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Received 23 October 2008, revised 9 December 2008, accepted 10 December 2008
Published online 3 April 2009

PACS 03.65.Yz, 03.67.Mn

∗ Corresponding author: e-mail dajka@phys.us.edu.pl, Phone: +48 32 359 11 73, Fax: +48 32 258 36 53

Entanglement which originates from a pair of non-interacting
qubits by means of entanglement swapping is discussed when
dephasing mechanisms are present. Then, the exact reduced dy-
namics can be evaluated for two pairs of independent qubits
which each are coupled to their own bosonic environment.
Each of two pairs of qubits is initially maximally entangled.
The conditions for the entanglement survival at asymptotic
long times in terms of environment spectral properties are elab-
orated. It is shown that these conditions hold true also for
the inter–pair entanglement stemming. Entanglement swap-
ping can effectively been controlled by a proper choice of ini-
tial state of the finite environment.
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Two non-interacting pairs of qubits, {S1, S2} and {S3, S4},
are in a separable state, wherein each pair of qubits is max-
imally entangled. The Bell state measurement (BSM) on the
pair {S2, S4} creates the entanglement of the qubits S1 and
S3. The qubits are coupled to their own environments Ri,
i = 1, . . . , 4.

1 Introduction The phenomenon of entanglement
of quantum degrees of freedom occurring in open quan-
tum systems has attracted considerable attention due to its
prominent significance for both, fundamental physics and
applications of quantum information processing [1]. The
open system impacts the otherwise unitary time-evolution,
giving rise to loss of coherence properties [2–5]. There
have been proposed several procedures to sustain coher-
ence and to minimize decoherence processes in such sys-
tems. E.g. the way how the system interacts with its outer
environment decides about entenglement survival in the
long time regime [6,7]. In this work we consider one of the
more challenging applications involving the concept of en-
tanglement in quantum communication: the entanglement
swapping [8]. This procedure, originally proposed in Ref.
[9] has been developed both theoretically and experimen-
tally in Refs. [10–13], allows to generate entanglement be-
tween qubits which neither come from the same source nor
have they ever interacted before. In the following we focus
on the (most) simple system composed of two pairs of non-
interacting qubits which are coupled in a non-demolition

manner to their own, independent, environments which are
either of finite or infinite (thermodynamic) size. Put dif-
ferently, the two qubits undergo pure dephasing only with
those surroundings. We demonstrate that this deteriorating
coherence mechanism in such a system does not render en-
tanglement swapping ineffective even at long asymptotic
measurements times, provided that the environments pos-
sess a superohmic spectrum. We also propose a method of
controlling the swapped entanglement by a proper choice
of the initial preparation of the surroundings.

There exist several quantitative measures of entangle-
ment degree of bipartite systems [14]. Two common such
measures are the concurrence [15] and the negativity [16],
which can uniquely be related to each other [17]. In this
work, we employ as a measure for physical entanglement
the negativity; i.e., N(ρ) = max(0,−∑

i λi) [16], where
λi denote the negative eigenvalues of the partially trans-
posed density matrix ρ(t) of a pair of qubits [18]. For en-
tangled mixed states, this negativity assumes positive val-
ues, whereas it identically vanishes for disentangled states.
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2 Entanglement swapping Let us consider four
qubits, denoted as {S1, S2, S3, S4}. Importantly, the four
qubits do not interact with each other. At initial time of
preparation t = 0, the two subsystems, formed by two pairs
of qubits each, i.e., A = {S1, S2} and B = {S3, S4} are
prepared in the separable state

ρ(0) = ρA(0) ⊗ ρB(0), (1)

wherein each pair A and B of the qubits is maximally en-
tangled,

ρk(0) =
1

2
(|01〉 + |10〉) (〈01| + 〈10|)k , (2)

k = A, B.

