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Surmounting collectively oscillating bottlenecks

D. Hennig1(a), L. Schimansky-Geier1 and P. Hänggi2

1 Institut für Physik, Humboldt-Universität zu Berlin - Newton Str. 15, D-12489 Berlin, Germany
2 Institut für Physik, Universität Augsburg - Universitätsstr. 1, D-86135 Augsburg, Germany
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Abstract – We study the collective escape dynamics of a chain of coupled, weakly damped
nonlinear oscillators from a metastable state over a barrier when driven by a thermal heat bath
in combination with a weak, globally acting periodic perturbation. Optimal parameter choices are
identified that lead to a drastic enhancement of escape rates as compared to a pure noise-assisted
situation. We elucidate the speed-up of escape in the driven Langevin dynamics by showing that
the time-periodic external field in combination with the thermal fluctuations triggers an instability
mechanism of the stationary homogeneous lattice state of the system. Perturbations of the latter
provided by incoherent thermal fluctuations grow because of a parametric resonance, leading to the
formation of spatially localized modes (LMs). Remarkably, the LMs persist in spite of continuously
impacting thermal noise. The average escape time assumes a distinct minimum by either tuning
the coupling strength and/or the driving frequency. This weak ac-driven assisted escape in turn
implies a giant speed of the activation rate of such thermally driven coupled nonlinear oscillator
chains.

Copyright c© EPLA, 2008

Ever since the seminal work by Kramers (for a compre-
hensive review see ref. [1]) we witness a continual interest
in the dynamics of escape processes of single particles,
of coupled degrees of freedom or of chains of coupled
objects out of metastable states. To accomplish the
escape the considered objects must cross an energetic
barrier, separating the local potential minimum from a
neighboring attracting domain. From the perspective of
statistical physics mainly the thermally activated escape,
based on the permanent interaction of the considered
system with a heat bath, has been studied [1]. The
coupling to the heat bath causes dissipation and local
energy fluctuations and the escape process is conditioned
on the creation of a rare, optimal fluctuation which in
turn triggers an escape. To put it differently, an optimal
fluctuation transfers sufficient energy to the system so
that the system is able to statistically surmount the
energetic bottleneck associated with the transition state.
Characteristic time-scales of such a process are deter-
mined by the inverse of corresponding rates of escape out
of the domain of attraction. Within this topic, numerous
extensions of Kramers escape theory and of first passage
time problems have been widely investigated [1,2]. Early
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generalizations to multi-dimensional systems date back to
the late 1960s [3]. This method is by now well established
and is commonly put to use in biophysical contexts and
for great many other applications occurring in physics
and chemistry and related areas [4–14].
In order that the system comprised of coupled units

may pass through a transition state an activation energy
Eact has to be concentrated in the corresponding critical
localized mode (LM). In view of controlling the process
of barrier crossing we intend to demonstrate that the
formation of the critical LM can be distinctly accelerated
via the application of a weak external ac-driving. By use
of optimally oscillating barrier configurations it is feasible
that a far faster escape can be promoted, leading to a
drastic enhancement of the escape dynamics. Particularly
at low temperatures, where the rate of thermal barrier
crossing is exponentially suppressed, such a scenario can
be very beneficial.
Prior studies mainly dealt with the appearance of

LMs in damped, driven deterministic nonlinear lattice
systems [15–19]. Furthermore, the spontaneous formation
of LMs (breathers) from thermal fluctuations in lattice
systems, when thermalized with the Nosé method [20]
has been demonstrated in [21,22]. Here we explain LM
formation in a stochastic system involving dissipation in
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the presence of enduring spatio-temporal random forcing.
In addition a weak external ac-field is applied rendering
coherently oscillating barriers. The energy is introduced
in the lattice coherently in the form of a plane-wave
excitation as the response to the external ac-field and
non-coherently through thermal fluctuations. We shall
demonstrate that the stochastic source and the external
ac-field conspire to produce such an instability mechanism
of the stationary flat-state (plane-wave) solution yielding
a spatially localized system state. Most importantly the
formed LMs prove to be robust despite the continuously
impacting thermal forces.
It should be noted that thermally activated escape of

