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We present a novel scheme for the appearance of stochastic resonance when the dynamics of a

Brownian particle takes place in a confined medium. The presence of uneven boundaries, giving rise to an

entropic contribution to the potential, may upon application of a periodic driving force result in an

increase of the spectral amplification at an optimum value of the ambient noise level. The entropic

stochastic resonance, characteristic of small-scale systems, may constitute a useful mechanism for the

manipulation and control of single molecules and nanodevices.
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Stochastic resonance (SR) describes the counterintuitive
phenomenon where an appropriate dose of noise is not
harmful for the detection or transduction of an incoming,
generally weak signal, but rather of constructive use in the
sense that a weak signal becomes amplified upon harvest-
ing the ambient noise in metastable, nonlinear systems [1].
Since its first discovery in the early eighties SR has been
observed in a great variety of systems pertaining to differ-
ent disciplines such as physics, chemistry, engineering,
biology and biomedical sciences [1–10]. The list of models
and applications is still growing. In particular, SR has
found widespread interests and applications within bio-
logical physics.

The research on SR has primarily been focused on
systems with purely energetic potentials. However, in situ-
ations frequently found in soft condensed matter and bio-
logical systems, particles move in constrained regions such
as small cavities, pores or channels whose presence and
shape play an important role for the SR dynamics [10],
sometimes even more important than the well-studied case
of energetic barriers in such systems [11–14]. In this Letter,
we demonstrate that irregularities in the form of confining,
curved boundaries, being modeled via an entropic poten-
tial, can cause noise-assisted, resonantlike behaviors in the
system under consideration. Confinement, an inherent
property of small-scale systems, can thus constitute an
important source of noise-induced resonant effects with
interesting applications in the design and control of these
systems.

The phenomenon of SR is rooted on a stochastic syn-
chronization between noise-induced hopping events and
the rhythm of the externally applied signal, that taken alone
is not sufficient for the system to overcome a potential
barrier. In the first place, noise enables system transitions
and it is in fact responsible for the observed signal ampli-
fication and the emergence of a certain degree of order. In
the earliest and basic manifestation of SR, the synchroni-
zation of the random switches of a Brownian particle with a
periodic driving force was observed for a bistable potential.

Moreover, potentials of this type are not only found in
systems with energy barriers, as they may also arise due to
the influence of entropic constraints. Particles diffusing
freely in a confined medium such as the one depicted in
Fig. 1 may give rise to an activation regime when a

constant force ~G in the transversal direction is imposed.
We will show that the combination of forcing and the
presence of entropic effects deriving from the confinement
and the irregularity of the boundaries give rise to an
effective bistable potential that exhibits the signatures of
stochastic resonance.
The dynamics of a particle in a constrained geometry

subjected to a sinusoidal oscillating force FðtÞ along the
axis of the structure and to a constant force G in the
transversal direction can be described by means of the
Langevin equation, written in the overdamped limit as

�
d~r

dt
¼ �G~ey � FðtÞ ~ex þ

ffiffiffiffiffiffiffiffiffiffiffiffi
�kBT

p
~�ðtÞ; (1)

where ~r denotes the position of the particle, � is the friction
coefficient, ~ex and ~ey the unit vectors along the x and y

directions, respectively, and ~�ðtÞ is a Gaussian white noise
with zero mean which obeys the fluctuation-dissipation

FIG. 1. Schematic illustration of the two-dimensional structure
confining the motion of the Brownian particles. The symmetric
structure is defined by a quartic double well function, cf. Eq. (2),
involving the geometrical parameters Lx, Ly and b. Brownian

particles are driven by a sinusoidal force ~FðtÞ along the longi-

tudinal direction and a constant force ~G in the transversal
direction.
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relation h�iðtÞ�jðt0Þi ¼ 2�ij�ðt� t0Þ for i; j ¼ x; y. The

explicit form of the longitudinal force is given by FðtÞ ¼
F0 sinð�tÞ where F0 is the amplitude and � is the fre-
quency of the sinusoidal driving.

