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The time evolution of the single event probability of macroscopic variables is studied 
from a microscopic point of view. The explicit consideration of the preparation of the 
initial microdistribution leads to a unique decomposition of the macrodynamics into two 
parts, a local and instantaneous one and a nonlocal and retarded one. In this retarded, 
i.e., non-Markovian master equation no inhomogeneity occurs in contrast to previous 
approaches. It is shown that the retarded master equation can exactly be transformed 
into a time-convolutionless and homogeneous form {)(t)=F(t)p(t), which generates a 
substitutive Markov process with the same single event behaviour as the process in 
question. 

1. Introduction 

The time evolution of macrovariables of a system can 
be described successfully within the theory of sto- 
chastic processes. The Markov approximation ob- 
tained through a coarse graining in time has been 
used extensively in this field, e.g., in the theory of 
collective phenomena [11. Loosely speaking the 
Markov property states that the process has no mem- 
ory of the past for a known present. This fact yields 
that, in general, the sample functions are not differ- 
entiable [2]. Therefore, realistic physical processes 
are, in general, at best approximative Markov pro- 
Ccsses. 
The non-Markovian behaviour becomes important in 
transport problems in solids and fluids for short 
times [3-51 as well as in the theory of critical phenom- 
ena [6], in problems of quantum optics [-7, 8] and 
for the study of initial condition effects [9, 101. Even 
the long time behaviour of certain correlation func- 
tions is influenced by non-Markovian effects [-5, 10]. 
The stochastic properties of systems are characterized 
by a probability distribution p(a, t) in the space X of 
macrovariables a = (a I, a2...) and by higher joint prob- 
abilities. The non-Markovian time evolution of these 
probabilities has been treated in a recent paper [-111 
with interesting results. In this paper we investigate the 

time evolution of p(a, t) from a microscopic point of 
view. 
As the stochastic process of the macrovariables de- 
pends on the microscopic dynamics together with the 
initial microscopic distribution we introduce in 
Section 2 a concept of preparation classes (n) specify- 
ing the essential information about the initial micro- 
scopic state p(0), that means about the preparation 
procedure of this state. Every preparation class cor- 
responds to a different stochastic process of the mac- 
rovariables a. 
In Section3 we derive an exact generalized master 
equation for the single-event probability p(a,t) by 
means of the projection operator method [12, 131 . So 
far several generalized master equations have been 
derived using different projection operators [12-171. 
All these equations lead, in general, to an in- 
homogeneity and thus have not the form expected 
from the theory of stochastic processes [-11]. We 
introduce a projection operator leading to a master 
equation without an inhomogeneity. By this property 
the projection operator is uniquely defined and de- 
pends on the preparation class (n), hence, manifesting 
explicitely the dependence of the stochastic process 
on the preparation. 
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In Section4 properties of the operators occurring in 
the derived master equation are discussed. We obtain 
an integral equation for the memory function which 
is useful for perturbative evaluations. In Section 5 we 
transform the master equation into an equivalent 
time-convolutionless form 

/~(t) =~(0p( t ) ,  (1.1) 

where the stochastic operator F~(t) is the generator of 
a substitutive Markov process with the same single 
event behaviour as the process in question. This 
property of the stochastic operator does not hold for 
time-convolutionless master equations containing in- 
homogeneities [18-20]. 
In Section 6, we summarize the important features of 
the results obtained. 

2. Initial Distribution and Preparation Classes 

In this paper we restrict ourselves to classical sta- 
tistical mechanics. On the microscopic level the sys- 
tem is described by a microdistribution p(q), where q 
=(ql . . . .  , %, ...) is a point in the phase space F. p(q) is 
an element of the linear manifold II(F) of absolutly 
integrable functions. On the macroscopic level the 
system is characterized by a set of macrovariables a 
=(al, . . . ,an,. . .  ) forming the state space S. These 
macrovariables are phase functions A(q) and define 
hyper-surfaces S(a) with fixed values A(q)=a in F. 
The macrodistribution p(a) is an element of II(Z) and 
is obtained from p(q) by means of a coarse graining 
operator 

C: n ( C ) ~ n ( S )  
p(a) = (Cp)(a) = ~ dq C(a; q) p(q) (2.1) 

where 

C(a; q) = 3 (A (q) - a). (2.2) 

p(a) yields correct mean values for functions of the 
macrovariables 

dq f (A(q)) p(q) = ~ da f (a) p(a). (2.3) 