ensembles of non-interacting (individual) particles over
a metastable potential landscape that is additionally
subjected to either stochastic or coherent perturbations
in the form of fluctuations or periodic driving has been
studied in the prior literature, e.g. see in refs. [23–25]. For
a comprehensive overview we refer the reader to ref. [26].
In particular, a resonant activation is observed, i.e., the
mean escape time (or the rate of escape [27]) attains
a minimum (maximum) as a function of the correlation
time of the fluctuations or the temporal driving period
of the underlying potential variations. Moreover, the kink
drift motion induced by oscillating external fields needs
to be mentioned in this context [28]. Concerning a system
of coupled elements the kink-antikink nucleation within
a φ4 chain model subjected to a deterministic periodic
signal and uncorrelated noise has been studied in [5]. For
optimal noise and coupling strength spatiotemporal (array
enhanced) stochastic resonance is observed in the array
of overdamped coupled elements. With the present study
we focus on the collective nature of the ac-driven escape
process of interacting weakly damped particles.
In detail, we study a one-dimensional lattice of damped

nonlinear and ac-driven coupled oscillators which are
subjected additionally to a heat bath at temperature T .
Throughout the following we shall work with dimension-
less parameters, as obtained after appropriate scaling of
the corresponding physical quantities. The coordinate q
of each individual nonlinear oscillator with a unit mass
evolves in a cubic, single well on-site potential of the form

U(q) =
ω20
2
q2− a

3
q3. (1)

This potential possesses a metastable equilibrium at
qmin = 0, corresponding to the rest energy Emin = 0
and exhibits a maximum that is located at qmax = ω

2
0/a

with energy Emax ≡∆E = ω60/(6a2). Thus, in order for
particles to escape from the potential well of depth
∆E over the energy barrier and subsequently into the
range q > qmax, a sufficient amount of energy need to
be supplied. The lattice dynamics is governed by the
following system of coupled Langevin equations:

q̈n + γq̇n+ω
2
0qn− aq2n+ ξn(t)

−κ [qn+1+ qn−1− 2qn]− f sin(ωt+ θ0) = 0. (2)

The coordinates qn(t) quantify the displacement of the
oscillator in the local on-site potential U at lattice site n∈
[1, N ]. The oscillators, referred to as “units”, are coupled
bi-linearly to their neighbors with interaction strength κ.
The friction strength is measured by the parameter γ and
ξn(t) denotes a Gaussian distributed thermal, white noise
of vanishing mean 〈ξn(t)〉= 0, obeying the well-known
fluctuation-dissipation relation

〈ξn(t)ξn′(t′)〉= 2γkBTδn,n′δ(t− t′), (3)

with kB denoting the Boltzmann constant. A homoge-
neous external periodic modulation field of amplitude f ,
frequency ω and phase θ0 globally acts upon the system.
In this work we use periodic boundary conditions accord-
ing to qN+1 = q1 and fix the parameters of the potential as
follows: ω20 = 2 and a= 1, yielding ∆E = 4/3. A determin-
istic escape scenario in the conservative, undriven limit of
system (2) has been explored by us in [29,30].
To analyze the nonlinear character of the solutions

of eq. (2) we first discard the noise (ξn = 0) and derive
a nonlinear damped and driven discrete Schrödinger
equation for the slowly varying envelope solution, un(t),
following the reasoning in [31], i.e.,

2iω0 u̇n + iγω0un+κ [un+1+un−1− 2un]

+α |un|2un+
1

2
f exp[−i∆ωt+ θ0] = 0, (4)

with the nonlinearity parameter reading α= 10a2/(3ω20)
and ∆ω= ω−ω0. For the amplitude u0 of a spatially
homogeneous solution of eq. (4) of the form

un(t) = u0 exp[−i(∆ωt+ θ0)]+ c.c., (5)

one obtains
[

(

2ω0∆ω+αu
2
0

)2
+ γ2ω20

]

u20 =
1

4
f2. (6)

In fig. 1 we depict the amplitude u0 of the response versus
the driving frequency curve for two different values of
the driving amplitude f . At a bifurcation point a “jump”
resonance related with a saddle-node bifurcation occurs
and in certain range of the driving frequency multistability
exists. In comparison for the larger driving amplitude,
f = 0.2, the bifurcation point for the “jump” resonance
occurs at a lower frequency value than for the driving with
f = 0.15. Moreover, in the former case the system responds
overall with higher amplitudes u0 than in the latter. Notice
that the system responds with large amplitude only within
a frequency window and large amplitudes are obtained
for a driving frequency lying below the band of linear
frequencies, viz. ω <ω0 =

