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We consider noise-assisted spike propagation in myelinated axons within a multicompartment stochastic
Hodgkin-Huxley model. The noise originates from a finite number of ion channels in each node of Ranvier. For
the subthreshold internodal electric coupling, we show that �i� intrinsic noise removes the sharply defined
threshold for spike propagation from node to node and �ii� there exists an optimum number of ion channels
which allows for the most efficient signal propagation and it corresponds to the actual physiological values.
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I. INTRODUCTION

In many vertebrates, the propagation of nerve impulses is
mediated by myelinated axons. These nerve fibers are com-
posed of active zones, the so-called nodes of Ranvier, where
ion channels are accumulated, and passive fragments which
are electrically isolated �myelinated� from the surrounding
electrolyte solution. The myelin sheath presents a crucial
evolutionary innovation. In a process called saltatory con-
duction, the neural impulse propagates from node to node
more rapidly than it propagates in unmyelinated axons of
equal diameter �1,2�. Myelination not only helped nature to
increase the signal propagation speed, but also to drastically
reduce the metabolic cost of neural computation. Indeed,
with a single neural impulse �of the order of 1 ms�, each
sodium channel transfers up to 104 sodium ions into the cell,
which then should be pumped back to restore the appropriate
steady-state electrochemical potential. To transfer three so-
dium ions, the corresponding Na-K pump hydrolyzes one
ATP molecule �2�, which thus yields an estimate of about 3
�103 ATP molecules per ion channel per neural spike. A too
large number of channels imposes an extremely high meta-
bolic load �the brain of the reader is just now consuming
about 10% of the body’s metabolic budget, which, per one
kilogram of mass, is more than the muscles use when active�.
More elaborate estimates confirm that even a small cortical
cell needs, in a long run, at least 107 ATP molecules per one
neural spike �3,4�.

In myelinated neurons, yet another problem emerges:
there is a threshold present for the electrical coupling be-
tween the nodes of Ranvier. Deterministic cable equation
models predict that if the internodal distance is too large, the
coupling becomes too small and the signal propagation con-
sequently fails �2�. However, due to a finite number of chan-
nels �of the order of 104�, intrinsic noise is inevitably present
in the nodes of Ranvier �5�. The deterministic models can
only mimic the behavior of a very large number of ion chan-
nels possessing a negligible intrinsic noise intensity; in con-
trast, real neurons tend to minimize the number of ion chan-
nels because of energetic costs. On the other hand, too few
channels may trigger random, parasitic spikes or induce
spike suppression by strong fluctuations, making the signal
transmission too noisy and thus unreliable. The questions we
investigate in this paper within a simplified stochastic model

of signal transmission in a myelinated neuron are as follows:
can channel noise soften the propagation threshold and fa-
cilitate the signal propagation which would not occur in the
deterministic case? Does an optimum size of the channel
cluster exist, which in turn yields a most efficient, noise-
assisted propagation?

The statement of this objective shares features similar in
spirit to noise supported wave propagation in subexcitable
media �see Ref. �6� and references therein� and noise in ex-
citable spatiotemporal systems �see Ref. �7��. The influence
of intrinsic noise on membrane dynamics was studied in the
context of intrinsic stochastic resonance �see in Refs. �8,9��
and synchronization of ion channel clusters �10�. A new as-
pect emerging from the present study is a possible interpre-
tation of the neural spike transmission as a delayed synchro-
nization phenomenon occurring in the chain of active
elements �11–13�.

II. MODEL

A. Compartment modeling for myelinated axons

As an archetypical model for signal transmission along a
myelinated axon of a neuronal cell, we consider a compart-
mental stochastic Hodgkin-Huxley model �see Secs. II B and
II C�. In contrast to unmyelinated axons, where ion channels
are homogeneously distributed within the membrane, the
myelinated axon consists of alternating sections where the
ion channels are densely accumulated �nodes of Ranvier� and
regions with very low ion channel density, encased in mul-
tiple layers of a highly resistive lipid sheath called myelin.
The nodes of Ranvier play the role of active compartments in
our model, while the electrically neutral myelinated seg-
ments constitute passive compartments �see Fig. 1�. The typi-
cal internodal distance L is about 1–2 mm, while the length
� of the nodes of Ranvier is in the micrometer range �1�.