In the presence of confining boundaries, this equation
has to be solved by imposing reflecting boundary condi-
tions at the walls of the structure. For the 2D structure
depicted in Fig. 1, the walls are defined by

wlðxÞ ¼ Ly

�
x

Lx

�
4 � 2Ly

�
x

Lx

�
2 � b

2
¼ �wuðxÞ; (2)

where wl and wu correspond to the lower and the upper
boundary functions, respectively, Lx corresponds to the
distance between bottleneck position and position of maxi-
mal width, Ly refers to the narrowing of the boundary

functions, and b to the remaining width at the bottleneck,
cf. Fig. 1. Consequently, 2wðxÞ ¼ wuðxÞ � wlðxÞ gives the
local width of the structure. This choice of the geometry is
intended to resemble the archetypical setup for SR in the
context of a double well potential. In fact, in the limit of a
sufficiently large transversal force, the particle is in prac-
tice restricted to explore the region very close to the lower
boundary of the structure, recovering the effect of an
energetic bistable potential. For the sake of a dimension-
less description, we henceforth scale all lengths by the
characteristic length Lx, i.e., ~x ¼ x=Lx, ~y ¼ y=Lx which

implies ~b ¼ b=Lx and ~wl ¼ wl=Lx ¼ � ~wu, time by � ¼
�Lx

2=kBTR, the corresponding characteristic diffusion
time at an arbitrary, but irrelevant reference temperature

TR, i.e., ~t ¼ t=� and ~� ¼ ��, and force by FR ¼ �Lx=�,

transversal force ~G ¼ G=FR and a longitudinally acting,
sinusoidal force ~Fð~tÞ ¼ FðtÞ=FR. In the following we shall
omit the tilde symbols for better legibility. In dimension-
less form the Langevin equation (1) and the boundary
functions (2) read:

d~r

dt
¼ �G~ey � FðtÞ ~ex þ

ffiffiffiffi
D

p
~�ðtÞ; (3)

wlðxÞ ¼ �wuðxÞ ¼ �wðxÞ ¼ �x4 � 2�x2 � b=2; (4)

where we defined the aspect ratio � ¼ Ly=Lx and the

dimensionless temperature D ¼ T=TR.
In the absence of a time-dependent applied bias, i.e.,

FðtÞ ¼ 0, it has been shown by a coarsening of the descrip-
tion [15–17] that the Langevin equation (1) can be reduced
to an effective 1D Fokker-Planck equation, reading in
dimensionless form

@Pðx; tÞ
@t

¼ @

@x

�
D
@P

@x
þ V 0ðx;DÞP

�
; (5)

where

Vðx;DÞ ¼ �D ln

�
2D

G
sinh

�
GwðxÞ
D

��
; (6)

and the prime refers to the derivative with respect to x. This

equation describes the motion of a Brownian particle in a
bistable potential of entropic nature. Remarkably, the ef-
fective potential does not only depend on the energetic
contribution of the forceG, but also on the temperature and
the geometry of the structure in a nontrivial way. Notably,
for the vanishing width at the two opposite corners of the
geometry in Fig. 1 this entropic potential approaches in-
finity, thus intrinsically accounting for a natural reflecting
boundary. It is important to emphasize that this bistable
potential was not present in the 2D Langevin dynamics, but
arises due to the entropic restrictions associated to the
confinement. In general, after the coarse graining the dif-
fusion coefficient will depend on the coordinate x as well,
but since in our case jw0ðxÞj � 1, this correction can be
safely neglected, cf. Ref. [15,17–20].
It is interesting to analyze the two limiting situations that

can be obtained upon varying the value of the ratio between
the energy associated to the transversal force and the
thermal energy. For the energy-dominated case, i.e.,
GwðxÞ=D � 1, Eq. (6) yields VðxÞ ¼ �GwðxÞ (neglecting
irrelevant constants), thus recovering conventional energy
controlled SR [1–3]. In the opposite limit, i.e., for
GwðxÞ=D � 1, the corresponding entropic potential func-
tion reads Vðx;DÞ ¼ �D ln½2wðxÞ�.
Two-state approximation.—It is instructive to analyze

