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Abstract. We consider the self-organized escape of a linear chain of coupled units
from a metastable state over a barrier in a microcanonical situation. Initially the
units of the chain are situated near the bottom of the potential well forming a flat
state. In the underlying conservative and deterministic dynamics such a uniform and
linear lattice state with comparatively little energy content seems to be restrained
to oscillations around the potential bottom preventing escape from the well. It is
demonstrated that even small deviations from the flat state entail internal energy re-
distribution leading to such strong localization that the lattice chain spontaneously
adopts a localized pattern resembling a hairpin-like structure. The latter corresponds
to a critical equilibrium configuration, that is a transition state, and, being dynam-
ically unstable, constitutes the starting point for the escape process. The collective
barrier crossing of the units takes place as kink-antikink motions along the chain. It
turns out that this nonlinear barrier crossing in a microcanonical situation is more
efficient compared with a thermally activated chain for small ratios between the
total energy of the chain and the barrier energy.

1 Introduction

The intensively investigated Kramers problem concerns the escape of a Brow-
nian particle from a metastable state over a barrier (for a review see [1]).
There it is implied that the system is in contact with an external heat bath
serving as a permanent energy source, causing dissipation and local energy
fluctuations which can trigger the escape process. However, the occurrence
of the necessary optimal fluctuations enabling the particle to stochastically
overcome an energetic barrier can be a rare event. This is particularly the
case when the ratio between the thermal energy supplied to the particle by
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the heat bath and the barrier energy is low and the rate of thermal barrier
crossing is exponentially suppressed. The extension of the escape problem to
multi-dimensional systems was given in [2]. Recently, in the biophysical con-
text there has been growing interest in thermally activated barrier crossing
of a polymer chain occurring e.g. during the transport of long and flexible
polymers across membranes and DNA electrophoresis [3–6].

Different to the numerous studies of the thermally induced escape, based
on the coupling of the system to an external heat bath, the microcanonical
situation, when only the internal energy of a system has to suffice to perform
structural transitions, has been studied less. The question is whether under
deterministic and conservative conditions a coupled oscillator chain can still
overcome a potential barrier when all its units reside initially near the bot-
tom of a metastable potential well? In such a situation the energy is almost
equally shared among the units and the system is also far away from the
critical equilibrium configuration related with a saddle point in configuration
space, referred to as the transition state [7]. Typically, the critical equilibrium
configuration is represented by a localized state of the chain.

Concerning the attainment of localized structures it is by now well estab-
lished that nonlinear systems exhibit localization features giving rise to the
formation of coherent structures that emerge even from an initial almost ho-
mogeneous state [8]. The concentration of an originally distributed physical
quantity to a few degrees of freedom in confined regions of a spatially ex-
tended and homogeneous systems proceeds often in a self-organized manner.
In recent years the concept of intrinsic localized modes or discrete breathers
as time-periodic and spatially localized solutions of nonlinear lattice systems
has turned out to present the prototype of excitations describing localization
phenomena in numerous physical situations [9–14]. For the creation of local-
ized structures modulational instability leading to a self-induced modulation
of an initial linear wave with a subsequent generation of localized pulses has
proven to be an effective mechanism. In this way energy localization in a ho-
mogeneous system is achievable. For example breathers have been successfully
applied to describe localized excitations which reproduce typical features of
the thermally induced opening dynamics of DNA duplex molecules such as
the magnitude of the amplitude and the time-scale of the oscillating bubble
preceding full strand separation (denaturation) [15–21].

In the present study we address the escape problem of a one-dimensional
oscillator chain over the barrier of a metastable potential within a conservative
and deterministic lattice model [22, 23]. The units of the lattice system are ini-
tially near a metastable equilibrium which hinders the system to immediately
perform a task that is associated with overall large-amplitude excitations. In
more detail, we consider the energy exchange dynamics in a nonlinear oscilla-
tor chain. Each oscillator evolves in a local anharmonic potential possessing
a barrier that divides regions of bounded motion in the potential well from
unbounded ones beyond the barrier. The oscillators are linearly coupled. Con-
cerning the energy redistribution we focus interest on the initial situation of
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a low-energy mode of the chain. The question which arises now is whether
with the low amount of energy supplied to the system the focusing of energy
proceeds that effectively that at least one, if not a few units, can gain enough
energy to get over the potential barrier? If so, is it possible that the neighbors
coupled to the escaping unit(s) also get drawn over the barrier? If more and
more units get involved this would initiate a coordinated escape of the entire
chain.