The generalization of the original Hodgkin-Huxley model
is related to the influence of the channel noise, which results
from the randomness of the ion channel gating. The mem-
brane potential at each particular node of Ranvier is assumed
to be constant across the whole node area and is character-
ized by Vi, i=0,1 ,2 ,… ,N−1, where N is the total number of
nodes �1,2�.

Supposing total electrical neutrality of the passive re-
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gions, the electrical properties of a myelinated axon are mod-
eled by a linear chain of diffusively coupled active elements.
The dynamics of the membrane potential is given by

C
d

dt
Vi = Ii,ionic�Vi,t� + Ii,ext�t� + Ii,inter,

for i = 0,1,2, . . . ,N − 1 , �1�

where C denotes the axonal membrane capacity per unit
area. Ii,ionic�Vi , t� is the ionic membrane current �per unit
area� within the ith node of Ranvier. Ii,ionic�Vi , t� depends on
time t and on the membrane potential Vi in the specific node
i only, and is described by a neuronal membrane model
which we subsequently treat within a coupled stochastic
Hodgkin-Huxley setup. Ii,ext�t� describes an external current
per unit area applied on the ith node. In our setup we apply
the stimulus—i.e., a constant current—on the first node only,
bringing it into a dynamical regime of periodic firing �14�. If
the coupling between nodes is sufficiently strong, the action
potentials may start propagating along the axon. The cou-
pling to the next-neighboring nodes of Ranvier is achieved
by internodal currents �per unit area� Ii,inter given as

Ii,inter = ���Vi+1 − Vi� for i = 0,

��Vi−1 − Vi� for i = N − 1,

��Vi−1 − 2Vi + Vi+1� elsewhere.
� �2�

The coupling parameter � depends, among other things, on
the length L of the internodal passive segment of the axon as
well as on the resistivity of the extracellular and intracellular
medium and serves as a control parameter in our studies �1�.
It depends also on the ratio of the node’s diameter d and its
length �. Typically, the node’s diameter is two orders of
magnitude smaller than its length �2�.

Note that Eq. �1� just presents the Kirchhoff law for an
electrical circuit made of membrane capacitors, variable non-
linear membrane conductances, and internodal conductances
�.

B. Hodgkin-Huxley modeling

According to the standard Hodgkin-Huxley model �15�
the ionic membrane current reads

Ii�Vi� = − GK�ni��Vi − EK� − GNa�mi,hi��Vi − ENa�

− GL�Vi − EL� , �3�

with the potassium and sodium conductances per unit area
given by

GK�ni� = gK
maxni

4, GNa�mi,hi� = gNa
maxmi

3hi. �4�

In Eq. �3�, Vi denotes the membrane potential at the ith node
of Ranvier. Furthermore, ENa, EK, and EL are the reversal
potentials for the potassium, sodium, and leakage currents,
correspondingly. The leakage conductance per unit area, GL,
is assumed to be constant. The parameters gK

max and gNa
max

denote the maximum potassium and sodium conductances
per unit area, when all ion channels within the corresponding
node are open. The values of these parameters are collected
in Table I �16�. Note that in the nodal membrane the conduc-
tances of open ion channels are supposed to be Ohmic-like;
i.e., the nonlinearity derives from their gating behavior only.
Moreover, formulating Eqs. �3� and �4�, we implicitly as-
sumed for simplicity that the different axonal nodes are ki-
netically identical: i.e., the number of sodium and potassium
ion channels is constant for each node. As a consequence, the
maximum potassium and sodium conductances are identical
constants for every node of Ranvier.

