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Abstract The nonintegrable Hamiltonian dynamics of particles placed in a symmetric, spatially periodic
potential and subjected to a periodically varying field is explored. Such systems can exhibit a rich diversity
of unusual transport features. In particular, depending on the setting of the initial phase of the drive, the
possibility of a giant transient directed transport in a symmetric, space-periodic potential when driven with
an adiabatically varying field arises. Here, we study the escape scenario and corresponding mean escape
times of particles from a trapping region with the subsequent generation of a transient directed flow of an
ensemble of particles. It is shown that for adiabatically slow inclination modulations the unidirectional flow
proceeds over giant distances. The direction of escape and, hence, of the flow is entirely governed whether
the periodic force, modulating the inclination of the potential, starts out initially positive or negative.
In the phase space, this transient directed flow is associated with a long-lasting motion taking place
within ballistic channels contained in the non-uniform chaotic layer. We demonstrate that for adiabatic
modulations all escaping particles move ballistically into the same direction, leading to a giant directed
current.

PACS. 05.45.Ac Low dimensional chaos – 05.60.-k Transport processes – 05.45.Pq Numerical simulations
of chaotic systems – 05.60.Cd Classical transport

1 Introduction

Transport phenomena play a fundamental role in many
physical systems. In this context, dissipative ratchet dy-
namics has attracted considerable interest over the past
years. Particles placed into periodic but sawtooth like po-
tentials and driven by external forces or nonequilibrium
noise create a directed flow even if the forces and noise
vanishes in average. Thus unbiased forces induce a di-
rected motion, a concept which was successfully applied to
many different biological or mesoscopic systems. We refer
here to the various overviews on molecular and Brown-
ian motors [1–7]. This physical concept was subsequently
generalized to potential landscapes possessing reflection
symmetry which in addition are subjected to asymmetri-
cal driving [8–13] and, as well, to Hamiltonian transport
in absence of dissipation and enduring agitating fluctua-
tions [14–27].

The starting point for our investigation is a system
obeying reflection symmetry, both in space and time. Be-
ing interested in the particle transport features in a non-
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integrable situation we study the following equation of
motion

q̈ = F0(q) + F cos(Ωt + Θ0) = F0(q) + F (t) . (1)

We consider spatially periodic forces F0(q) = F0(q + 1)
such as e.g. the one provided by a completely symmet-
ric potential U0(q) = − cos(2πq)/(2π). The time-varying
ac-force in (1), F (t), periodically modulates the inclina-
tion of the space-periodic potential U0(q). This set-up de-
stroys the integrability of the system dynamics. In partic-
ular, around the corresponding separatrix in phase space
a chaotic layer develops. Like in multistable potentials the
motion becomes irregular and trajectories jump erratically
from one potential well to another, being not always the
adjacent one. Hence particles are scattered by the non-
linear forces and, obviously, the property of a directed
current will typically be lost.

Remarkably, as pointed out in prior literature [15,16],
in the system (1) there results an (unexpected) asymmetry
of the flux of particles, emanating from one potential well,
and flowing to the left and right potential wells which indi-
cates the existence of directed transport without breaking
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the reflection symmetry in space and time in this system.
One reason for the occurrence of phase-dependent directed
transport is the lowering of the symmetry of the flow in
phase space by the ac-field where this asymmetry vanishes
only for specific values of the initial phase Θ0 [15].

Also of interest in this context is reference [28]. Therein
the authors report further on this exceptional situation
and show that directed transport is sustained on fairly
long time scales despite the presence of chaos. In particular
it has been demonstrated that for sufficiently small forcing
frequencies, Ω � 1, the width of the arising chaotic layer
diverges leading to a strong enhancement of the chaotic
transport [28].

Here we complement and extend those prior studies
[15,28] to the problem of escape and successively main-
taining exclusive directed motion. More precisely, parti-
cles from a large ensemble that are initially contained in
a well of the potential have to surmount the correspond-
ing barrier. We show that adiabatically slow modulations
of the potential lead to that all of the escaping particles
not only leave the potential well in the same direction but
subsequently enter the regime of long-lasting transients
for which the transport proceeds unidirectional in a bal-
listic fashion. The direction of this arising flow over giant
distances depends on the initial phase Θ0 about which we
do not average.

That trajectories contained initially in the interior of
the separatrix can escape to neighboring wells of the po-
tential is related with sweeping across the chaotic layer
and crossing the separatrix. Precisely for this situation the
authors in [15] demonstrated (applying ac-forces with fre-
quencies Ω ∼ O(1)) that the mean time-averaged velocity
of a particle ensemble decays inversely proportional with
time and thus tending to zero asymptotically. In contrast,
we demonstrate here that for driving with a sufficiently
slow ac-field the mean time-averaged velocity attains a fi-
nite value, virtually not altering on long time scales. As we
shall show this is due to the fact that there occurs only a
single event of separatrix crossing, namely the one guiding
a particle from the inner to the outer region. Despite that
afterwards the particles closely re-approach the separatrix
periodically in time further crossings are avoided.