2 The oscillator chain model

The linear chain is modeled as a one-dimensional lattice system of harmoni-
cally coupled nonlinear oscillators with the Hamiltonian

H =
N∑

n=1

{
p2

n

2
+ U(qn)

}
+

κ

2

N∑

n=1

[ qn+1 − qn ]2 . (1)

The coordinates qn quantify the amplitude of an oscillator at site n. pn denotes
the momentum canonically conjugate to the coordinate qn. Each oscillator
evolves in an anharmonic potential given by

U(q) =
ω2

0

2
q2 − a

3
q3 , (2)

where a > 0. The metastable equilibrium of the potential is situated at q =
0 and the maximum is located at q = ω2

0/a. There is a potential barrier
which particles have to overcome in order to escape from the potential well of
depth ΔE = ω6

0/(6a2). The oscillators, also referred to as units, are coupled
harmonically with nearest-neighbor interaction strength κ. The equations of
motion derived from the Hamiltonian given in Eq. (1) read

d2qn

dt2
+ ω2

0qn − aq2
n − κ [ qn+1 + qn−1 − 2qn ] = 0 . (3)

We impose periodic boundary conditions according to qN+1 = q1. Note
that nonlinearity is solely contained in the local potential term.

3 Spontaneous energy localization

The ability of nonlinear and discrete systems to exhibit spontaneous local-
ization has been demonstrated recently [24–30]. Such formation of local-
ized excitations can be caused by modulational instability leading to the
formation of intrinsically localized modes (breathers). This mechanism ini-
tiates an instability of an initial linear wave when small perturbations of
non-vanishing wavenumbers are imposed. The instability, giving rise to an
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exponential growth of the perturbation, destroys the initial linear wave at a
critical wavenumber so that a localized hump gets formed.

Initially all the oscillators are placed close to the bottom of the poten-
tial well. The chain state is expressed as a plane wave solution (phonons)
qn(t) = (1/2)q0 exp[i(k n − ωt)] + c.c. obeying the dispersion relation ω2 =
ω2

0 + 4κ sin2(k/2) with wave number k ∈ [0, π].
Small modulational perturbations on the plane wave solution are imposed

taking random initial amplitudes and/or momenta uniformly distributed in
small intervals |qn(0) − q0| ≤ Δq and |pn(0) − p0| ≤ Δp, respectively. Thus
the chain is initialized close to an almost homogeneous state and yet such
desynchronized (Δq �= 0) to have small but nonvanishing initial interaction
terms initiating energy exchange between the coupled units.

We recall that an uniform lattice state with amplitude q0 and wave num-
ber k remains stable as long as the nonlinear character related with the aq3

term of the potential U(q) can be neglected. The chain evolves harmonically
and localization of energy does not take place. Otherwise, the nonlinear part
of the potential makes a modulational instability of waves possible. That is
perturbations with a wave number Q may grow exponentially resulting in
accumulation of energy at the expense of energy from the other units.

The exponential growth for the flat state, i.e. k = 0, takes place with
rate [22, 23, 28]

Γ =

√

sin2

(
Q

2

)
κ

ω2
0

(
5a2

3ω2
0

q2
0 − 4κ sin2

(
Q

2

))
, (4)

if the argument of the square root is positive. Thus it must hold that

5a2

3ω2
0

q2
0 − 4κ sin2

(
Q

2

)
> 0 , (5)

which means that for fixed q0 the anharmonicity a needs to be large enough
or with given a the q0 has to obtain overcritical values.

The set of coupled equations (3) has been numerically integrated with
a fourth-order Runge-Kutta scheme. The accuracy of the calculation was
checked by monitoring the conversation of the total energy with precision
of at least 10−4. The chain consists of N = 100 coupled oscillators.