The gating variables ni, mi, and hi �cf. Eqs. �3� and �4��
describe the probabilities of opening the gates of the specific
ion channels in the ith node upon the action of activation and
inactivation particles. h is the probability that the one inac-
tivation particle has not caused the Na gate to close. m is the
probability that one of the three required activation particles
has contributed to the activation of the Na gate. Similarly, n
is the probability of the K gate activation by one of the four
required activation particles. Assuming gate independence,
the factors ni

4 and mi
3hi are the mean portions of the open ion

channels within a membrane patch. The dynamics of the gat-
ing variables are determined by voltage-dependent opening
and closing rates �x�V� and �x�V� �x=m ,h ,n� taken at T
=6.3 °C. They depend on the local membrane potential V
and read �with numbers given in units of �mV�� �15,17�

�m�V� = 0.1
V + 40

1 − exp�− �V + 40�/10�
, �5a�

�m�V� = 4 exp�− �V + 65�/18� , �5b�

�h�V� = 0.07 exp�− �V + 65�/20� , �5c�

�h�V� =
1

1 + exp�− �V + 35�/10�
, �5d�

�n�V� = 0.01
V + 55

1 − exp�− �V + 55�/10�
, �5e�

�n�V� = 0.125 exp�− �V + 65�/80� . �5f�

The dynamics of the mean fractions of open gates reduces in
the standard Hodgkin-Huxley model to relaxation dynamics:

FIG. 1. Sketch of a myelinated axon: The axonal cell membrane
in the nodes of Ranvier �depicted in light gray� contains a high ion
channel concentration. The remaining segments are wrapped in the
myelin sheath �dark gray�. Spike propagation along the axon occurs
in a saltatory manner.
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d

dt
xi = �x�Vi��1 − xi� − �x�Vi�xi, x = m,h,n . �6�

Such an approximation is valid for very large numbers of ion
channels and whenever fluctuations around their mean values
are negligible.

C. Stochastic generalization of the Hodgkin-Huxley model

Because the size of the nodal membrane is finite, there
necessarily occur fluctuations of the number of open ion
channels. This is due to the fact that the ion channel gating
between open and closed state is random. Accordingly, for
finite-size membrane patches like the considered nodes of
Ranvier, there are fluctuations of the membrane conductance
which give rise to spontaneous action potentials
�1,8,9,18–20� and references therein.

The number of open gates undergoes a birth-and-death-
like process. The corresponding master equation can readily
be written down. The use of a Kramers-Moyal expansion in

that equation results in a corresponding Fokker-Planck equa-
tion which provides a diffusion approximation to the discrete
dynamics �19,20�. The corresponding multiplicative noise
Langevin equations �21� then read

d

dt
xi = �x�Vi��1 − xi� − �x�Vi�xi + �i,x�t� , �7a�

with x=m ,h ,n. Here, �i,x�t� are independent Gaussian white-
noise sources of vanishing mean and vanishing cross corre-
lations. For an excitable node with the nodal membrane size
A the nonvanishing noise correlations take the following
form:

	�i,m�t��i,m�t��
 =
1

A�Na
��m�Vi��1 − mi� + �m�Vi�mi�	�t − t�� ,

�7b�

TABLE I. Model and simulation parameters.