We further provide reasonings for the occurrence of the
flow on the basis of the underlying phase space structure.
The only assumption we have to make is that particles
which are initially trapped in the interior of the separa-
trix are included in the arising chaotic layer around the
separatrix in phase space. We will find and discuss the sit-
uation that large ensembles of particles do not only escape
from the separatrix but also move in the same direction.
This in turn yields a giant current.

The paper is organized as follows: In the next sec-
tion we introduce the model of the particle motion in a
symmetric, periodic potential, associated with the force.
The inclination of this potential is being time-periodically
modulated. The structure of the phase space is elucidated.
In Section 3 we investigate the influence of the modulation
frequency on the formation of stochastic layers in phase
space. In particular, we determine the range in which the

momentum variable can vary. The analysis in Section 4
concerns the chaos-induced escape of individual trajecto-
ries from the interior of the separatrix. In the subsequent
Section 5 an explanation for the effect of an enormous en-
hancement occurring in the adiabatically driven system is
given in terms of the underlying phase space dynamics.
The dynamics of ensembles of particles contained initially
in the interior of the separatrix and their contributions to
a directed flow are addressed in Section 6.

We close with a summary of our obtained results.

2 The forced nonlinear oscillator model

The equation (1), as a driven nonlinear Hamiltonian sys-
tem in one dimension, is derived from the following Hamil-
tonian in (dimensionless) form

H =
p2

2
+ U(q, t) ≡ p2

2
+ U0(q) + U1(q, t) . (2)

Therein p and q denote the canonically conjugate momen-
tum and position of a particle evolving in the periodic,
spatially-symmetric potential of unit period, i.e.,

U0(q) = U0(q + 1) = − cos(2πq)/(2π) . (3)

An external, time-dependent forcing field

U1(q, t) = −F sin(Ω t + Θ0)q (4)

serves for time-periodic modulations of the inclination of
the potential U0. We underline that the system is unbiased
in the sense that the force averaged over time and space
vanishes, i.e.

1∫

0

dq

T=2π/Ω∫

0

dt
∂U(q, t)

∂q
= 0 . (5)

For a static inclination, i.e. for U1(q) = −F q the sys-
tem dynamics is integrable and the solutions are contained
in the level set

H =
p2

2
− 1

2π
cos(2πq) − Fq ≡ E0 . (6)

There exist unstable saddles at qk
s = 0.5 + k −

arcsin(F )/(2π) and stable centers at qk
c = k −

arcsin(F )/(2π) with integer values k = 0, ±1,±2 .... In
the non-inclined case, F = 0, neighboring hyperbolic
points are linked via heteroclinic connections and with
inclination-modulation F �= 0 each hyperbolic point is
linked with itself via a homoclinic connection as illustrated
in Figure 1. According to the location of the saddles to
the right (left) of the centers we denote the chain of homo-
clinic connections in the left (right) panel as right-oriented
(left-oriented). For later reference, we point to the open
channel arising between two neighboring separatrix loops
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Figure 1. (Color online) The separatrix in the phase plane.
Top panel: A chain of homoclinic connections (solid line) for
the potential with negative inclination due to a static force of
amplitude F = 0.05. The dashed line represents the chain of
heteroclinic connections belonging to a non-inclined potential.
Bottom panel: Same as in the top panel except that now the
inclination is reversed, i.e. F = −0.05, implying a positive
inclination. The visible small openings in the solid lines of the
separatrix refer to the open channels for ballistic transport.

for inclined potentials. The separatrix energy attributed
to the saddle at qk

s is given by

E0
separatrix =

1
2π

[√
1 − F 2 − F [(0.5 + k)2π − arcsin(F )]

]
.

(7)
The maximal extension in momentum of the separatrix is

p±max = ±
(

2
π

√
1 − F 2

)1/2

, (8)

and the separatrix crosses the q−axis (turning point of
the corresponding homoclinic orbit) at a value q0 that is
determined by the solution of the transcendental equation

E0
separatrix +

1
2π

cos(2πq0) + Fq0 = 0 . (9)

Note that the separatrix loops for F = 0 completely com-
prises those for F �= 0. For time-periodic modulations of
the inclination which are imposed by the time-dependent

potential U1(q, t), the phase space structure becomes gov-
erned by breathing of the separatrix loops where the left-
oriented and right-oriented phase space structures dis-
played in Figure 1 represent the “turning points” of the
breathing. In-between these turnings the area enclosed by
a separatrix loop is periodically changing and the mini-
mum and maximum is obtained when Ωt+Θ0 = π/4, 3π/4
and Ωt + Θ0 = 0, π, 2π respectively. Moreover, with the
application of a time-dependent field U1(q, t) a breaking of
the integrability of the dynamics is expected. In particular,
around the separatrix of the unperturbed system a chaotic
layer forms. These oscillations of the separatrix between
the left-oriented and right-oriented structures have to be
distinguished from the pulsations of the width of the pen-
dulum separatrix considered in [29–31]. In reference [32]
the chaos dynamics in a system with periodically disap-
pearing separatrix was considered.