The notation |01〉 means that for k = A, the qubit S1 is
in the state |0〉 and the qubit S2 is in the state |1〉. Mutatis
mutandis for k = B: the qubit S3 is in the state |0〉 and
the qubit S4 is in the state |1〉. As there is no interaction
acting between the pairs A and B, the separability remains
preserved at any later time t > 0,

ρ(t) = ρA(t) ⊗ ρB(t). (3)

Let at time t = τ the entanglement swapping procedure
being performed: it consists of projecting the system on the
Bell state of the qubits {S2, S4}, i.e. measuring the system
by means of the Bell state measurement [8]

ρ(τ) → ρswap(τ) = TrS2,S4
(|Ψ24〉〈Ψ24|ρ(τ)) , (4)

where

|Ψ24〉 =
1√
2

(|01〉 − |10〉)24 (5)

is the symmetric Bell state of the qubits S2 and S4. As a re-
sult, one can create an entanglement between the qubits S1

and S3 which in fact have never interacted with each other
before. Because the density matrix ρswap(τ) is a 4× 4 ma-
trix, we can utilize the well-known, established methods to
analyze the degree of entanglement, e.g. one can evaluate
the negativity N(ρswap). To do so, we have to specify the
dynamics (the Hamiltonian) of the system of four qubits.

3 Hamiltonian and reduced dynamics The sys-
tem of four qubits consists of two independent and identi-
cal subsystems A and B and which are characterized by the
total Hamiltonian

H = HA +HB, (6)

HA = H1 + H2, HB = H3 + H4.

Because the subsystems A and B are identical, we describe
the subsystem A only.

The subsystem A consists of a pair of qubits, i.e., A =
{S1, S2}, and its Hamiltonian reads

H1 = ω0S
z
1 + Sz

1 ⊗
∞∑

k=1

gk(a†
k + ak) +

∞∑
k=1

ωka†
kak (7)

for the qubit S1 and

H2 =
1

2
|0〉〈0| ⊗ K+ +

1

2
|1〉〈1| ⊗ K− (8)

for the qubit S2.
The qubit S1 is represented by the spin-1/2 operator

Sz
1 . It interacts with a heat bath R1 modeled by an infinite

quasi-free reservoir, composed of bosonic harmonic oscil-
lators of angular frequencies ωk, the operators ak and a†

k
are Bose annihilation and creation operators. The strength
of the interaction between the qubit S1 and the k-th mode
of the heat bath R1 is described by the coupling constant
gk .

The qubit S2 is coupled to its own environment R2 rep-
resented by a finite (or infinite) quantum system and the in-
teraction is described in terms of the operators K± which
are elements of a Lie algebra G generating the symmetry
group G [19],

K± =

N∑
k=1

hk
±(t)Xk ± ε0, [Xr, Xj ] =

∑
l

Cl
rjXl, (9)

where hk
±(t) are scalar control functions and Xk are basis

elements of the Lie algebra with the structural constants
Cl

rj . For the qubit S2, in its standard basis {|0〉, |1〉}, e.g.
Sz

2 = (|0〉〈0|−|1〉〈1|)/2. The energy levels of the qubit S2

are ε0/2 and −ε0/2. The Hamiltonian for the subsystem
B = {S3, S4} (consisting of two qubits S3 and S4) has
the same form as for the subsystem A, provided that the
qubit S3 is coupled to the heat bath R3 and the qubit S4 is
coupled to the heat bath R4.

The reduced dynamics of the qubits can be determined
exactly for arbitrary model parameters [20–23] provided
the initial state �(0) of the total system described by the
Hamiltonian (6) can be factorized; namely,

�(0) = ρ1 ⊗ ρA(0) ⊗ ρ2 ⊗ ρ3 ⊗ ρB(0) ⊗ ρ4. (10)

We next assume that the state ρ1 of the heat bath R1 is an
equilibrium Gibbs state of temperature T1 and the initial
state of the environment R2 is any state of the form ρ2 =
|Ω〉〈Ω|. The state ρ3 of the heat bath R3 is an equilibrium
Gibbs state of temperature T3 and the initial state of the
environment R4 is a similar state as that for R2. For a time
t > 0, the state ρ(t) of total system of four qubits assumes
the form (cf. Eq. (5.19) in [20])

ρ(t) = Λ(t)ρ(0)

= Λ1(t) ⊗ Λ2(t) ⊗ Λ3(t) ⊗ Λ4(t)ρ(0), (11)

where

Λn(t)ρ = C(1)
n (t)ρ + 2C(2)

n (t)[Sz
n, ρ]

+4C(3)
n (t)Sz

nρSz
n (12)
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for n = 1, 2, 3, 4 and with ρ an arbitrary operator. The
functions C

(i)
n (t); i = 1, 2, 3, read explicitly

C(1)
n (t) =

1

2
[1 + Fn(t) cosφn(t)],

C(2)
n (t) =

1

2
iFn(t) sin φn(t),

C(3)
n (t) =

1

2
[1 − Fn(t) cosφn(t)]. (13)