Starting from an initial lattice state of nearly equipartition the attainment
of a nontrivial structure is observed. More precisely, a pattern evolves in the
course of time (of the order of t ∼ 2× 102) for which at some lattice sites the
amplitudes grow considerably whereas they get lowered in the surrounding
regions. This localization phenomenon is reflected in the appearance of an
array of irregularly spaced breathers on the lattice as seen in Fig. 1 where the
spatio-temporal evolution of the energy density

En =
p2

n

2
+ U(qn) +

κ

4

[
( qn+1 − qn )2 + ( qn−1 − qn )2

]
. (6)
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Fig. 1. Spatio-temporal evolution of the energy distribution En(t). Initially the
coordinates are uniformly distributed in the interval |qn(0) − q0| ≤ Δq with mean
q0 = 0.45 and width Δq = 0.01 and pn(0) = Δp = 0. This leads to a total energy
Etotal = 17.2 ≡ 12.9 × ΔE. The parameter values are given by a = 1, ω2

0 = 2,
N = 100 and κ = 0.3.

is shown. The total energy is Etotal = 17.2 which is equivalent to 12.9×ΔE. In
the beginning the total energy is virtually evenly shared among all units. The
corresponding energy density, i.e. the average amount of energy contained in a
single oscillator, lies significantly below the barrier energy. To be precise, the
ratio between the energy density and the barrier energy is En(0)/ΔE = 0.129.
In other words, in order that a unit passes over the energy barrier from the
region of bounded into unbounded motion directed flow of energy into this
unit is demanded. Actually the energy amount of at least 7 other units has to
be transferred into one unit so that this units energy levels that of the barrier.

There exist moving breathers that have the tendency to collide inelastically
with other breathers (cf. Fig. 1 at site n = 30). In fact, various breathers
merge to form larger amplitude breathers proceeding preferably such that
the larger amplitude breathers grow on the expense of the smaller ones. As a
result energy gets even stronger concentrated into smaller regions of the chain.
Such localization scenario has been shown to be characteristic for a number
of nonlinear lattice systems [25, 29–33].

For further illustration we depict in Fig. 2 snapshots of the energy density
En(t) at different instants of time. Starting point is the almost homogeneous
state and the first snap shot is taken at t = 5 when the pattern is still flat.
After a certain time the local energy accumulation is such enhanced that at
least one of the involved units possess enough energy to overcome the barrier.
As illustrated in Fig. 2 for the snap shot taken at t = 550 this happens for
the unit at n = 30.

The question then is: does an escaped unit continue its flight beyond the
barrier or can it even be pulled back into the bound chain formation (qn <
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Fig. 2. Snap shots of the energy density at instants of time as indicated in the plot.
Initial conditions: q0 = 0.45, Δq = 0.01, p0 = Δp = 0. Parameter values: ω2

0 = 2,
a = 1, N = 100 and κ = 0.3.

qmax) by the restoring binding forces exercised by its neighbors? On the other
hand, the unit that has already escaped from the potential well might drag
neighboring ones closer to or in the extreme even over the barrier. Thus,
concerted escape of at least parts, if not the whole chain, from the potential
valley seems possible.

4 Escape dynamics

Whether a unit of growing amplitude can really escape from the potential
well or is held back by the restoring forces of their neighbors depends on the
corresponding amplitude ratio as well as on the coupling strength. The critical
chain configuration, that is the transition state, is determined by q̈n(t) = 0
resulting in the stationary system

− ∂U

∂qn
+ κ[qn+1 + qn−1 − 2qn] = 0 . (7)

Interpreting n as the ‘discrete’ time, with 1 ≤ n ≤ N , the Eq. (7) describes
the motion of a point particle in the inverted potential −U(q). This difference
system can be cast in form of a two-dimensional map by defining xn = qn and
yn = qn−1 [34] which gives:

xn+1 = (w2
oxn − ax2

n)/κ + 2xn − yn

yn+1 = xn . (8)
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The fixed points of this map are found as x0 = y0 = 0 and x1 = y1 =
w2

0
a . A stability analysis reveals that x0 = y0 = 0 represents an unstable

hyperbolic equilibrium while at x1 = y1 = w2
0

a a stable center is located. The
map is nonintegrable. The stable and unstable manifold of the hyperbolic
point intersect each other yielding homoclinic crossings.