Stochastic Hodgkin-Huxley model

Membrane capacitance per unit area C 
 1 �F /cm2

Reversal potential for Na current ENa 
 50 mV

Reversal potential for K current EK 
 −77 mV

Reversal potential for leakage current EL 
 −54.4 mV

Leakage conductance per unit area GL 
 0.25 mS /cm2

Maximum Na conductance per unit area gNa
max 
 120 mS /cm2

Maximum K conductance per unit area gK
max 
 36 mS /cm2

Node area A varying ��m2�
Na channel density �Na 
 60 �m−2

K channel density �K 
 18 �m−2

Number of Na channels NNa 
 �NaA
Number of K channels NK 
 �KA

Axonal chain model

Internodal conductance per unit area � 
 0.065 mS /cm2

Number of nodes N 
 10

Simulation parameters

External current per unit area, node 0 I0,ext 
 12 �A /cm2

External current per unit area, other nodes Ii=1,. . .,N−1,ext 
 0 �A /cm2

Simulation time T 
 3�105 ms

Simulation time step dt 
 0.002 ms

Initial values for each node �i=0, . . . ,N�

Voltage Vi 
 −59.9 mV

Inactivation probability for the Na gate hi 
 0.414

Activation probability for the Na gate mi 
 0.095

Activation probability for the K gate. ni 
 0.398
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	�i,h�t��i,h�t��
 =
1

A�Na
��h�Vi��1 − hi� + �h�Vi�hi�	�t − t�� ,

�7c�

	�i,n�t��i,n�t��
 =
1

A�K
��n�Vi��1 − ni� + �n�Vi�ni�	�t − t�� ,

�7d�

with the ion channel densities being �Na and �K �see Table I�.
The stochastic equation �7a� replaces Eq. �6� �22�. Remark-
ably, the nodal membrane size A, which is the same for all
nodes, solely influences the intrinsic noise strength. Note that
the correlations of the stochastic forces in these Langevin
equations contain the corresponding state-dependent vari-
ables and, being an approximation to the full master equation
dynamics, thus should be interpreted in the Itô sense �23�.

III. OPTIMIZATION OF THE SIGNAL PROPAGATION

We next study the model of a myelinated axon in which
one node of Ranvier is continuously excited to spontaneous
spiking by an external suprathreshold current, whereas other
nodes are initially in the resting state and the internodal con-
ductance � is too low for the spikes to propagate to the
neighboring nodes in the deterministic model �notice the ar-
row in Fig. 2�. The fluctuations of the potential caused by the
randomly opening and closing channels can be large enough
to help the spike to overcome the large internodal resistance
and to make the saltatory conduction between nodes pos-
sible.

A. Deterministic limit

We start out with the deterministic situation using a finite
number of Ranvier nodes; i.e., the channel noise level is set
to zero, which is formally achieved in the limit A→�. In
order to provide some insightful explanation of the depen-
dence of saltatory spike propagation on the coupling param-
eter, we numerically integrated the dynamical system �see
Eqs. �1�–�6�� with the parameters given in Table I. In order to
achieve equilibration along the whole chain we do not apply
the constant current on the first node I0,ext from the begin-
ning. Instead, we use the following protocol: �i� we initially
allow for equilibration of every individual node by integrat-
ing over 100 ms with �=0; �ii� in a second step, we switch
on the coupling; �iii� finally, after integrating over
150 ms—i.e., under stationary conditions—we apply a con-
stant current stimulus of I0,ext=12 �A /cm2 on the first node
only. Due to the suprathreshold stimulus �8� on the first node,
the dynamics of the membrane potential of the initial node
V0 exhibits a limit cycle, resulting in the periodic generation
of action potentials. The numerically obtained spike trains Vi
for i=0, . . . ,9 allow for studying the propagation of action
potentials along the linearly coupled chain. Using a threshold
value of Vth=20 mV enables the detection of an action po-
tential �also called spike or firing event� in the particular
spike train of the individual nodes. Since we are interested in
the successful transmission along the whole chain, the spik-
ing at the terminal node is analyzed and the number of spikes
at the terminal node is related to the number of initiated
spikes at the initial node. This defines the transmission reli-
ability.