3 Chaotic layers and Poincaré-plots

To illustrate the influence of the angular driving frequency
on the behavior of the system we depict in Figures 2 and
3 the stroboscopic Poincaré-plots at successive periods
of the driving term T = 2π/Ω in the p − q−plane for
force strength F = 0.05, phase Θ0 = 0 and two different
driving frequencies Ω = 0.1 and Ω = 0.01. The simulation
time is chosen such that Ω t = 104 holds and therefore,
the number of periodic changes of the inclination of the
potential in the simulation time interval is the same for
any frequency.

The top panel in Figures 2 and 3 corresponds to stro-
boscopic plots at tk = (1/4 + k)T with k = 0, 1, 2, ...
where the potential assumes a maximal negative inclina-
tion. The bottom panel belongs to stroboscopic plots at
tk = (3/4 + k)T , i.e. the potential has a maximal posi-
tive inclination. For fairly fast varying modulations with
Ω = 0.1 a chaotic layer of small width develops around the
separatrix, whereas the motion remains trapped and regu-
lar within the large island of stability with its center at the
origin of the phase plane. The deformed horizontal lines
above and below the large island of stability correspond
to KAM tori which act as barriers for transport impeding
larger upwards and downwards excursions of the momen-
tum variable. Note that the extension of the chaotic layer
in momentum direction remains equal regardless of the
sign of the inclination of the potential.

Nevertheless, for slow modulation with Ω = 0.01 this
picture changes drastically. Many KAM tori become de-
stroyed and the only surviving ones lie in the region of
large |p| � 5.8. There remains still an island of stability
corresponding to bounded and regular motion inside the
potential well. On the other hand, the chaotic layer has
grown considerably in momentum direction compared to
the previous case of Ω = 0.1. Most strikingly, independent
of the sign of the inclination of the potential the density
of the points in the stroboscopic plots is much higher in
the region of positive momentum than in the region of
negative ones. Thus, the momentum variable is allowed
to raise to fairly large positive values. Due to symmetry
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Figure 2. (Color online) Stroboscopic Poincaré-plots for an
angular frequency Ω = 0.1, force strength F = 0.05 and initial
phase Θ0 = 0. The top and the bottom panel are taken at tk =(

1
4

+ k
)
T (maximal negative inclination) and tk =

(
3
4

+ k
)
T

(maximal positive inclination), respectively. The coordinate q
is represented mod 1.

for an initial phase value Θ0 = π of the external field, i.e.
when during the first half-period 0 < t < T/2 the inclina-
tion becomes positive, an equivalent behavior is observed
except that the cloud of points now penetrates more into
the range of negative p.

In the following we focus our interest on the generation
of a directed flow for a large ensemble of particles where
all of them perform exclusively ballistic motion in the same
direction. Note that this represents a far stronger condi-
tion than merely observing directed, diffusive transport of
particles as illustrated in [15]. Our set up is the following:
If the potential assumes, let us say, a negative inclination
due to a static force −∂U1/∂q = F we suppose that the
dynamics of the particles is bounded in one well and the
corresponding potential barrier is insurmountable, i.e. for
all particles it holds that E0

particle = H0 = p2/2+U0(q) <

E0
separatrix. Accordingly, the initial conditions for our sim-

ulations are distributed in the interior of the correspond-
ing separatrix loop (see also below in Fig. 8). Obviously,
with static inclination of the potential the integrable dy-
namics is characterized by oscillations around the stable
elliptic center in the separatrix loop and hence, the par-

Figure 3. (Color online) Stroboscopic Poincaré-plots for an
angular frequency Ω = 0.01, force strength F = 0.05 and initial
phase Θ0 = 0. The top and the bottom panel are taken at tk =(

1
4

+ k
)
T (maximal negative inclination) and tk =

(
3
4

+ k
)
T

(maximal positive inclination), respectively. The coordinate q
is represented mod 1.

ticles remain trapped in the potential well. However, this
scenario drastically changes when the time-dependent per-
turbations destroy the integrability. In particular homo-
clinic chaos is present in the driven dynamics. In fact,
those trajectories seized by the arising chaotic layer may
manage to escape from the interior region of the broken
separatrix. We emphasize that this trapping-detrapping
transition can only be triggered by the chaotic dynamics
within the chaotic layer.