√
2 = 1.414 . . .. Similarly, for the

response of the amplitude with regard to the driving
strength f multistable solutions are possible as depicted
with the inset in fig. 1. In order to investigate the stability
of the homogeneous solution of eq. (2) we use

qn(t; k= 0) = x(t) = u0e
−i(ωt+θ0)

+
a

ω20

[

2− 1
3
e−2i(ωt+θ0)

]

u20+c.c. (7)
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Fig. 1: (Color online) Response of the amplitude u0 with
respect to the frequency ω of the driving force for two fixed
values of the driving amplitude as indicated in the plot. The
damping constant is γ = 0.1. The inset shows the response of
the amplitude u0 with respect to the driving amplitude f for
a fixed frequency ω= 1.295. The remaining parameter values
are ω20 = 2 and a= 1.

and write with respect to the spatial perturbations An:
qn(t) = x(t)+An(t). Since we impose periodic bound-
ary conditions the Fourier-series expansion An(t) =
∑

k exp(ikn)sk(t) can be used to yield an equation for
the mode amplitudes sk, i.e.,

s̈k + γṡk +ω
2
ksk − 4au0 cos(ωt+ θ0)sk = 0 , (8)

where we discarded a higher harmonics and introduced
ω2k = ω

2
0 +4κ sin

2(k/2)− 8(au0/ω0)2. Setting τ = ωt/2 and
sk(t) = vk(t)exp(−γt/2), one derives a Mathieu equation

v̈k + [A− 2Q cos(2t+2θ0)]vk = 0, (9)

with the parameters A= (2ωk/ω)
2− (γ/ω)2 and

Q= 8au0/ω
2. If it holds that

√
A ≃ l, with l denot-

ing a positive integer number, the Mathieu equation
allows for parametric resonance [32,33]. The extension of
the resonance regions is determined by the ratio Q/A; for
the primary resonance, A≃ 1, it is given by

(A− 1)2 <Q2. (10)

For the parameter set corresponding to the line shown in
the inset in fig. 1 (determining the relationship between
the amplitude f of the external ac-field and the amplitude
of the homogeneous solution u0) the instability bands for
different values of the coupling strength κ are depicted in
fig. 2. For the onset of parametric resonance the driving
amplitude f has to exceed the value of the bifurcation
point, i.e. fc � 0.1408 related with the “jump” resonance,
regardless of the value of κ. The position of the bottom
of the instability band, determining the critical unstable
wave number kc, shifts towards lower k values with
increasing coupling strength κ. For a chosen field strength
f = 0.15, that lies just above fc, one expects that the LMs
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Fig. 2: (Color online) Instability bands for different coupling
strengths κ= 2, 1, 0.5, 0.3, 0.2 (decreasing from left to right) are
displayed. The relation between the amplitude of the external
ac-field f and the amplitude of the homogeneous solution u0 is
the one displayed with the inset in fig. 1. The horizontal dashed
line at f = 0.15 intersects each instability band very close to its
bottom, the position of which determines the respective critical
wave number kc (see also text).

of distinct wavelength, determined by λc = 2π/kc become
excited (cf. fig. 2). We infer from fig. 2 that the wavelength
of a LM increases with increasing coupling κ. This is
verified in fig. 3 showing the spatio-temporal evolution of
the amplitudes qn(t) for couplings κ= 0.5 and κ= 2. The
Langevin equations were numerically integrated using a
two-step Heun stochastic solver. In all our simulations the
initial chain configuration is represented by qn(0) = x(0)
and pn(0) = 0 with the homogeneous solution (plane wave)
x(0) given in (7). We note the formation of a LM of certain
wavelength arising from the homogeneous state after a
short time span (after t∼ 60) and we note that the period
duration for oscillations near the bottom of the potential
is around 2π/ω0 ≃ 4.4.
Regarding the energy relation within the stationary flat

state (where each unit contains the same amount of initial
energy) we monitored the temporal evolution of the energy
of one unit