For the qubits S1 and S3, we then obtain the result [20]

φ1(t) = φ3(t) = ω0t, Fn(t) = exp[−fn(t)], (14)

where the damping function

fn(t) =

∫ ∞

0

dω
Jn(ω)

ω2
coth(h̄ωβn/2)[1 − cosωt] (15)

for n = 1, 3. The parameters βn = 1/kBTn and kB is
the Boltzmann constant. The spectral functions Jn(ω) are
assumed to take the form [23,24]

Jn(ω) = λn ω1+μn exp(−ω/ωc
n), μ > −1, (16)

where the cut-off frequency ωc
n determines the largest en-

ergy scale of the heat bath Rn. The parameter λn is the
coupling constant of the qubit Sn and Rn. The spec-
tral exponent μn characterizes low frequency properties
of the heat baths Rn. According to the classification pro-
posed in Ref. [24], the heat bath is called sub-Ohmic for
μ ∈ (−1, 0), Ohmic for μ = 0 and super-Ohmic for
μ ∈ (0,∞). This classification shall be reflected in the
dynamical properties of entanglement.

For the qubits S2 and S4, we find with ρ2 = |Ω2〉〈Ω2|
and ρ4 = |Ω4〉〈Ω4| the result for phase [25]

φn(t) = ε0t

+ arg
[
〈Ωn|T †

n(g
(n)
− (t))Tn(g

(n)
+ (t))|Ωn〉)

]
(17)

and the amplitude

Fn(t) = |〈Ωn|T †
n(g

(n)
− (t))Tn(g

(n)
+ (t))|Ωn〉| (18)

for n = 2, 4, where T (n)(·) is a representation of the group
G(n) acting in the space of the controlling system Rn and
functions g

(n)
± (t) ∈ G(n) depend on the specific form given

in eq. (9). A relevant example will be given below.

4 Entanglement swapping in environments pro-
ducing pure dephasing The swapped entanglement,
quantified by the negativity, for qubits with reduced dy-
namics (11)-(17) reads

N = N(ρswap)(τ) =
1

2
F1(τ)F2(τ)F3(τ)F4(τ). (19)

In the absence of coupling to the environments, when Fn =
1 for n = 1, 2, 3, 4, there occurs maximal entanglement
swapping with N = 1/2. The effect of the coupling to the
environments producing pure dephasing is two–fold. The
infinite baths cause dissipation of information. This effect

can either result in a full deterioration of the entanglement
swapping, or only partially, i.e. such that the swapping is
still effective (i.e. the qubits 1 and 3 become entangled) at
arbitrary time instants of measurement.

First let us consider the case when the subsystems A
and B are coupled to the infinite baths R1 and R3 only
(i.e. F2(τ) = F4(τ) = 1). For convenience, the baths have
exactly the same characteristics, i.e. λ1 = λ3 = λ, μ1 =
μ3 = μ, ωc

1 = ωc
3 = ωc. We assume first that the baths

operate at vanishing temperature,i.e., T1 = T3 = 0. In
order to make the work self-contained we quote here the
formulas derived in [20]. For the Ohmic bath (μ = 0), one
obtains

F1(τ) = F3(τ) = (1 + ω2
cτ2)−λ/2. (20)

For the sub-Ohmic and super-Ohmic baths one finds in-
stead

F1(τ) = F3(τ) = exp{−λΓ (μ)ωμ
c

×[1 − (1 + ω2
cτ2)−μ/2 cos(μ arctan(ωcτ))]}, (21)

where Γ (z) is the Euler gamma function. One can deduce
that for both Ohmic ( μ = 0) and sub-Ohmic (μ ∈ (−1, 0))
reservoirs, F1(∞) = F3(∞) = 0. In consequence, the
long-time negativity is zero, N = 0, and there occurs no
entanglement swapping in the asymptotic long-time limit.
For the super-Ohmic bath (μ > 0), however,

F1(∞) = F3(∞) = exp(−λΓ (μ)ωμ
c ) 	= 0. (22)

It follows that in this case the long-time negativity remains
positive, N > 0 and the information does not deteriorate
completely, i.e., one can obtain a non-vanishing swapped
entanglement also at τ → ∞, as depicted in Fig. 1.

When temperatures of the bosonic baths are nono-zero,
T1 > 0, T3 > 0, then the entanglement swapping can also
be performed effectively still at asymptotic long times; but
the environments need to be super-Ohmic with μ > 1 [25].

