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Abstract. The dynamics of Brownian motion has widespread applications extend-
ing from transport in designed micro-channels up to its prominent role for inducing
transport in molecular motors and Brownian motors. Here, Brownian transport is
studied in micro-sized, two dimensional periodic channels, exhibiting periodically
varying cross sections. The particles in addition are subjected to a constant external
force acting alongside the direction of the longitudinal channel axis. For a fixed chan-
nel geometry, the dynamics of the two dimensional problem is characterized by a
single dimensionless parameter which is proportional to the ratio of the applied force
and the temperature of the environment. In such structures entropic effects may play
a dominant role. Under certain conditions the two dimensional dynamics can be ap-
proximated by an effective one dimensional motion of the particle in the longitudinal
direction. The Langevin equation describing this reduced, one dimensional process
is of the type of the Fick-Jacobs equation. It contains an entropic potential deter-
mined by the varying extension of the eliminated transversal channel direction, and
a correction to the diffusion constant that introduces a space dependent diffusion.
We analyze the influence of broken channel symmetry and the validity of the Fick-
Jacobs equation. For the nonlinear mobility we find a temperature dependence which
is opposite to that known for particle transport in periodic energetic potentials. The
influence of entropic effects is discussed for both, the nonlinear mobility, and the ef-
fective diffusion constant. In case of broken reflection symmetry rectification occurs
and there is a favored direction for particle transport. The rectification effect could
be maximized due to the optimal chosen absolute value of the applied bias.

1 Introduction

The phenomenon of entropic transport is ubiquitous in biological cells, ion
channels, nano-porous materials, zeolites and microfluidic devices etched with
grooves and chambers. Instead of diffusing freely in the host liquid phase the
Brownian particles frequently undergo a constrained motion. The geometric
restrictions to the system’s dynamics results in entropic barriers and regulate
the transport of particles yielding important effects exhibiting peculiar prop-
erties. The results have prominent implications in processes such as catalysis,
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osmosis and particle separation [1–12] and, as well, for the noise-induced trans-
port in periodic potential landscapes that lack reflection symmetry (Brown-
ian ratchet systems) [13–15] or Brownian motor transport occurring in arrays
of periodically arranged asymmetric obstacles, termed “entropic” ratchet de-
vices [16–20]. Motion in these systems can be induced by imposing different
concentrations at the ends of the channel, or by the presence of external driv-
ing forces supplying the particles with the energy necessary to proceed. The
study of the kinetics of the entropic transport, the properties of transport
coefficients in far from equilibrium situations and the possibility for transport
control mechanisms are pertinent objectives in the dynamical characterization
of those systems.

Because the role of inertia for the motion of the particles through these
structures can typically be neglected the Brownian dynamics can safely be
analyzed by solving the Smoluchowski equation in the domain defined by
the available free space upon imposing the appropriate boundary conditions.
Whereas this method has been very successful when the boundaries of the
system possess a rectangular shape, the challenge to solve the boundary value
problem in the case of nontrivial, corrugated domains represents a difficult
task. A way to circumvent this difficulty consists in coarsening the description
by reducing the dimensionality of the system, keeping only the main direction
of transport, but taking into account the physically available space by means
of an entropic potential. The resulting kinetic equation for the probability
distribution, the so called Fick-Jacobs (FJ) equation, is similar in form to
the Smoluchowski equation, but now contains an entropic term. The entropic
nature of this term leads to a genuine dynamics which is distinctly different
from that observed when the potential is of energetic origin [21]. It has been
shown that the FJ equation can provide a very accurate description of entropic
transport in channels of varying cross-section [21–24]. However, the derivation
of the FJ equation entails a tacit approximation: The particle distribution
in the transversal direction is assumed to equilibrate much faster than in
the main (unconstrained) direction of transport. This equilibration justifies
the coarsening of the description leading in turn to a simplification of the
dynamics, but raises the question about its validity when an external force is
applied. To establish the validity criterion of a FJ description for such biased
diffusion in confined media is, due to the ubiquity of this situation, a subject
of primary importance.