En =
1

2
p2n+U(qn), (11)

and the corresponding field energy

Efield =−fsin(ωt+ θ0)qn, (12)

without coupling the chain to the heat bath for a force
amplitude f = 0.15. In this stationary case the field energy
performs small-amplitude oscillations around a mean
value of Efield = 0.04≡ 0.03×∆E = 0.03× 4/3, while the
mean of the energy of one unit is En = 0.78 = 0.585×∆E
(not shown). Thus the gain of energy, determined by
the ratio En/Efield, amounts to a remarkable high value
of 19.5. To retain this relation upon lowering (increasing)
the damping γ a lower (higher) driving strength f is
necessary while the “jump” resonance frequency attains
a lower (higher) value according to eq. (6).
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Fig. 3: Spatio-temporal pattern of the solutions qn(t) for a
lattice consisting of N = 100 sites and chosen coupling strength
at κ= 0.5 (top panel), κ= 2 (central panel) for the same
realization of Gaussian white noise with thermal energy kBT =
0.001×∆E. Bottom panel: Same as in the central panel but
now for a 50-times-larger thermal energy: kBT = 0.05×∆E.
The remaining parameter values are set at f = 0.15, ω= 1.295,
θ0 = 0 and friction γ = 0.1.

The stochastic term provides perturbations of all wave
numbers and a pattern emerges from the homogeneous flat
state. That is, due to the effect of parametric resonance
perturbations provided by the thermal noise grow and
induce a LM consisting of several humps. The fastest grow-
ing perturbations are those associated with the critical
wave number kc (see also [34]). Each of these humps resem-
bles the hairpin shape of the transition state as the critical
escape configuration possessing an energy Eact through
which the coupled units have to pass in order to cross the
barrier [30]. The robustness of the LMs is remarkable: a
LM is sustained, despite continuously impacting thermal
noise of strengths up to values kBT � 0.2×∆E. More-
over, the formed pattern maintain their distinct wave-
length λc = 2π/kc (see fig. 3).
We note that upon increasing the noise strength the

growth rate of the humps becomes enhanced, being
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Fig. 4: The mean escape time of the chain vs. the mean
injected energy E =Efield+ kBT measured in units of ∆E
with fixed field energy Efield = 0.03×∆E provided by an
external modulation field with ω= 1.295, θ0 = 0 and f = 0.15.
Here we vary the thermal energy Ethermal = kBT . The inset
depicts the unforced case with f = 0. The remaining parameter
values are N = 100, κ= 0.28 and γ = 0.1.

reflected in the statistics of the barrier crossing of the
chain in the presence of weak ac-driving. The amplitude
and frequency of the latter are chosen such that the
dynamics exhibits parametric resonance. The dependence
of the mean escape time of the chain on the injected aver-
age energy E ≡Efield+Ethermal, with Ethermal ≡ kBT
(measured in units of the barrier energy ∆E) is displayed
in fig. 4. The thermal energy Ethermal, supplied non-
coherently by the heat bath, is varied within the range
[(10−4–0.11)×∆E].
The average of the escape times was performed over

500 realizations of the thermal noise. In this context the
random escape time of a unit is defined as the time instant
when the unit passes through the value q= 20 far beyond
the potential barrier. Thus, no likely recrossing back into
the potential valley can occur [29,30]. The escape time
of the chain is then determined by the average of the
escape times of its units. We notice that the underlying
irregular dynamics serves for self-averaging and thus the
choice of the phase of the coherent, external forcing, θ0,
does not affect the mean escape time. In the forced as
well as unforced case there occurs a rather rapid decay of
Tesc with growing Ethermal = kBT at low temperatures.
This effect weakens gradually upon further increasing
kBT . Most strikingly, for the forced system the escape
times become drastically shortened in comparison with the
unforced case with f = 0. Moreover, for the forced system
escape takes place also at very low temperatures for which
in the undriven case not even the escape of a single unit has
been observed during the simulation time (taken here as
t= 105) implying a giant enhancement of the rate of escape
as compared to the purely thermal-noise–driven rate.
Upon exploring the optimal escape route, we investi-

gated the influence of the coupling strength κ on the
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Fig. 5: The mean escape time vs. the coupling strength κ
exhibits a resonance structure. The inset displays the ratio R,
defined in eq. (13), as a function of κ. The remaining parameter
values are given by N = 100, kBT = 0.05×∆E, f = 0.15, ω=
1.295, θ0 = 0 and γ = 0.1.