We introduce the conditional probability 

A P(q) w w(q[ (q))=p(A(q~=- (q) (2.4) 

which gives the distribution of the microstates q on a 
known hyper-surface S(A(q)). w(q[A(q)) is normalized 
on every surface S(a) 

dq 3(A(q)-  a) w(qlA(q)) = 1. (2.5) 

The initial microdistribution p(0) at time t o=0  is a 
result of the preparation procedure; its determination 
is, in general, itself a complicated problem of statisti- 
cal mechanics. To prepare an ensemble of physical 

systems in a reproducible way one usually has to 
start with a time-translation invariant state character- 
ized by a set of parameters 2, e.g., temperature of 
reservoirs, external fields, etc. Afterwards, one breaks 
this symmetry by a well defined external operation at 
time t o , e.g., by switching on or off an interaction. 
Using the conditional probability defined in (2.4) we 
may decompose the initial microdistribution p(0) ac- 
cording to 

p(q, O) = w,~(q IA (q)) p(A(q), 0). (2.6) 

The macrodistribution p represents the information 
controlled by the experiment for times t > to, whereas 
the initial conditional probability w~ contains the 
additional information about the preparation (re) and 
therefore depends on the parameters 2. 
Let us now introduce preparation classes (7 0 of initial 
microdistributions p(0) leading to the same con- 
ditional probability. As a first example we consider a 
physical system which is initially in a thermodynamic 
equilibrium state described by 

Pt~(q, O) = Z -  1 e- ~ (n(q)+ H'(Aiq)))  ' (2.7) 

where H'(A(q)) describes the coupling of the mac- 
rovariables to external fields. At time t 0 = 0 -  these 
fields are switched off. 
From Equation (2.7) we derive using (2.4) 

e- ~H(q) 
w~(q) = ~ dq' 6(A(q) - A(q')) e- an(q') " (2.8) 

We see that this preparation class includes all types 
of couplings to external fields via macrovariables and 
depends only on the temperature. 
Considering a subsystem described by the variables 
A(q) which is brought at time t o into interaction with 
reservoirs with steady distributions $j(Bj(q)) we get 
for the conditional probability w~(q) from 

p (q, O) = p(A (q), O) 1-[ (oj (Bj(q)) (2.9) 
J 

w~(q) = ~I (~j(Bj(q)). (2.10) 
J 

This preparation class depends only on the param- 
eters fixing the steady reservoir distributions. 

3. Equation of Motion for p(a, t) 

In this section we derive an exact generalized master 
equation for the macrodistribution p(a, t) by means of 
the projection operator technique [12-14]. For  every 
preparation class (72) we introduce an operator 

K~: H(S)~H(F) 

(K,~ f)(q) = ~" da K~(q; a) f(a) (3.1) 
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where 

K~(q ; a) = w~(q) 6(A(q) - a). (3.2) 

From Equation (2.6) we derive the relation 

p(0) = K~ p(0) (3.3) 

which holds for the initial distributions. The operator 
K~ blows up the coarse-grained initial distribution 
p(0) to the correct initial microdistribution p(0). 
Together with (2.1) this equation yields 

p(0) = P~ p(0) (3.4) 

where we have introduced the projection operator 

P~: n (r)  -~ n (r) 

P~ =K~C; p2 =p~. (3.5) 

The second relation follows from 

C K ~= I .  (3.6) 

The projection operator P~ maps the space H(F) of 
microdistributions onto the subspace of distributions 
belonging to the preparation class (~) in question and 
is uniquely determined by the initial microdistri- 
bution. For special preparation classes (~) the pro- 
jectors introduced by several authors [14-17] are 
obtained. 
From the Liouville equation 

tS(t) = {H, p(t)} ~-Lp(t ) 

p(t) = e Lt p(O) 

for the microdistribution p(t) where H is 

(3.7) 

(3.8) 

the 
Hamiltonian and {, } denotes the Poisson bracket we 
have 

/~(t) = C~(t) = CL e Lt p(0). (3.9) 

Using the identity 

eLt=p~eLt+(1--p~) eL(l- P~)t(1 -- p~) 

t 

+ ~ ds(1 - P~) e L(1 - P~)(t- s)(1 - -  P~)LP~ e rs (3.10) 
0 

which can be verified by differentiation, 
Equation(3.9) yields for the rate of change of the 
macrodistribution 

p(t) = CLK~ p(t) 

+ i dsCL(1-P~)eL(1-e~)(t-~)(1-P~)LK~p(s).  (3.11) 
0 

Here we have used 

P~ e Lt p(O) = K~ p(t) (3.12) 

and (3.4) which has the consequence that in the 
master equation (3.11) no inhomogeneity occurs. 