For the system considered so far, the negativity (and the
swapped entanglement) is a monotonic decreasing func-
tion of measurement time t. The results are depicted with
in Fig. 2. The saturation of the swapped entanglement at
asymptotic large time is, for superohmic baths, readily ob-
served. Any additional bath influences cause a decrease of
the swapped entanglement which, remarkably, remains still
finite provided the bath is superohmic. If one wants to ma-
nipulate the entanglement swapping in a desired way (e. g.
via modulating or maintaining the entanglement in a de-
sired interval), a control method of how to achieve this has
to be devised. Below, we propose one of the possible sce-
narios how to decrease and increase in time t the entangle-
ment swapping by controlling the dynamics by an external
finite quantum system; i.e. by a proper choice of the con-
trolling Hamiltonians H2 and H4. As an example, we con-
sider a control scheme with a single bosonic mode. This
situation may typically occur for circuit-quantum electro-
dynamics (circuit-QED); see in Refs. [13,26]. Put differ-
ently, let in Eq. (9) for both S2 and S4, the operators K±
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(solid line, red online) or two (dotted line or black online)
super-Ohmic bosonic baths (T = 0) with μ = 0.2, λ = 1

and ωc/ω0 = 10
3.

be of the form

K± = a†a ± γ±(a + a†) ± 1. (23)

In the following we limit ourselves to an isotropic coupling
γ± = γ. The corresponding functions F2(t) and F4(t) then
read with

F2(t) = F4(t) = |〈Ω|D(α(t))|Ω〉|, (24)

where

α(t) = γ[1 − exp(it)] (25)

and D(z) is the displacement operator [19,27]

D(z) = exp(za† − z∗a). (26)

This operator generates the set of standard coherent states.
The function F2(t) = F4(t) is the Weyl function studied
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Figure 3 Entanglement swapping at τ = ω0t in the system
interacting with the single bosonic bath (T = 0) with μ =

0.2 and none (solid line, red online), one (the case with N1

only) and two (the case with N1 and N2) finite controlling
systems with ε0 = ω0 prepared in a number eigenstate either
|N1〉 (one controlling system) or |N1, N2〉 (two controlling
finite systems), respectively. λ = 1 and ωc/ω0 = 10
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0.2 and two finite controlling systems with ε0 = ω0 prepared
in a number eigenstate |N1, N2〉. λ = 1 and ωc/ω0 = 10
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intensively in the context of interference phenomena [28]
and for mesoscopic devices controlled by non-classical
external fields [29]. The effect of the control when ap-
plied in a particularly simple case with |Ω〉 being a num-
ber (Fock)-eigenstate, is shown in Figs. 3 and 4 for one
and two controlling systems. The non-monotonic entangle-
ment of the qubits swapped at the time τ results from the
non-Markovian properties of the evolving qubits. The only
non-local operation performed on the system is the Bell
state mesurment. The time evolution of uncoupled qubits
is clearly local and hence, in agreement with the common
wisdom, cannot increase bipartite entanglement, which is
never larger than the initial one. As the time homogeneity of
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the non-Markovian system is broken the local operations
related to the time evolution transform the reduced density
matrices on the time interval t = 0 → t = τ . The result-
ing swapped entanglement can be effectively designed: one
can predict the qubit–qubit correlations by a proper choice
of the initial state of the controlling boson. Such a method
can be of great importance when the measurment time τ
cannot easly and precisely be adjused. There is an obvious
adventage of using several controlling bosons instead of
a single harmonic oscillator coupled to a single qubit: the
rich structure of control scenarios can be mantained with
the help of only lowest excitations with small N .

5 Conclusions In summary, we studied the prob-
lem of origination of qubit–qubit entanglement via entan-
glement swapping when the qubits are interacting with
a surrounding environment producing dephasing onto the
qubit dynamics. It has been shown that under certain condi-
tions this procedure still remains effective even for asymp-
totically long times t: in particular, the decoherence of en-
tanglement information is asymptotically not entirely de-
stroyed for superohmic environments at non-vanishing, fi-
nite temperatures. The effective control by a suitable initial
preparation of a controlling finite quantum system (e.g. via
a coupling to a single mode bosonic oscillator) can be per-
formed, leading to oscillatory-like behavior of the entan-
glement obtained by a swapping measurement.
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