When applying the time-periodic modulation of the
inclination with initial phase set at Θ0 = 0 our starting
point is a non-inclined potential. Motion is then supposed
to proceed towards the right. Since in the initial stage
0 < t < T/2, the inclination passes from zero value to
its maximal negative value it contributes to a continually
growing positive force which promotes the desired mo-
tion towards the right. The question then is: What deter-
mines an efficient escape of trapped particles starting out
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from distributed initial conditions? Is the direction of the
motion of the escaped particles determined completely by
the choice of the phase of the modulation term? If so,
for which parameter values do the escaped particles keep
moving (on average) in the preferred right direction on
longer time scales?

4 Separatrix crossing and energy variations

In this section we discuss the trajectories of particles es-
caping from the interior of the separatrix loop. Further-
more, the possibility of energy growth after separatrix
crossing for slow modulations of the inclination is stud-
ied.

Separatrix crossing and escape

In Figures 4 we depict the role of the angular frequency on
the time evolution of trajectories for an initial condition
contained in the region in the interior of the unperturbed
separatrix in which the chaotic layer arises. For moder-
ate and intermediate angular driving frequencies Ω = 1
and Ω = 0.1, respectively, the coordinate q(t) behaves
chaotically, exhibiting sudden and unpredictable changes
of direction.

In clear contrast, for slow driving at Ω = 0.01 the coor-
dinate dynamics not only seemingly behaves more regular
but also grows on average upon evolving time. Due to sym-
metry the direction of the motion is reversed by changing
the initial position q(0) to −q(0) and taking for the phase
Θ0 = π.

Furthermore, there are alternating long and short in-
tervals during which the particle moves straightforwardly
towards the right and left, respectively. Correspondingly,
the momentum p(t) evolves in phases with positive value
(motion towards the right) that are longer lasting than
the phases when the momentum is negative (leftwards
motion) (see also further below in Fig. 7). As Figure 4
also reveals, the directed motion is maintained on a very
long time scale where the coordinate assumes huge values.
Further details concerning the time scale of unidirectional
motion are contained in Section 6. In the bottom panel
of Figure 4 one recognizes that for times t � 103 the tra-
jectory is trapped in a ballistic channel where the particle
behaves effectively like a free particle propagating ballisti-
cally. Notice that the simulation time interval Ts = 2×106

is equivalent to almost 8× 105 and 3184 times the period
duration for harmonic oscillations near the bottom of a
potential well and the external modulation, respectively.

Such motion in a ballistic channel occurs for the
complex dynamics of systems with a mixed phase space
[33–38]. In more detail the (broad) chaotic layer is not
uniform and contains cantori which can severely restrict
the transport in phase space and thus effectively partition
the chaotic layer bounded from below and above by non-
contractible KAM tori [34–36]. Islands of regular motion
that are situated at the upper and lower boundary of the
layer in the vicinity of the confining KAM tori possess
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Figure 4. (Color online) Time evolution of the coordinate q(t)
depicted with panels (a-c) for three different angular driving
frequencies Ω (indicated in the corresponding panels (a)-(c))
but equally chosen initial conditions p(0) = 0 and q(0) = 0.423.
The remaining parameter values are F = 0.05 and Θ0 = 0. In
the central panel (b) we also depict the trajectory for initial
coordinate q(0) = −0.423 and phase Θ0 = π for which the
motion proceeds in the negative direction. In the bottom panel
(c) the long-lasting ballistic motion of the particle is illustrated.
Note the large values for the simulation times > 106 in panel
(c). The inset depicts a stroboscopic Poincaré plot (at tk = Tk)
of the trajectory, revealing the motion in a ballistic channel.
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non-zero winding numbers and thus facilitate transport.
The motion around these islands is characterized by the
stickiness to them [34–36], that can lead to trapping of
the trajectory for a long time resulting in ballistic motion
[37,38]. For some islands the sticking times to the bound-
ary of the islands can be anomalously long [39,40].

Energy variations

It is illustrative to consider the difference,

∆E = Eparticle − Eseparatrix (10)

between the particle energy

Eparticle =
p2

2
+ U0(q) − F sin(Θ)q , (11)

and the energy of the ”frozen” separatrix at time t

Eseparatrix = U0(qk
s ) − F sin(Θ)qk

s , (12)

where Θ = Ωt + Θ0 and qk
s = 0.5 + k +

arcsin(F sin(Θ))/(2π) denote the instantaneous position
of the corresponding hyperbolic point when the trajectory
traverses the actual range

qk−1
s ≤ q ≤ qk

s if p > 0

qk
s ≤ q ≤ qk+1

s if p < 0 . (13)

(Note that as q is a dynamical variable so is k.)
As Figure 5 reveals, for a fast modulation Ω = 1 the

energetic difference ∆E changes frequently the sign, cor-
responding to the trajectories’ repeated leaving and re-
entering of the interior of the instantaneous separatrix.
Nevertheless, in-between separatrix crossings, the particle
can be trapped in a potential well for some time. Since ∆E
stays close to zero the trajectory remains close to the sep-
aratrix for most of the time. Decreasing the angular driv-
ing frequency to Ω = 0.1 has the effect that the number
of separatrix crossings diminishes. Occasionally there ap-
pear interludes during which the trajectory escapes from
the separatrix region giving rise to considerable coordi-
nate changes q (cf. Fig. 4). However, these changes are
not coordinated, so that in essence no directed motion
results.