Our objective with this work is to investigate in greater detail the FJ-
approximation for biased diffusion and to study rectification due to the asym-
metry of a geometrical confinement. We will analyze the biased movement of
Brownian particles in 2D periodic, but asymmetric channels of varying cross-
section. On the basis of our numerical and analytical results we recapitulate
the striking and sometimes counterintuitive features [21], which arises from
entropic transport and which are different from those observed in the more
familiar case with energetic, metastable landscapes [25].
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Fig. 1. Schematic diagram of a channel confining the motion of forced Brownian
particles. The half-width ω is a periodic function of x with periodicity L.

2 Diffusion in confined systems

Transport through pores or channels (like the one depicted in Fig. 1) may
be caused by different particle concentrations maintained at the ends of the
channel, or by the application of external forces acting on the particles. Here
we will exclusively consider the case of force driven transport. The external
driving force is denoted by F = Fex. It points into the direction of the
channel axis. In general, the dynamics of a suspended Brownian particles is
overdamped [26] and well described by the Langevin equation in dimensionless
variables [23],

dr

dt
= f + ξ(t) , (1)

where t is dimensionless time, r corresponds to the position vector of the
particle (given in units of the period length L), ξ to Gaussian white noise
with 〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t′)〉 = 2δi,jδ(t − t′) for i, j = x, y, z and with the
dimensionless force

f = fex and f =
LF

kBT
. (2)

The dimensionless parameter f characterizes the force as the ratio of the work
which it performs on the particle along a distance of the length of the period
L and the thermal energy kBT .

The boundary of the 2D periodic channel which is mirror symmetric about
its axis is given by the periodic functions y = ±ω(x), i.e. ω(x + 1) = ω(x) for
all x, where x and y are the Cartesian components of r. Except for a straight
channel with ω = const there are no periodic channel shapes for which an exact
analytical solution of Eq. (1) and the corresponding Fokker-Planck equation
with boundary conditions is known [27, 28]. Approximate solutions though can
be obtained on the basis of an one dimensional diffusion problem in an effective
potential. Narrow channel openings, which act as geometric hindrances in the
full model, show up as entropic barriers in this one dimensional approximation
[21–23, 29–32]. This approach is valid under conditions that will be discussed
below in some detail.
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3 Transport in periodic channels with broken symmetry

3.1 The Fick-Jacobs approximation

In the absence of an external force, i.e. for f = 0, it was shown [29–32] that
the dynamics of particles in confined structures (such as that of Fig. 1) can be
described approximatively for |ω′(x)| � 1 by the FJ equation, with a spatial
dependent diffusion coefficient:

∂P (x, t)
∂t

=
∂

∂x
D(x)

(
∂P (x, t)

∂x
− ω′(x)

ω(x)
P (x, t)

)
, (3)

obtained from the full 2D Smoluchowski equation upon the elimination of the
transversal y coordinate assuming fast equilibration in that direction. Here
P (x, t) =

∫ ω(x)

−ω(x)
dy P (x, y, t) denotes the marginal probability density along

the axis of the channel. We note that for three dimensional channels an ana-
logue approximate Fokker-Planck equation holds in which the function ω(x)
is to be replaced by πω2(x) (area of cross-section). The prime refers to the
derivative of the function with respect to its argument, i.e. ω′(x) = dω/dx. In
the original work by Jacobs [29] the 1D diffusion coefficient D(x) is constant
and equals the bare diffusion constant which is unity in the present dimen-
sionless variables. Later, Zwanzig [30] and Reguera and Rubí [31] proposed
different spatially dependent forms of the 1D diffusion coefficient which allows
for an extended regime of validity of the FJ-description.

Reguera and Rubí [31] put forward this form of the 1D diffusion coefficient:

D(x) =
1

(1 + ω′(x)2)γ
, (4)

where γ = 1/3 for 2D structures and γ = 1/2 for 3D systems. The right
hand side of Eq. (4) can be considered as a resummation of Zwanzig’s original
perturbational result [30].