The corresponding homoclinic orbit of the map is on the lattice chain
equivalent to a localized hump solution q̃n resembling the form of a hairpin. In
Fig. 3 the profile of critical equilibrium configurations q̃n for several coupling
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Fig. 3. Amplitude profile of the critical chain configuration for different coupling
strengths: k = 0.1 (dashed-dotted line), k = 0.5 (dashed line), and k = 1 (solid line).
For better illustration only the part of the lattice chain around the central site nc

with seizable elongations of the bonds is shown.

strengths are displayed. The stronger the coupling is the larger the maximal
amplitude of the hump and the wider the width of the latter. Equation (7)
can be derived from an energy functional F =

∑
n

(
U(qn) + κ

2 [qn − qn−1]2
)

as
∂F/∂qn = 0. Apparently, with increasing coupling more activation energy is
needed to get the chain into its critical equilibrium configuration. One obtains
F = 1.33, F = 2.77 and F = 4.54 for κ = 0.1, κ = 0.5 and κ = 1, respectively.
Most importantly regarding escape, for the elongation of the bond at the
central site, i.e. the maximal amplitude q̃max, it holds that ∂U(q̃max)/∂q < 0.

In the following we prove the dynamical instability of the critical localized
mode. To this end we set qn(t) = q̃n + wn(t) with |wn| � 1 and derive the
linearized equations of motion as
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ẅn(t) = −∂2U(qn)
∂q2

n

|qn=q̃n
wn(t)

+ κ[wn+1(t) + wn−1(t) − 2wn(t)] . (9)

With the ansatz wn(t) = φn exp(
√

λt) for the solution of (9) one arrives at an
eigenvalue problem

λφn = −Vnφn + κ[φn+1 + φn−1 − 2φn] , (10)

with

Vn =
∂2U(qn)

∂q2
n

|qn=q̃n
= ω2

0 − 2aq̃n . (11)

The second-order difference equation (10) is of the discrete stationary
Schrödinger type, with a non-periodic potential, −Vn, breaking the trans-
lational invariance so that localized solutions exist (so called stop-gap states).
The evolution of the two-component vector (φn+1, φn)T is determined by the
following Poincaré map:

M :
(

φn+1

φn

)
=

[
En −1
1 0

] (
φn

φn−1

)
, (12)

with on-site energy En = (λ + Vn)/κ + 2 . The node-less even-parity ground
state of Eq. (10), with its energy under the lower edge of the energy band of
the passing band states, corresponds to an orbit of the linear map M being
homoclinic to the hyperbolic equilibrium point at the origin (0, 0) of the map
plane. For the presence of a hyperbolic equilibrium the following inequality
has to be satisfied:

Trace(M) = En =
λ + Vn

κ
+ 2 > 2 , (13)

implying that λ must fulfill the following constraint:

λ > max
n

(−Vn) = 2amax
n

q̃n − ω2
0 > 0. (14)

With the maximal amplitude of the c.l.m. lying beyond the barrier, viz.
maxn q̃n > ω2

0/a one finds
λ > ω2

0 > 0 . (15)

Therefore, the ground state belongs to a positive eigenvalue from which we
deduce that perturbations of the corresponding solution in the time domain
grow exponentially.

The critical equilibrium solution tell us that for overcritical elongations
of the units from their rest positions, qn > q̃n, the whole chain performs
directed motion over the barrier. Conversely, if the elongations lie below the
ones corresponding to q̃n then crossing the barrier is excluded.

Since for those states that have passed through the c.l.m. the kinetic energy
of the outward motion increases a return backwards over the barrier into the
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original well is prevented. Figure 4 illustrates the kink-antikink motion in the
escape time of the units T

(n)
esc (defined as the moment at which a unit passes

through a point q = 20 far beyond the barrier) versus the position on the
lattice. Consecutively all oscillators manages to climb over the barrier one
after another in a relatively short time interval.
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Fig. 4. The escape time of the chain units versus position. Initial conditions:
q0 = 0.45, Δq = 0.01, p0 = Δp = 0. Parameter values: a = 1, ω2

0 = 2, N = 100 and
κ = 0.3

Finally we compare the microcanonical escape process with a correspond-
ing thermally activated process in the Kramers problem [1]. The Langevin
equations read

d2qn

dt2
+ γ

dqn

dt
+

dU

dqn
− κ [ qn+1 + qn−1 − 2qn ] + ξn(t) = 0 . (16)

Here γ is the friction parameter and ξn(t) is a Gaussian distributed thermal
random force with < ξn(t) >= 0 and < ξn(t)ξn′(t′) >= 2γkBTδn,n′δ(t − t′).