For the chosen coupling strength �, the excitation propa-
gates along the chain of given N=10 nodes of Ranvier. This
particular choice of the number of nodes is somewhat arbi-

0

20

40

60

80

100

0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14

%
of

sp
ik

es

κ [mS/cm2]

2:1

3:2
4:3

1:1

node 9

(a)

t [ms]

no
de

600 650 700 750
0
1
2
3

(b)

4

t [ms]
600 650 700 750

0
1
2
3
4

(c)

no
de

t [ms]
600 650 700 750

0
1
2
3
4

(d) t [ms]
600 650 700 750

0
1
2
3
4

(e)

FIG. 2. Deterministic spike propagation in a myelinated axon containing N=10 Ranvier nodes �no channel noise�: �a� The ratio of spikes
generated in the node 0 during an interval of 1000 ms which propagate up to the node 9 �solid line�, as a function of the value of the
internodal coupling strength �i.e., the conductance� �. The arrow indicates the subthreshold value of �=0.065 mS /cm2 chosen for further
simulations of the influence of channel noise on spike propagation. The stepwise shape of the graph depicts the different transmission
patterns �see �b� 2:1, �c� 3:2, �d� 4:3, and �e� 1:1�. For example, for the ratio of 2:1, every second spike which is generated at n=0 propagates.
�Small irregularities in step levels occur as a result of a finite counting statistics of propagating spikes.�
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trary, although physiologically realistic. Note also that these
obtained results are robust and are typical for larger node
numbers as well �not shown�. Obviously, for too small cou-
pling parameters no excitation proceeds to the neighboring
node “1” and, at the end, will not reach the terminal node
“9.” In this case, we observe that spike propagation fails. In
the opposite limit—i.e., for large coupling constants �—each
action potential travels along the chain and arrives at the
terminal node “9.” Then the spike transmission efficiency of
100% is achieved. In this situation, the dynamics of the ter-
minal node is synchronized with a delay with the initial
node—i.e., V9�t�=V0�t−�, where the delay time  accounts
for the finite propagation speed. Most interestingly, however,
there occurs no sharp transition between those two regimes
of 0% and 100% signal transmission �see Fig. 2�. For �c1
=0.0665 mS /cm2 and �c2=0.1360 mS /cm2, there is an inter-
mediate regime �c1����c2 where discrete transmission
patterns k : l occur. Here, k is the number of spikes generated
at the initial node, while l corresponds to the number of
spikes transmitted to the final node. In principle, the coupling
parameter � could be tuned in such a way that several dif-
ferent rational transmission patterns k : l are attained. This
manifests as generalized, delayed synchronization.

Note that a similar effect shows up when one drives the
Hodgkin-Huxley system �i.e., a single node� with an ac-
sinusoidal signal, where the ratio of spiking events to driving
periods exhibits a rational number �24�.

B. Influence of channel noise

Next, we investigate how the nodal membrane size A,
determining the channel noise intensity, influences the propa-
gation of spikes along the axon. Towards this objective we
numerically integrated the linearly coupled chain model with
the nodes treated by the stochastic Hodgkin-Huxley model
�cf. Eqs. �1�–�5� and Eqs. �7a�–�7d��.

Following the same protocol as for the deterministic case,
we computed the probability for a generated spike in the
initial node to be transduced to the terminal node. In our
example the axon consists again of ten nodes. For the cou-
pling parameter—i.e., the internodal conductance—we chose
a subthreshold value of �=0.065 mS /cm2—i.e., below the
critical value �c1 for a deterministic spike propagation along
the axon �see Fig. 2�. It turns out that for coupling param-
eters slightly smaller than the critical value �c1 the influence
of the channel noise is most striking. Due to the channel
noise, we observe spike propagation even for the subthresh-
old coupling—i.e., for ���c1. The intrinsic noise weakens
the strict threshold, and even for subthreshold values of the
coupling parameter, there is a nonvanishing probability for
spike propagation. In Fig. 3 the spike train for three different
nodes is shown for �=0.065 mS /cm2 and A=104 �m2—i.e.,
for an intermediate intrinsic noise level. The channel noise
facilitates the propagation of action potentials along the ax-
onal chain.