This behavior drastically differs from that occurring
for a slow modulation Ω = 0.01. Once the trajectory has
crossed the separatrix it gathers momentum as long as
the inclination remains non-positive. This goes along with
an increase in the energetic difference ∆E. Afterwards,
during the depreciation period, i.e. when the inclination
of the potential is positive, the trajectory moves back to-
wards the instantaneous separatrix, but never actually re-
enters its interior region. Notably, we followed the evolu-
tion on time scales as long as 107 where this behavior still
holds true. In other words reversions of the direction of
motion proceed in an open channel between two adjacent
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Figure 5. (Color online) Temporal behavior of the energy dif-
ference ∆E as defined in (10) for three different angular driv-
ing frequencies Ω (as indicated in the top, central and bot-
tom panel) but equally chosen initial conditions p(0) = 0 and
q(0) = 0.423. The remaining parameter values are F = 0.05
and Θ0 = 0. In the inset in the bottom panel one recognizes
that only a single separatrix crossing takes place.

separatrix loops of the inclined potential as long as the
adiabaticity condition

Ttrajectory � T =
2π

Ω
. (14)
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is satisfied, where for near-separatrix motion the period
duration Ttrajectory is asymptotically determined by

Ttrajectory =
4√
2π

ln

⎡
⎣ 4√

π|E0
particle − E0

separatrix|

⎤
⎦ .

(15)
For the evolution depicted in the bottom panel in Figure 4
and Figure 5 this condition (14) is obeyed.

The influence of the period of the driving force on the
escape of the trajectory through the saddle point region
can be elucidated as follows: Near the saddle point qs the
dynamics is given by

d2q

dt2
+ U ′′

0 (qs)q = F sin(Ωt + Θ0) , (16)

where

U ′′
0 (qs) =

d2U0

dq2 |q=qs

= −2π ≡ −a . (17)

The solution of equation (16) with initial condition p(0)
and q(0) is given by

p(t) =
[

p(0) + F cos(Θ0)
Ω

a + Ω2

]
cosh(

√
at)

+
√

a

[
q(0) + F

sin(Θ0)
a + Ω2

]
sinh(

√
at)

−F
Ω

a + Ω2
cos(Ωt + Θ0) (18)

q(t) =
1√
a

[
p(0) + F cos(Θ0)

Ω

a + Ω2

]
sinh(

√
at)

+
[
q(0) + F

sin Θ0

a + Ω2

]
cosh(

√
at)

−F
1

a + Ω2
sin(Ωt + Θ0) . (19)

For directed motion to occur it is important that the
trajectory, after having crossed the separatrix, gathers
enough momentum that a sufficient distance to the separa-
trix attributed to the saddle point(s) of the unstable equi-
librium of the next adjacent potential well(s) is reached
before the inclination of the potential is reversed. Such
behavior is illustrated with Figure 6 for slow driving with
Ω = 0.01.

From the behavior of the solution (18), (19) with ini-
tial conditions situated close to the hyperbolic point we
find that for relatively fast driving with Ω = 1 the dis-
tance of the trajectory immediately grows because of the
still rapidly decreasing inclination of the potential being
connected with increasing momentum and coordinate of
the particle. Rather soon the sign of potential inclination,
and thus, the direction of the particle motion are reversed
while the trajectory has not departed from the region close
to the hyperbolic point. Correspondingly the trajectory,
whilst being still in the neighborhood of the hyperbolic
point, approaches the nearby part of the adjacent separa-
trix (represented by the dashed line in Fig. 6) and eventu-
ally crosses it soon after the escape. Contrarily, for slower
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Figure 6. (Color online) Illustration of the escape from the
region of the hyperbolic point in the phase plane. The particle
gathers further momentum after the final libration in the in-
terior of the separatrix has taken place (oscillatory solid line).
The straight dashed lines run in the directions of the eigen-
vectors belonging to the eigenvalues of the system linearized
about the hyperbolic point. Sufficiently close to the hyperbolic
point they represent the stable and unstable manifold W s and
W u. The two horizontal solid lines at p± = ±√2/π confine
the range of the momenta variations of the unperturbed sep-
aratrix. The dashed closed line to the right of the hyperbolic
point represents the instantaneous separatrix loop frozen at the
moment when p attains the value p+. The parameter values are
given by F = 0.05, Ω = 0.01 and Θ0 = 0.
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Figure 7. (Color online) Illustration of the enhanced motion
at work for directed transport. Shown is the time evolution
of the momentum p and the corresponding force term F (t) =
F sin(Ωt) with amplitude F = 0.05. For the sake of comparison
F (t) is multiplied by a factor of 160. The remaining parameter
values are Ω = 0.01 and Θ0 = 0. Further details are discussed
in the text.

modulations Ω ≤ 0.1 the trajectory slowly but continually
increases its distance to the nearby part of the adjacent
separatrix loop. In the vicinity of the hyperbolic point the
solutions (18, 19) with Ω ≤ 0.1 reflect this behavior.
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5 Momentum growth

Here we consider the mechanism for the speed-up of a
particle that has escaped from the separatrix and derive
an expression for the effective gain in momentum.