the occurrence of stochastic resonance in the context of
the two-state approximation. For a potential VðxÞ with
barrier height �V the escape rate of an overdamped
Brownian particle from one well to the other in the pres-
ence of thermal noise, and in the absence of a force, is
given by the overdamped Kramers rate [21–23], reading in
dimensionless units,

rKðDÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 00ðxminÞjV 00ðxmaxÞj

p
2�

exp

���V

D

�
; (7)

where V 00 is the second derivative of the effective potential
function, and with xmax and xmin indicating the position of
the maximum and minimum of the potential, respectively.
For the potential given by Eq. (6) and the shape defined

by Eq. (2), the corresponding Kramers rate for transitions
from one basin to the other reads, in dimensionless units,

rKðDÞ ¼ G�

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 sinhðGb=DÞ sinh½Gðbþ 2�Þ=D�p

sinh2½Gðbþ 2�Þ=2D� : (8)

Spectral amplification.—The occurrence of stochastic
resonance can be detected in the spectral amplification �
[22]. It is defined by the ratio of the power stored in the
response of the system at frequency� and the power of the
driving signal, and which for the periodically driven two-
state model, cf. Ref. [1], is given in dimensionless units as

� ¼ 1

D2

4r2KðDÞ
4r2KðDÞ þ�2

: (9)
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Next we demonstrate the occurrence of the resonance in
the spectral amplification which signals the phenomenon
of Entropic Stochastic Resonance (ESR). We demonstrate
that ESR is neither a peculiarity of the two-state approxi-
mation nor of the equilibration assumption used to derive
the effective 1D kinetic equation.

In order to study the appearance of stochastic resonance
we analyzed the response of the system to the applied
sinusoidal signal in terms of the spectral amplification �.
In the presence of an oscillating force FðtÞ in the x direc-
tion there is an additional contribution to the effective
potential in Eq. (5) and the 1D kinetic equation in dimen-
sionless units reads

@Pðx; tÞ
@t

¼ @

@x

�
D
@P

@x
þ ½V 0ðx;DÞ � FðtÞ�P

�
: (10)

The numerical integration of the 1D kinetic equation
(10) was done by spatial discretization, using a Chebyshev
collocation method, and employing the method of lines to
reduce the kinetic equation to a system of ordinary differ-
ential equations, which was solved using a backward dif-
ferentiation formula method. This results in the time-
dependent probability distribution Pðx; tÞ and the time-
dependent mean value, defined as

hxðtÞi ¼
Z

xPðx; tÞdx: (11)

In the long-time limit this mean value approaches the
periodicity of driving [22] with angular frequency �.
After a Fourier expansion of hxðtÞi one finds the amplitude
M1 of the first harmonic of the output signal. Hence, the
spectral amplification � for the fundamental oscillation
reads:

� ¼
�
M1

F0

�
2
: (12)

The comparison of the 1D modeling and the two-state
approximation in terms of the spectral amplification �, cf.
Eqs. (9) and (12), demonstrates the capability of the two-
state approximation for small driving frequencies and am-
plitudes, cf. Fig. 2.
1D modelling vs precise numerics (2D).—In order to

check the accuracy of the description we compared the
results obtained by the 1D modelling with the results of
Brownian dynamic simulations, performed by integration
of the overdamped Langevin equation (1), for a 2D struc-
ture (see Fig. 1) whose shape is described by Eq. (2). In our
case we have used the aspect ratio � ¼ 1=4 and the bottle-
neck width b ¼ 0:02. The simulations were carried out by
the use of the standard stochastic Euler algorithm.
Figure 3 depicts the dependence of the spectral amplifi-