In the presence of a constant force F along the direction of the channel
the FJ equation (3) can be recast into the form [21–23, 31]:

∂P

∂t
=

∂

∂x
D(x)

(
∂P

∂x
+

dA(x)
dx

P

)
(5)

with the dimensionless free energy A(x) := E−S = −f x−ln ω(x). In physical
dimensions the energy is Ẽ ≡ kBTE = −F x̃ (x̃ = xL) and the dimensional
entropic contribution is S̃ ≡ kBTS = kBT ln ω. For a periodic channel with
broken reflection symmetry this free energy assumes the form of a tilted peri-
odic, ratchet-like potential. In the absence of a force the free energy is purely
entropic and Eq. (5) reduces to the FJ equation (3). On the other hand, for a
straight channel the entropic contribution vanishes and the particle is solely
driven by the external force.
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3.2 Transport characteristics

Key quantities of particle transport through periodic channels are the aver-
age particle current, or equivalently the nonlinear mobility, and the effective
diffusion coefficient. For a particle moving in a one dimensional tilted ener-
getic periodic potential the heights ΔE of the barriers separating the potential
wells provide an additional energy scale apart from the work of the force FL
and the thermal energy kBT . Hence, at least two dimensionless parameters,
say ΔE/(kBT ) and FL/(kBT ) govern the transport properties of these sys-
tems. In contrast, as already noted in the context of the full 2D model the
transport through channels is governed by the single dimensionless parame-
ter f = FL/(kBT ) [21–23]. This, of course, remains to hold true in the one
dimensional approximation which models the transversal spatial variation in
terms of an entropic potential.

For any non negative force the average particle current in periodic struc-
tures can be obtained from mean-first-passage time analysis [21–23, 34, 35],
i.e. the average particle current 〈ẋ〉 is given as ratio of period length L and
the mean-first-passage time 〈T 〉 for a particle to overcome one period length,
i.e. in dimensionless units: 〈ẋ〉 = 1/〈T 〉.

The nonlinear mobility μ(f) is defined by

μ(f) =
〈ẋ〉
f

. (6)

Consequently, one can obtain the following Stratonovich formula for the non-
linear mobility [21–23]

μ(f) =
1 − exp(−f)

f

∫ 1

0

dz I(z, f)
, (7)

where

I(z, f) :=
h−1(z)
D(z)

exp(−f z)
∫ z

z−1

dz̃ h(z̃) exp(f z̃) , (8)

depends on the dimensionless position z, the force f and the shape of the tube
given in terms of the half width ω(x) and its first derivative.

The effective diffusion coefficient of the movement alongside the channel
axis is defined as the asymptotic behavior of the variance of the position

Deff = lim
t→∞

〈x2(t)〉 − 〈x(t)〉2
2t

. (9)

It is related to the first two moments of the first passage time 〈T 〉 and 〈T 2〉
by the expression [34–36]:

Deff =
〈T 2〉 − 〈T 〉2

2 〈T 〉3 . (10)
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After some algebra it can be transformed to read

Deff =

∫ 1

0

dz

∫ z

z−1

dz̃ N (z, z̃, f)

[∫ 1

0

dz I(z, f)
]3 , (11)

where
N (z, z̃, f) :=

D(z̃)
h(z)

h(z̃)
D(z)

[I(z̃, f)]2 exp(−f z + f z̃) . (12)

The predicted dependence of the average particle current and the effective
diffusion coefficient was compared with 2D Brownian dynamic simulations
performed by a numerical integration of the Langevin equation (1), within the
stochastic Euler-algorithm. The shape of the exemplarily taken 2D channel is
described (in dimensionless units) by

ω(x) := sin(2πx) + 0.25 sin(4πx) + 1.12 . (13)

For the considered channel configuration, the widest opening of the channel
is by a factor of 116 larger than the width at the narrowest openings, i.e. at
the bottlenecks. One may therefore expect strong entropic effects for these
channels. The particle current and effective diffusion coefficient were derived
from an ensemble-average of about 3 · 104 trajectories:

〈ẋ〉 = lim
t→∞

〈x(t)〉
t

, (14)

and Eq. (9), respectively.
Transport in one dimensional periodic energetic potentials behaves very

differently from one dimensional periodic systems with entropic barriers [21].
The fundamental difference lies in the temperature dependence of these mod-
els. Decreasing temperature in an energetic periodic potential decreases the
transition rates from one period to the neighboring by decreasing the Ar-
rhenius factor exp{−ΔV/(kBT )} where ΔV denotes the activation energy
necessary to proceed by a period [25]. Hence decreasing temperature leads to
a decrease in mobility. For a one dimensional periodic system with an entropic
potential, a decrease of temperature leads to an increase of the dimensionless
force parameter f and consequently to an increase of the mobility, cf. Fig. 2.

The reduction of dimensionality leading to the FJ equation relies on the
assumption of equilibration in the transversal direction which results in an al-
most uniform distribution of the transversal positions y at fixed values of the
longitudinal coordinate x. One can formulate criteria determining whether the
FJ equation approximatively describes the stationary state of the considered
problem [23]. For channels with varying width the narrow positions confine
the positions of the particles. From there they are dragged by the force and
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Fig. 2. The numerically simulated (symbols) and analytically calculated (cf. Eq. (7)
– lines) dependence of the absolute value of the nonlinear mobility μ(f) vs. the
dimensionless force f = FL/kBT is depicted for a 2D channel with the scaled half-
width given by ω(x) = sin(2πx) + 0.25 sin(4πx) + 1.12; for transport in positive
x-direction, i.e. positive f : circles and solid line, for negative f -values: diamonds
and dashed line. For the linear response regime, i.e. small |f |, the nonlinear mobility
for forward and backward transport converge to each other.

– at the same time – they perform a diffusive motion until the channel nar-
rows again. The required uniform distribution in the transversal direction can
only be achieved if the diffusional motion is fast enough in comparison to
the deterministic drift under the influence of f . Therefore the time scale of
equilibration in transversal direction must be short compared to the time it
takes to drag a particle from the narrow position to the position with largest
channel width. The latter requirement leads to an estimate of the minimal
forcing above which the FJ description is expected to fail in providing an ac-
curate description of the transport properties in the long time limit [22, 23].
Detailed analysis demonstrates that, for the considered asymmetric channel,
cf. Fig. 1, the FJ description holds for larger force value when forcing towards
the negative x-direction than for forcing in the positive x-direction, cf. Fig. 2.
The dependence of the nonlinear mobility on the direction of the forcing which
arises due to the asymmetry of the shape of the channel walls is addressed in
Sect. 3.3.

Another interesting effect can be observed for the effective diffusion if
looked as a function of the force f . Already the expression for the effective
diffusion (11) which follows rigorously from the FJ equation displays a maxi-
mum as a function of f which may even exceed the value 1 of the bare diffusion,
cf. Fig. 3. For f → ∞ the effective diffusion approaches the bare value 1. If
one decreases the force to finite but still large values then the stationary dis-
tribution acquires a finite width in the transversal direction with a “crowded”
region in front of the narrowest place of the channel Refs. [22, 23]. The trans-
port becomes more noisy and consequently the effective diffusion exceeds the
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Fig. 3. The numerically simulated (symbols) and analytically calculated (cf. Eq. (11)
– lines) dependence of the effective diffusion coefficient Deff is depicted vs. the di-
mensionless force f = FL/kBT for two channels in 2D. For both channels the scaled
half-width is given by ω(x) = sin(2πx) + 0.25 sin(4πx) + 1.12; transport in positive
x direction (f > 0): circles and solid line; transport in negative x direction (f < 0):
diamonds and dashed line.

bare value 1. On the other hand if one starts at f = 0 the entropic barriers
diminish the diffusion such that the effective diffusion is less than bare dif-
fusion. Consequently, somewhere in between there must be a value of f with
maximal effective diffusion [21–23]. For the considered 2D channel defined by
Eq. (13) the value of the force at the maximal effective diffusion is outside the
regime of validity of the FJ equation for both forcing directions. The numer-
ical simulations give a much more pronounced peak of the effective diffusion.
These observations lead us to the conclusion that entropic effects increase the
randomness of transport through a channel and in this way decrease the mo-
bility and increase the effective diffusion. A similar enhancement of effective
diffusion was found in titled periodic energetic potentials [33–36].