Our results are summarized in Fig. 5 showing the mean escape time of
the chain. The latter is determined by the mean value of the escape times of
its units (see above). We took averages over 500 realizations of random ini-
tial conditions in the microcanonical and of noise in the Langevin equations,
respectively. The Langevin equations were numerically integrated using a two-
order Heun stochastic solver scheme. Results are presented as a function of
E0/ΔE. For the deterministic and conservative system (3) E0 is given by the
initial energy per unit while it corresponds to thermal energy kBT in case of
the Langevin system (16). In both cases there is a rather strong decay of Tesc
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Fig. 5. Mean escape time as a function of the ratio E0/ΔE (for details see text)
for the microcanonical (solid line) and Langevin (dashed line and dashed-dotted line)
dynamics respectively. Parameter values: N = 100, ω2

0 = 2, a = 1, κ = 0.3 and γ as
given in the legend.

with growing ratio E0/ΔE in the low energy region. This effect weakens grad-
ually for further increasing E0. Remarkably, for low E0 the escape proceeds
by far faster for the microcanonical system than for the one coupled to a heat
bath. For small kBT the escape time in case of the Langevin system exceeds
our simulation time taken as t = 105 for both depicted values of damping γ.

Concerning the difference between the deterministic and stochastic nature
of the formation and stability of the c.l.m. we remark that under microcanon-
ical conditions breather formation proceeds as an inherent and self-organized
process. A breather of high enough energy can be created either directly due
to a rapidly developing modulational instability or through the subsequent
coalescence of smaller-amplitude breathers. In particular, breathers, as coher-
ent structures sustained by the nonlinear chain, are fairly robust, i.e. they are
stable with respect to interactions with linear waves. Notably, the determin-
istic processes take place on a time scale (see above) that is short compared
with the time it can take till in the stochastic bath dynamics optimal fluctua-
tions appear that trigger the formation of the c.l.m.. Even if in the stochastic
process such a rare event has taken place the formed c.l.m. may readily be
destroyed afterwards due to interactions with the heat bath.

5 Conclusions

In conclusion, for the escape of a chain of coupled oscillators from a metastable
region over a barrier it is more effective to supply the energy at once and let the
system afterwards evolve under microcanonical conditions rather than keeping
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the system permanently in contact with a heat bath from which energy can
be absorbed. In other form, the underlying deterministic chaotic dynamics,
which is generated intrinsically through the interaction of the oscillators pro-
pels pronounced energy exchange between the units so that the c.l.m. can
be formed on the occurrence of which the escape process is conditioned. At
least for small initial energies compared to the barrier values we have found
faster transition times. More precisely, while at weak thermal noise the rate of
thermal escape is exponentially suppressed, a deterministic nonlinear breather
dynamics yields a robust critical nucleus configuration, which in turn causes
an enhancement of the noise-free escape rate. Thus, the freezing out of noise
may prove advantageous for transport in metastable landscapes, whenever the
deterministic escape dynamics can be launched in a single shot via an initial
energy supply.

We performed also studies with systems which are more complex than
the one-dimensional chain model of harmonically interacting units considered
here. It turned out that (i) for chain systems with more than one one degree-of-
freedom per unit (e.g. taking into account also motions of the units along the
direction transversal to the transition direction) and (ii) for interactions going
beyond the linear (harmonic) one (e.g. Morse-type interaction potentials) as
well as (iii) other on-site potentials (including biased two-well potentials, po-
tentials being periodic in the direction transversal to the transition direction)
the escape time in the microcanonical situation can be significantly shorter
than for the corresponding system coupled to a heat bath.

Our study demonstrates the enormous capabilities of nonlinear systems
to self-promote their functional processes. Particularly, the ability to manage
efficiently (coherent escape) despite being initialized in no ideal condition (far
too low energy density compared to the barrier height) distinguishes such
systems.
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