Forced speed-up of particles

To gain better insight into the mechanism that causes
the speed-up of the particle motion and the transition
from librations to rotations we depict in Figure 7 the time
evolution of the momentum for the driven dynamics to-
gether with the corresponding force F (t) = −∂U1/∂q =
F sin(Ω t) with Ω = 0.01. Up to times t � 132 the trajec-
tory performs librations in the potential well. During the
evolution the particle adiabatically increases its momen-
tum so that with each turn in the potential it approaches
closer the saddle point. Eventually, a separatrix crossing
takes place when the trajectory is in the vicinity of the hy-
perbolic point where the motion becomes highly irregular,
due to the intricate dynamics connected with the transver-
sal intersections of the invariant manifolds [41,42]. Subse-
quently to such an escape, the motion proceeds along the
direction of the unstable manifold of the hyperbolic equi-
librium as further illustrated in Figure 6. Most impor-
tantly, the separatrix crossing occurs at an instant of time
tescape < T/4, for which the negative inclination has not
yet reached its maximum. During the ongoing particle mo-
tion towards the right the momentum variable performs
small-amplitude oscillations, while its average value grows
monotonically. Eventually, the largest value p =

√
2/π

on the unperturbed separatrix (indicated by the upper
straight line in Fig. 6) is exceeded. As the inclination of
the potential assumes increasingly negative values the par-
ticles’ momentum is raised further. At the end of the en-
hancement period, designated by T↑ = T/2 − tescape in
Figure 7, the momentum has grown to a maximum value
of pmax = 8. Subsequently, when for t > T/2 the inclina-
tion of the potential is positive, the particle is in the phase
of depreciation, denoted by T↓. Then, the momentum is
reduced steadily and reverts to zero value at an instant of
time treturn = T/2 + T↓ > 3T/4. Due to symmetry, one
obtains that T↑ = T↓.

However, after reversal, i.e. when p < 0, there remains
only comparatively little time, namely T⇓ = T − treturn <
T/4, during which the motion to the left is enhanced. Con-
sequently, the asymmetry in the enhancement and depre-
ciation phases, viz. the fact that T/2 − tescape > T/4 >
T − treturn, serves for a rather long period of rightwards
motion compared to the leftwards motion. Therefore the
effective motion of the particle proceeds to the right.

Momentum gain

In fact the momentum gain for a particle exerted to the
force F (t) = F sin(Ωt + Θ0) can be estimated as follows:
Without loss of generality we consider phases in the inter-
val 0 ≤ Θ0 ≤ π/2 leading to large motion towards positive

momenta if the particles escape at instants of time tescape

such that Ωtescape + Θ0 ≤ π/2 is satisfied. Then there re-
mains the time interval tescape < t ≤ (π − Θ0)/Ω during
which the particle still experiences an enhancement in the
right direction. For times (π −Θ0)/Ω < t ≤ (2π − Θ0)/Ω
the force acts in the opposite direction. In particular for
treturn ≤ t ≤ (2π − Θ0)/Ω the momentum evolves with
its sign reversed compared to the previous enhancement
period. One obtains then

∆p =

(∫ (π−Θ0)/Ω

tescape

+
∫ (2π−Θ0)/Ω

treturn

)
dτṗ

=

(∫ (π−Θ0)/Ω

tescape

+
∫ (2π−Θ0)/Ω

treturn

)

× dτ [− sin(2πq) + F sin(Ωτ + Θ0)] . (20)

Due to symmetry, it holds that treturn = (2π − Θ0)/Ω −
tescape. Furthermore, for small Ω the oscillating part con-
nected with the first term in the integral averages to zero
on the time scale tescape ≤ t ≤ (2π − Θ0)/Ω and we find

∆p = 2
F

Ω
cos(Ω tescape + Θ0) . (21)

In general, the smaller Ω the higher is the gain in momen-
tum (see also [28]). In principle, for a sufficiently small
frequency Ω the gain can become arbitrarily large. ∆p is
non-negative only if

tescape <
π
2 − Θ0

Ω
. (22)

Integrating over the interval of escape times with the
phase Θ0 being held fixed yields the integrated momentum
gain

〈∆p〉 =
∫ (π/2−Θ0)/Ω

0

dtescape∆p(tescape)

= 2
F

Ω2
[1 − sin Θ0] . (23)

In conclusion, the integral momentum gain is at its max-
imum at Θ0 = 0 and diminishes monotonically towards
zero at Θ0 = π/2, underlining the vital (symmetry-
breaking) role of the initial phase Θ0 for the enhancement
process (see also [15]).

