obtained
the time dependent probability distribution P (x, t) and,
from that, the time-dependent average position defined as

〈x(t)〉 =
∫

xP (x, t)dx, (24)

which was computed in the long-time limit. After a
Fourier-expansion of 〈x(t)〉 one finds the amplitude M1

of the first harmonic of the system’s response. Hence, the
spectral amplification η [30] for the fundamental oscilla-
tion is evaluated as

η =
[
M1

F0

]2

. (25)

The spectral amplification η depicts a bell-shaped behav-
ior, cf. Figure 4, indicating the existence of a Stochastic
Resonance effect: there is a maximum of the spectral am-
plification at an optimal value of noise. The qualitative
behavior is captured by the two-state approximation as
well. The prediction of the two-state modelling with rates
evaluated directly from MFPT is closer to the 1D mod-
elling than those obtained by making use of the Kramers-
Smoluchowski approximated rate, as illustrated in Fig-
ure 4. This is due to the fact that the condition ΔA � D
is not always fulfilled in this case. In fact for the entropy-
dominated situation, ΔA and D are of the same order of
magnitude.

Next we present the results of numerical simulations of
the full (2D) problem. By doing so we demonstrate that
the ESR effect is robust and not just an artifact of the
reduction procedure.
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Fig. 5. (Color online) The spectral amplification obtained
from 2D simulations is depicted as a function of both the trans-
verse force G and the noise strength D for an input signal fre-
quency Ω = 0.1 and amplitude F0 = 0.1. The shape of the
two-dimensional channel is defined by the dimensionless func-
tion w(x) = −εx4 + 2 εx2 + b/2 with the aspect ratio ε = 1/4
and bottleneck width b = 0.02. The symbols connected by
lines correspond to the same G-values. In particular, these are
G = 0.0, 0.05, 0.1, 0.125, 0.15 and 0.2. In the deterministic
limit, i.e. D → 0, the spectral amplification reaches a limit-
ing value (1/Ω2) for G = 0. For G = 0 the effect of Entropic
Stochastic Resonance disappears.

5.3 2D modelling

The accuracy of the reduced one-dimensional kinetic de-
scription can be examined by comparing the results with
those obtained by Brownian dynamic simulations, per-
formed by integration of the overdamped 2D Langevin
equation (1). The simulations were carried out using the
standard stochastic Euler-algorithm.

The resulting amplification factor as a function of the
value of the transverse force and the noise strength are
plotted in Figure 5. For a finite transverse force G the
spectral amplification exhibits a peak at an optimum value
of the noise strength which is indicative of the effect of En-
tropic Stochastic Resonance. However, for vanishing trans-
verse force G the spectral amplification does not exhibit
any peak and decays monotonically with increasing noise
level, i.e. the ESR - effect is not observed. In the determin-
istic limit, i.e. D → 0, the spectral amplification reaches
the limit value η = 1/Ω2 for G = 0, as shown in Figure 5.
We remark that the later is only true when the amplitude
of the system’s response, which is the ratio of input signal
amplitude to input signal frequency, is smaller than the
value xl, which is the limiting value at which the boundary
function vanishes. It is also worth to point out that start-
ing out from a finite G-value the position of the ESR peak
shifts towards smaller noise strengths as G decreases while
the maximum value increases, cf. Figure 5. A comparison
between the 1D-modelling and the full 2D simulation is
depicted in Figure 6. The 2D simulation results convinc-
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Fig. 6. (Color online) The dependence of the spectral amplifi-
cation η on noise level D, at two different values of the trans-
verse force G, at a constant input frequency and amplitude.
The symbols correspond to the results of the Langevin simu-
lations for the two-dimensional channel whose shape is defined
by w(x) = −εx4 + 2 εx2 + 0.01 with an aspect ratio ε = 1/4,
whereas the lines are the results of the numerical integration
of the 1D kinetic equation (23). In the deterministic limit, i.e.
D → 0, the spectral amplification reaches the limiting value
(1/Ω2) for G = 0.

ingly corroborate the validity of the modelling within the
1D Ficks-Jacob approximation, see also below.

Thus, we detect a non-monotonic behavior of the spec-
tral amplification only for finite values of the orthogonal
force G 
= 0, while for G = 0 the spectral amplification
decays monotonically. In other words, for the dynamics
and situation considered in Section 2 the occurrence of
the ESR-effect requires a non-vanishing orthogonal force
G which contributes within the 1D modelling to the effec-
tive entropic potential.