cation � on the noise strength for different values of the
driving frequency, the driving amplitude and the value of
G. It is important to point out that the results obtained from
the 1D modelling (lines) are in excellent agreement with
the numerical simulations of the full (2D) system (sym-
bols) within a small relative error. This agreement is due to
the fact that the considered potential function is a smooth
function (jw0ðxÞj � 1), and in this situation our employed
1D approximation is expected to become very accurate
[15,17,18].
Figure 3(a) shows the dependence of the spectral ampli-

fication � on the noise strength D for various driving
frequencies at a fixed transversal force and forcing ampli-
tude F0. Here, we observe an increase in the spectral
amplification which signals the effect of stochastic reso-
nance in the presence of entropic barriers. As observed for
the usual ‘‘energy-dominated’’ SR [1] the resonance peak
is more pronounced as the applied angular frequency � of
the input signal decreases. Similarly, Fig. 3(b) depicts how
ESR depends on the strength of the transversal force G.
Interestingly, the maximal amplification increases upon
decreasing the strength G of the transversal force.
However, the presence of the transversal force G is crucial
for observing a nonmonotonic behavior of the spectral
amplification with increasing noise level D. In the limit
of G ! 0, the spectral amplification increases monotoni-
cally with decreasing noise level and tends asymptotically
to 1=�2 at small driving amplitudes F0. Finally, Fig. 3(c)
displays the dependence of the spectral amplification � on
the noise strength D for various amplitudes of the driving
force F0 at a fixed value of the transversal force and driving
frequency. Both the amplification of the signal and the
optimal value of the noise at which it occurs increase as
the driving amplitude decreases.
This novel ESR effect is characterized by the appearance

of a maximum in the spectral amplification as a function of
the noise strength D, just as in conventional energy-
dominated SR [1]. However, in biological and practical

FIG. 2 (color online). In dimensionless units, the dependence
of the spectral amplification � on noise level D for different
driving frequencies, for the transversal force G ¼ 1:0, the driv-
ing amplitude F0 ¼ 10�4, and for the width function wðxÞ ¼
��x4 þ 2�x2 þ 0:01 with the aspect ratio � ¼ 1=4. The solid
lines correspond to the 1D modelling, cf. Eq. (10) and (12),
whereas the dashed lines correspond to the two-state approxi-
mation, cf. Eq. (9).
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systems the temperature which controls the strength of the
thermal noise is not a readily variable parameter. Our
results suggest that, for a given temperature, a proper
choice of the externally controlled parameters (i.e., the
nature of the driving force, its amplitude and driving
frequency, and the strength of the transversal force) might
bring the system into an optimal regimewhere confinement
and noise mutually interplay to boost noise-assisted trans-
port inside a corrugated structure.

In conclusion, we have elucidated a new mechanism
leading to the appearance of noise-induced resonant effects
when a Brownian particle moves in a confined medium in
the presence of periodic driving. The constrained motion

impedes the access of the particle to certain regions of
space and can be described in terms of a bistable entropic
potential. The activated dynamics of the particle in this
effective potential then results in a cooperative effect be-
tween noise and external modulation, yielding an entropic
stochastic resonance. The effect detected is genuine for
small-scale systems in which shape and fluctuations are
unavoidable factors ruling their evolution. The advanta-
geous possibilities of ESR on what concerns optimization
and control may provide new perspectives in the under-
standing of systems at the scales of micrometers and nano-
meters and open new avenues in their manipulation and
control.
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FIG. 3 (color online). In dimensionless units, the dependence
of the spectral amplification � on noise level D for various
values of the quantities, the driving amplitude F0, driving
frequency �, and the transversal force G. The symbols corre-
spond to the results of the Langevin simulations for the two-
dimensional structure with the shape defined by the dimension-
less function wðxÞ ¼ ��x4 þ 2�x2 þ 0:01 with the aspect ratio
� ¼ 1=4, whereas the lines are the results of the numerical
integration of the 1D kinetic equation (10).
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