Introducing the stochastic operator defined on H(Z) 

f ~  = CLK~ (3.13) 

A ~(t) = CL(1 - P~) e L(' - P=)~ (1 - P~)LK~. (3.14) 

Equation (3.11) reads 

t 

p(t) = g2~ p(t) + ~ ds A ~ ( t -  s) p(s). (3.15) 
0 

This equation is an exact master equation for the 
single-event distribution of the non-Markov process 
in consideration. To stochastic operators (2~, A~(t) 
depend on the preparation class 0z) thus showing 
explicitly the dependence of the stochastic process on 
the preparation, g2~ gives the instantaneous contri- 
bution to the rate of change of p(t) whereas A~( t - s )  
describes the influence of the memory for former 
times s. 

4. Properties of  the Stochastic Operators 

In this section an exact integral equation for A~(t) is 
derived. More explicit expressions for the stochastic 
operators are given. 
From the definition (3.14) of the stochastic operator 
A~(t) we see that its calculation involves the solution 
of a problem with the unusual propagator e L(~-P=)t 
Often, this is one of the main problems of a micro- 
scopic approach. In such a case one might overcome 
this difficulty by means of an exact integral equation 
for the memory function following from the identity 

(1 -P~) e L('- P=)' (1 -P~)=(1 -P~) eLt(1 -P~) 
t 

- ~  ds(1 --P,~)eL('-V~)tt-~)(1--P~)LP~eL~(1 -P~). (4.1) 
0 

Using (3.14) this relation yields 

t 

An(t ) = A°(O - ~ ds A ~ ( t -  s) Z=(s) (4.2) 
0 

where 

a°(t) = CL(I - P~) eL~(1 -- P~) LK~ (4.3) 

Z~(t) = C eL'(1 -- P~) LK~. (4.4) 

These stochastic operators do not contain the un- 
usual propagator e L(~-P=)'. 
By differentiation we see that ~ ( t )  obeys the differen- 
tial equation 

-~(t) = CL eLt(1 -- P~) LK~ 

= A°(t) + a~Z~(t) (4.5) 

with the initial condition 

.~(0)  = C(1 - P~) LK~ = 0, (4.6) 
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where we have used Equations(3.5), (3.6) and (3.13). 
Introducing the free propagator 

G°(t)=e ~=t (4,7) 

the solution of the inhomogeneous Equation(4.5) 
reads 

t 

Z~(t) = ~ ds G ° ( t -  s)A°(s). (4.8) 
0 

The kernels of the stochastic operators ~ and either 
A~(t) or A°(t) have to be calculated within the micro- 
scopic theory in an appropriate approximation. 
Afterwards, the remaining stochastic operators may 
be evaluated by means of the purely macroscopic 
relations (4.2), (4.7) and (4.8). 
Now we give expressions for ~ ,  A~(t) and A°(t) 
which are more useful both for physical in- 
terpretations and for approximative evaluations. The 
Poisson-bracket structure of the Liouvillian L leads 
to 

dq ~(q)L q~(q) = - ~ dq q~(q)L ~(q). (4.9) 

Inserting the definitions (2.1), (3.1) into Equation (3.13) 
we find 

( ~  f)(a) = ~ dq 3(A(q)-  a)L w~(q) f(A(q)) (4.10) 

which holds for every f e l l (S ) .  
With the help of (4.9) and the relation 

0 
Lb(A(q) - a) = - ~ ~ 6(A(q) - a)LAj(q) (4.11) 

we derive 

( ~  f)(a) = - ~ ~a k Vk(a) f(a). (4.12) 

The drift vector is given by 

vj(a) = ~ dq 3(A(q) - a) w~(q)Aj(q) (4.13) 

where 

A j(q) = - LA~(q) = {A~(q), H(q)}. (4.14) 

Transforming A~(t) in the same manner we derive the 
following expression 

(A~(t) f ) ( a ) = ~  ~--~j ~da' 