6 Role of the shape of the structure

Figure 6 depicts the main findings for the occurrence of
the ESR-effect in an effective bistable configuration with
two large basins connected by a small bottleneck, cf. Fig-
ure 1. Namely: (i) the occurrence of the ESR-effect due
to the interplay of a finite value of the orthogonal force
G; and (ii) the ability of the 1D Fick-Jacobs approxima-
tion to reproduce very accurately the results of the full 2D
problem [18,21].

Next, in order to investigate the impact of the shape
of the structure on the ESR behavior we have considered
yet another channel geometry: it is similar to the one de-
picted in Figure 1 but exhibits two intermediate wider bot-
tlenecks which are connected via a much narrower bottle-
neck, see in Figure 7. The geometric shape of the structure
is defined by the dimensionless width function

w(x) = 12.5x8 − 27.5x6 + 18.21x4 − 3.92x2 − 0.01. (26)

Following the same analysis performed in Section 5, we ob-
tained the spectral amplification within the 1D modelling
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Fig. 7. Schematic illustration of the two-dimensional structure
confining the motion of the Brownian particles. The shape de-
fined by the dimensionless function w(x) = 12.5x8 − 27.5x6 +
18.21x4 − 3.92x2 − 0.01.
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Fig. 8. (Color online) The dependence of the spectral am-
plification η on noise level D, at two different values of the
transverse force G, at a constant input frequency and am-
plitude for the channel illustrated in Figure 7. The sym-
bols correspond to the results of the Langevin simulations
for the two-dimensional structure whose shape is defined by
w(x) = 12.5x8 − 27.5x6 + 18.21x4 − 3.92x2 − 0.01, whereas the
lines are the results of the numerical integration of the 1D ki-
netic equation (23). Like in Figure 6, in the deterministic limit
(D → 0), the spectral amplification reaches the limiting value
(1/Ω2) for G = 0.

and compared it with results obtained from 2D numer-
ical simulation of the Langevin equation (3) in the new
2D structure defined by equation (26). Again, the effective
potential function A(x) obtained from the Fick-Jacobs ap-
proximation exhibits a large potential barrier separating
the two basins each of which is additionally separated by
a smaller potential barrier into two wells. In fact, the con-
struction of the alternative geometric structure was done
in such a way to reveal the existence of a main entropic
barrier controlling the transitions between the two main
basins.

The behavior of spectral amplification as a function of
the noise strength for the new channel defined by equa-
tion (26), and for two different values of the transverse
force is depicted in Figure 8. Interestingly, we can observe
the existence of Entropic Stochastic Resonance even in
the new structure, when the transverse force is present
in the system. Comparing the results of Figure 8 for the
channel depicted in Figure 7 with those in Figure 6, one
can observe that the ESR peak appears at higher values
of the noise strength. In addition, the enhancement of the

signal upon increasing the noise is more pronounced in
the new structure. These results suggest that by a proper
design of the geometry of the channel it would be pos-
sible to significantly enhance and optimize the response
of a confined system. This would be specially important
in biological systems, where the noise (i.e. the tempera-
ture) is a variable that can neither be arbitrarily chosen
nor eliminated. Finally, it is also worth stressing that the
Fick-Jacobs approximation still holds nicely in this case
since the 2D numerical simulation results are in very good
agreement with those obtained by 1D modelling.

Overall, the results indicate that the existence of a
small bottleneck separating two basins and forming an
effective entropic potential barrier, leads robustly to the
occurrence of an Entropic Stochastic Resonance effect.

7 Conclusions

We have shown that unevenness may be the origin of
many resonant phenomena in small-scale systems. The
constrained motion of a Brownian particle in a region
limited by irregular boundaries impedes the access of the
particle to certain regions of space giving rise to entropic
effects that can effectively control the dynamics. The in-
terplay between the noise present in the system, the ex-
ternal modulation and the entropic effects results in an
entropic stochastic resonance. However, the presence of a
transverse force G is crucial to observe this resonant be-
havior. This ESR is genuine of small scale systems where
confinement yields entropic effects. The occurrence of ESR
depends on the shape of the channel and can then be con-
trolled by it. Thus understanding the role of noise and
confinement in these systems does provide the possibil-
ity for a design of stylized channels wherein response and
transport become efficiently optimized.
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