6 Ensemble dynamics and current

In this section we investigate the behavior of the driv-
ing induced current for an ensemble of trapped parti-
cles. Their initial conditions are distributed such that if
the potential had the static inclination F the associated
trapped trajectories cannot cross the corresponding sepa-
ratrix loop. Likewise, as done in section 4 for the chaos-
induced detrapping, we apply a time-periodic modulation
of the inclination where the potential is initially non-
inclined, i.e. we use a fixed initial phase Θ0 = 0. The main
objective is to demonstrate that for imposed slow modu-
lations a preferred direction of motion emerges although
on average the potential landscape remains unbiased.
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Figure 8. (Color online) The separatrix loop of the non-
inclined potential (dashed line) and for the inclined potential
due to a static force set at F = 0.05 (solid line). The escape
set comprising those initial conditions that lead to escape out
from the solid separatrix loop is given by the hatched area (in
green online).
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Figure 9. (Color online) The relation between the particle
energy E0

particle and the escape time for three different fre-
quencies as indicated in the plot. The vertical dashed lines
marked as (1),(2) and (3) are at the positions of the enhance-
ment boundary T/4 = π/(2Ω) for Ω = 1, marked by (1),
Ω = 0.1, indicated as (2), and Ω = 0.01, marked as (3), re-
spectively. The remaining parameter values are F = 0.05 and
Θ0 = 0.

6.1 Escape times

First, we identified the escape set, comprising of all those
initial conditions that are contained in the interior of
the static separatrix loop that lead to chaos-induced es-
cape. To this end, the separatrix loop has been populated
densely with points corresponding to initial conditions for
the dynamics of the periodically driven system. The result-
ing escape set is displayed in Figure 8 by the hatched area.
We recall that escape, i.e. the detrapping, requires a sep-
aratrix crossing. Apparently, the moment of the first sep-
aratrix crossing, i.e. the trapping-detrapping transition,
governs the efficiency of the enhancement process, as dis-
cussed in Section 4. Of great importance for the speed-up
of an escaped particle is that the first separatrix crossing
occurs at instants of time tescape < T/4 = π/(2Ω), which
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Figure 10. (Color online) The mean escape time vs. the angu-
lar driving frequency is plotted with error bars. The lower and
upper dashed lines correspond to Tmin = T/4π = 1/(2Ω) and
T/4 = π/(2Ω), respectively. The number of particles emanat-
ing from the escape set shown in Figure 8 is taken as N = 512.
The remaining parameter values are F = 0.05 and Θ0 = 0.

determines the boundary for enhancement. More specifi-
cally, according to Eq. (21), the length of the enhancement
period determines the growth in momentum and thus the
value of the resulting current.

From Figure 9 we deduce the corresponding time scale
for escape beyond the separatrix. While for the largest
angular driving frequency Ω = 1 the escape takes place
at times far beyond the boundary, marked as (1) in Fig-
ure 9, we note that for an intermediate angular frequency
at Ω = 0.1 almost all escape events occur before the corre-
sponding enhancement boundary T/4, marked as (2). For
slow driving at Ω = 0.01, however, the scales of tescape

stretch over a wide range, but practically all escape events
do occur at tescape < T/4, marked as (3). Moreover, due
to the irregular nature of the underlying dynamics, for an
ensemble of escaping particles with distributed initial con-
ditions the moments of their corresponding first separatrix
crossing depend sensitively on the initial conditions. Tra-
jectories starting out very close to the hyperbolic point
are the first to escape, whereas for those initial conditions
which are located away from the separatrix considerable
time passes until escape takes place. From Figure 10, de-
picting the mean escape time versus the angular driving
frequency Ω, we infer that for low angular frequencies
Ω � 0.04 the escape times are sufficiently smaller than
T/4. In contrast, for Ω � 0.04 at least the upper error
bars of the escape times are of the order of, or higher,
than T/4. This hampers a pronounced enhancement and
in turn tends to suppress the directed flow. Connecting
the lower error bars of the mean escape time by a line we
find that the latter is very well fitted by the expression
Tmin = 1/(2Ω). Since this line is parallel to the one of the
mean escape time the latter obeys the 1/Ω-dependence as
well.
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Figure 11. (Color online) Temporal behavior of the directed
current defined in equation (24) for three different angular driv-
ing frequencies of the inclination-modulation force as labeled
correspondingly on the graphs. The amplitude and the initial
phase of the external force are set at F = 0.05 and Θ0 = 0,
respectively. The number of particles is N = 512.