3.3 Rectification in asymmetric channels

Due to different focussing towards the narrowest width of the channel, i.e. the
bottlenecks, which is a consequence of the broken reflection symmetry of the
channel, the nonlinear mobility depends on the direction of the constant bias
and not only on its absolute value, cf. Fig. 2. Moreover, within the FJ de-
scription an asymmetric shape of the channel walls leads to a ratchet-like free
energy landscape facilitating the transport in one direction. The rectification
thereby not only depends on the channel geometry but also on f . To quantify
the rectification effect, we define the quantity

α =
|μ(f) − μ(−f)|
μ(f) + μ(−f)

, (15)

as a rectification-measure.
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Fig. 4. The numerical simulated dependence of the rectification measure α, cf.
Eq. (15), giving the relative discrepancy of the nonlinear mobilities in positive and
negative x-direction on the force value f is depicted by the symbols. There is an
optimal forcing value for which the rectification for the given 2D channel, cf. Eq. (13),
is maximal. Within the FJ description (solid line) the same qualitative behavior
could be observed.

In Fig. 4 the dependence of the rectification measure α on the force f is
depicted. Interestingly, there is an optimal value for f where the rectification
is maximum. Due to the favoring of transport in one direction for finite f -
values there is rectification, whereas for f → 0 (linear response) and f → ∞
(corresponding to a flat channel geometry [22, 23]) the nonlinear mobilities
for forward and backward propagation equal each other, i.e. μ(f) = μ(−f).
Consistently, within the FJ approximation the qualitative behavior could be
observed.

4 Conclusions

In summary, we demonstrated that transport phenomena in periodic chan-
nels with varying width exhibit some features that are radically different from
conventional transport occurring in energetic periodic potential landscapes.
The most striking difference between these two physical situations lies in the
fact that for a fixed channel geometry the dynamics is characterized by a sin-
gle parameter f = FL/(kBT ) which combines the external force F causing a
drift, the period length L of the channel, and the thermal energy kBT , which
is a measure of the strength of the acting fluctuating forces. Transport in pe-
riodic energetic potentials depends, at least, on one further parameter which
is the activation energy of the highest barrier separating neighboring periods.
This leads to an opposite temperature dependence of the mobility. While the
mobility of a particle in an energetic potential increases with increasing tem-
perature the mobility of a particle in a channel of periodically varying width
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decreases. The incorporation of the spatial variation of the channel width as
an entropic potential in the FJ equation allows a qualitative understanding of
the dependence of the transport properties on the channel geometry. In chan-
nels without a mirror symmetry about a vertical axis rectification favoring
transport in one channel direction occurs. An optimal forcing regime could be
found for which the rectification effect is maximal.

The effective diffusion exhibits a non monotonic dependence versus the
dimensionless force f . It starts out at small f with a value that is less than
the bare diffusion constant, reaches a maximum with increasing f and finally
approaches the value of the bare diffusion from above.

Under certain conditions, the two dimensional Fokker-Planck equation
governing the time dependence of the probability density of a particle in the
channel can be approximated by one dimensional Fokker-Planck equation:
the approximated equation is termed the Fick-Jacobs equation; it contains
an entropic potential and a position dependent diffusion coefficient. In prin-
ciple the FJ equation describes both the transient behavior of a particle and
also the stationary behavior of the particle dynamics which is approached
in the limit of large times. In this paper we demonstrated the suitability of
the FJ approximation on describing the biased Brownian motion in periodic
channels with broken symmetry where rectification takes place. Although we
restricted our discussion to two dimensional channels, a generalization of the
presented methods to three dimensional pores with varying cross section is
straight forward.
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