average escape time. Our numerical findings are summa-
rized in fig. 5. The mean escape time exhibits a reso-
nance structure, viz. there exists an optimal coupling
strength (κres ≃ 0.28) for which the escape assumes a
minimum. Upon lowering κ< κres we notice a drastic rise
of the escape time while for κ> κres the graph exhibits
only a moderately growing slope with growing coupling
strength κ. We emphasize the collective nature of this
resonance effect which here occurs for finite interaction
strength κ 	= 0. In the limit κ→ 0 the mean escape time of
noninteracting, individual particles assumes for this para-
meter set an extreme large value, implying a vanishingly
small escape rate.
To explain the occurrence of the resonance structure

in fig. 5 we recall that the wavelength, λc = 2π/kc, of
the arising LMs on the lattice is determined by the
critical wave number kc = kc(κ, f) (cf. fig. 2). The number
of humps contained in a LM, Nh, can be attributed
to kc as: λcNh = 2π/kcNh =N . The number of humps
(besides their height and width) regulates how the mean
energy injected via the coherent external field and the
incoherent thermal noise is shared among them. Supposing
that the whole lattice can be divided into an array of
segments, where each of them supports a single localized
hump, the energy of one segment is given by Es =
E/Nh = 2πE/(kcN). Appropriate conditions for successful
escape are provided when the energy contained in each
segment, Es, is close to the activation energy, Eact of the
critical escape configuration [30]. The efficiency of energy
localization is then determined by the ratio

R=Es/Eact. (13)

The activation energy as a function of the coupling
strength satisfies (we recall that we use a dimensionless
formulation) the relation Eact = (1+3.54×κ)∆E [30].
Keeping the injected energy E fixed and given value of
kc we obtain R. In the inset of fig. 5 the ratio R is plotted
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Fig. 6: The mean escape time as a function of the driving
frequency. The thermal energy is kBT = 0.05×∆E and the
driving amplitude is f = 0.15. The remaining parameter values
are N = 100, ω= 1.295, κ= 0.3, f = 0.15 and γ = 0.1. For
comparison we note that Langer’s theory [3] yields for the
mean escape time in the unforced case, f = 0, the value Tesc ≃
553× 105 underpinning the drastic speed-up effect in our forced
case.

as a function of the coupling strength κ. The plot indeed
exhibits a maximum at κ= 0.28, which confirms the find-
ing of the resonance found for the mean escape time vs.
coupling strength as depicted in fig. 5. Concerning the
critical localized mode through which a lattice state has to
pass through in order to escape over the potential barrier,
we remark that for comparatively low coupling strengths
(κ� 0.6) the effect of discreteness in the lattice system
is still so pronounced that this critical localized mode is
indeed represented by a thin hairpin-shaped configuration,
involving effectively one lattice unit of large amplitude
to either side of which the amplitude pattern decays
extremely rapidly (for more details see [30]).
Next we study the role of the angular driving frequency

of the external modulation field, see in fig. 6. The escape
time as a function of the angular frequency likewise
exhibits a resonance structure and there exists an optimal
frequency for which the average escape time assumes
a minimum. This is reminiscent of the phenomenon of
resonant activation found for the thermally activated
escape of noninteracting particles surmounting oscillating
barriers [23–27]. In our case of a nonlinear chain composed
of coupled units, however, this “resonant activation”
within a frequency window nicely correlates with the
systems’ gain of energy that is coherently supplied by the
applied ac-field in this very same frequency interval (note
the corresponding frequency window in the nonlinear
frequency response graph associated with large amplitudes
in fig. 1). Therefore, tuning the frequency ω at a fixed
interaction strength κ allows to optimize further the mean
escape time. The minimal escape scenario thus requires an
optimal tuning both in coupling strength and ac-driving
frequency ω.
In summary, we have presented a drastic speed-up

mechanism of the thermal-noise–driven barrier crossing
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of a coupled damped nonlinear oscillator chain under
the impact of a weak external ac-field. With appropriate
parameter values of the latter and in the presence of
thermal noise an instability mechanism is initiated due
to which LMs arise from stationary flat-state solutions in
the lattice dynamics. Humps of the LMs are rapidly driven
through the transition state thus accelerating the escape
over the situation with purely thermally assisted escape.
Interestingly, the LMs are sustained up to fairly high noise
levels corresponding to kBT ≃ 0.2×∆E.
The findings of our study can be applied for the

control of the rate of barrier crossing of oscillator chains.
With such chains providing the archetype model for
nonlinear collective transport of matter, charge and energy
in abundant low-dimensional systems in physics, biology
and chemistry, this speed-up scenario of thermally driven
collective escape over potential barriers might well be put
to constructive use in a variety of potential applications.
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