6.2 Averaged directed flow

With regard to directed flow we note that for Ω � 0.04 we
find that for the entire escape set the associated trajecto-
ries move in the same direction over an extended period
of time. Thus, the generation of a huge, uni-directional
current becomes possible. We define the directed current
as the time average of the ensemble averaged momentum,
i.e.,

J =
1
Ts

∫ Ts

0

dt〈p(t)〉 , (24)

with the ensemble average given by

〈p(t)〉 =
1
N

N∑
n=1

(pn(t) − pn(0)) . (25)

Here, N denotes the number of particles constituting the
ensemble. In Figure 11 we depict the time evolution of the
directed current J for moderate, intermediate and very
slow modulations. The time is scaled according to t →
Ωt; thus assuring that for a given simulation time Ts the
number of oscillation periods of the external force is the
same regardless of the value of the used angular frequency
Ω. At a moderate driving frequency of Ω = 1 the average
flow (numerically) practically vanishes asymptotically on
the displayed time scale, whereas for Ω = 0.1 the decay
towards zero proceeds slower. This is in compliance with
the findings in [15].

In distinct contrast, however, for extreme slow driv-
ing at Ω = 0.01, the mean momentum assumes a quasi-
stationary regime of considerable large size. We note that
our observed averaged directed current persists over a long
time interval that agrees well with the explicit estimate
for the duration, tf of unidirectional motion given in [28],

which adopted to our system notation reads

tf ∼ 1√
2π

(
√

2π/Ω)5

ln4[
√

2π/(F Ω)]
, (26)

yielding for Ω = 10−2 and F = 0.05 a figure of the order
of tf ∼ 108. Plotting the directed current as as a function
of the angular driving frequency Ω one notices a strong
decay of the current with increasing angular driving fre-
quency (not shown here). The resulting 1/Ω dependence
of the current corroborates with the expression for the
momentum gain given in equation (21); see also in refer-
ences [15,28], providing intuitive arguments that support
the strong enhancement of the chaotic transport in space.

7 Conclusion

In this work we have investigated the dissipation-less,
time-dependent driven Hamiltonian dynamics of particles
evolving in a symmetric, spatially periodic potential whose
inclination is temporally varied periodically by an external
ac-force.

We have focused interest on the generation of a di-
rected flow of ensembles particles which are trapped in the
interior of a potential well. The choice of the initial start-
ing values is subjected to the condition that for a static
inclination the trapped particles cannot escape from a po-
tential well. Then, the only possibility left for escape from
the potential well is due to the chaotic dynamics which
arises in the system dynamics due to the time-dependent
forcing term. In fact, upon applying the time-periodic
modulation of the inclination, trajectories that become
embraced by the developing chaotic layer around the bro-
ken separatrix may cross the latter. However, for fast and
intermediate modulation frequency there results no sub-
stantial directed flow. This is so, because the trajectories
frequently cross and re-cross the separatrix correspond-
ing to leaving and re-entering the adjacent wells of the
potential wherein the particles dwell.

For adiabatic inclination modulations we have demon-
strated that for all initial conditions contained in the es-
cape set, motion takes place in a unique direction that
is controlled by the phase of the modulation term. It has
been shown that the slower the modulation the larger is
the gain in momentum of the escaped particles and thus
the emerging asymptotic current that obeys a 1/Ω depen-
dence.

Concerning an explanation of this phenomenon it
seems that the cantori, partitioning the nonuniform
chaotic layer, are the less leaky the smaller the modu-
lation frequency Ω. Research regarding the modulation
frequency dependence of the sticking times to the bound-
ary of regular islands is in progress [43]. The cantori form
almost impenetrable barriers that confine trajectories for
a very long but transient period. One should remark that
eventually this transient period of directed motion ter-
minates because the trajectory escapes through one of
the holes in the cantori and accesses other regions of the
chaotic layer. Therefore the motion does not necessarily
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proceed unidirectionally: Unless the trajectory gets cap-
tured by ballistic channels it itinerates within the chaotic
layer going along with changes of the direction of motion.

Suitable physical systems that come to mind to ex-
perimentally test our findings are periodically driven cold
atom optical lattices, as recently fabricated in studying
dissipative, classical ratchet dynamics [44,45]. In order to
verify our multi-facetted findings of directed, dissipation-
less transport the use of off-resonant, far detuned laser
beams is required; thus minimizing the dissipation in
these cold atom set-ups: A scenario proposed in different
context also for Hamiltonian quantum ratchets in refer-
ences [25,46]. Moreover, the particle trapping-detrapping
transitions induced by time-dependent modulations of the
potential as described in this manuscript can also be
applied in fluid dynamics to design particle traps in in-
compressible open flows as discussed in [48].

As an interesting extension of the present work we cur-
rently engage in studying this dissipation-less enhance-
ment effect for coupled nonlinear systems which are com-
posed of a chain of interacting particles [47].
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