Figure 4 depicts cases of spike propagation in the pres-
ence of noise of different intensities for the chosen sub-
threshold coupling parameter �. Apart from the noise-
facilitated spike propagation one can identify another

particular phenomenon: The failure of spike propagation due
to a large channel noise level. For rather strong intrinsic
noise �for small nodal membrane sizes A, yielding small
numbers of ion channels� the spike initiated at the first node
more likely propagates to the next nodes. However, it is also
likely that the spike collides with a particularly large fluctua-
tion and thus becomes deleted. Tracking the behavior of a
given node, one observes the skipping of some firing events
�25� �see Fig. 3�. The propagation distance is then quite
short, and the excitations rarely arrive at the terminal node
�see Fig. 4�a��. Note also that for a high level of channel
noise spontaneous spikes can occur at any node. These para-
sitic spikes are not triggered by a preceding spike in the
neighboring nodes. Therefore, they deteriorate the informa-
tion transfer along the axon and are not considered for the
spiking statistics at the terminal node.

Too weak noise �i.e., a large number of channels� does not
allow for effective spike transmission to neighboring nodes.
Only the very first excitation is transmitted over a larger
number of nodes, while the propagation of the successive
action potentials is rarely facilitated by noise �see Fig. 4�c��.
This specific enabling of propagation of the first spike only is
due to the initial setup of the problem �initial conditions�.

For an intermediate channel noise intensity, however, the
propagation distance is the longest, although spikes propa-
gate less frequently than in the presence of an intensive noise
�see Fig. 4�b��. Overall, one may expect that there is an op-
timum dose of internal noise for which the spike propagation
along an axon is most probable. To validate this assertion, we
determined the probability for an excitation stimulated in the
initial node to arrive at the terminal node “9” in our case.
The fraction of spikes arriving at a specific node depends on
both the distance which has to be covered and the noise
level. With increasing distance—i.e., the node number—this
fraction declines monotonically �cf. Fig. 5�a��. The decay
depends on the channel noise level—i.e., the nodal mem-
brane size A. There is an intermediate noise level for which
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the decline is slowest. As a result, there exists an optimum
dose of internal noise �in our example for the nodal mem-
brane size near A�3800 �m2� at which the signal transmis-
sion to the terminal node is most effective; i.e., the ratio of
transmitted spikes assumes a maximum �cf. Fig. 5�b��. We
emphasize that the occurrence of the optimal dose of intrin-
sic noise is robust under a change of the total number of
nodes �not shown�. Note that the observed maximum corre-
sponds to a nodal number of sodium ion channels of NNa
=2.28�105, which corroborates with the physiological
range of the number found for sodium ion channels in a node
of Ranvier �experimental studies report NNa�105� �26,27�.

IV. CONCLUSIONS

The optimization of the signal propagation along a myeli-
nated axon of a finite size occurs as the result of the compe-
tition between the constructive and destructive role of chan-
nel noise occurring in the nodes of Ranvier. On the one hand,
when the number of channels in the node is very small, the
strong fluctuations of the activation potential facilitate a
spike propagation among nodes, which otherwise does not
occur in the absence of channel noise. On the other hand, at
a high level of channel noise spikes cannot travel over a long
distance because it is likely that a spike soon collides with
another noise-induced spike, leading to their mutual annihi-
lation, or the noise can also suppress spike generation. If the
number of channels in nodes is large, the fluctuations are too
weak for a spike to overcome the internodal resistance and
subsequently to propagate. For a certain intermediate number
of channels in the node of Ranvier, however, the intrinsic
noise is sufficiently strong to induce the saltatory conduction
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while being still sufficiently weak not to deteriorate the spik-
ing behavior. An optimal nodal membrane size can be iden-
tified, for which the signal becomes most efficiently trans-
mitted over a certain axonal distance. Moreover, the
corresponding number of sodium ion channels corresponds
to actual physiological values. This feature is quite in spirit
of the stochastic resonance phenomenon �28,29� with an in-
trinsic noise source �8,9�. One may therefore speculate
whether nature adopted this optimization method to balance

the signal transmission efficiency and the metabolic cost.
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