• Djk(a , a'; t) ga~ 

The same expression holds for A°(t) if Djk is replaced 
by Dj ° .  
The details of the calculation and the definitions of the 
matrices D and D o are outlined in the Appendix. 
The free propagator defined in (4.7) fulfills the for- 
ward equation 

G°(t) = 12~ G°(t). (4.16) 

This equation can easily be solved if the solutions of 
the pure drift-motion 

fij(t) = vj(a(t)) (4.17) 

are known leading to 

(G°(t) f)(a) = ~ da' b(a - a'(t)) f (a'). (4.18) 

Obviously this propagator describes fluctuations only 
by randomness contained in the initial distribution. 
Hence, it is the deterministic part of the exact pro- 
pagator G~(t) treated in the next section. The fluc- 
tuating motion is due to the memory effects described 
by the stochastic operator A~(t). 

5. Stochastic Process and Substitutive Markov Process 

It is shown that for any non-Markov process there 
exists a substitutive Markov process with the same 
single-event behaviour. 
Let us introduce the propagator G~(t) satisfying the 
integrodifferential equation 

t 

G~(t) = ~ G~(t) + S ds A~( t -  s) G~(s) (5.1) 
0 

with 

G~ (0) = 1. 

Then the solution of (3.15) reads 

p(t) = G=(t) p(0). (5.2) 

From this equation we derive for the rate of change 
of the macrodistribution p(t) the time-convolutionless 
master equation 

[9(0 = I'~(t) p(t) (5.3) 

where 

F~(t) = (~(t) G~ 1(0. (5.4) 

Equation (5.3) is an exact transformation of the mas- 
ter equation with memory (3.15).  Time- 
convolutionless master equations have yet been de- 
rived by several authors [18-20]. However, only the 
explicit consideration of the preparation (~) leads to 
the homogeneous form (5.3) and determines the gen- 
erator F~(t) of the infinitesimal time shift of the pro- 
cess. 
F~(t) defines a semigroup of time-ordered propagators 
V~(tzltl) 

V~(tzltl)=Tex p dsF~(s) --G~(t2)G~-l(tl) (5.5) 

where 

t 2 ~ t  1, V~(t+[t)=l. 
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This semigroup determines the macrodistribution 
p(tz) if p(tl)  is known for an arbitrary time t l < t  2 
according to 

P(t2)  = Vn(t2 l / l )  P(h)"  (5.6) 

Formally, V~(t2ltl) may be considered as the con- 
ditional probability of a substitutive* non-stationary 
Markov process [21]. By construction, the sub- 
stitutive Markov process yields the same single-event 
behaviour as the process in question and its con- 
ditional probability V~(a 2 t 2 l a 1 t~) determines the time 
evolution of p ( a l h  ). However, this Markovian con- 
dition probability is, in general, not identical with the 
conditional probability of the non-Markov process 
under consideration [11]. 
In the non-Markovian system the conditional prob- 
ability depends on the .history. There is one excep- 
tion: relating back to the initial time of preparation 
t o = 0 the system has no memory for previous times t 
< t  o. Hence, V~(atla't '=O), which is identical with the 
kernel G~(a,a';t)  of the propagator G~(t), coincides 
with the initial conditional probability of the process 
and allows for the calculation of initial correlation 
functions 

<f2(t) f l (O))  

= [~ da da' f2a ) f1 (a') G~(a, a'; t) p(a', 0). (5.7) 

In accordance with this interpretation the kernel of 
G~(t) may be written as 

C,~(a, a'; t) 
= ~ dq 6(A(q) - a) e Lt 6(A(q) - a') w,~(q). (5.8) 

Suppose that the class of initial distributions belong- 
ing to the preparation (7c) contains a stationary mi- 
crodistribution P~t = eL tP~t. In that case we have 

w~(q) - -  /)st(q) 
Pst(A(q) ) . (5.9) 

Then, Equation(5.8) shows that G~(a,a';t)  is the sta- 
tionary conditional probability. For  instance, this is 
the case with the preparation (2.8), but not with the 
preparation (2.10). 

6. Conclusions 

We considered the stochastic process of macrovari- 
ables from a microscopic point of view and took the 
preparation explicitly into account. To determine the 
stochastic process the preparation procedure is of the 

* It should be noted that, in genera1, the kernel V~(a 2 tzla 1 ~1) may 
contain negative elements such that V~(t2lt~) describes a pseudo- 
Markov process with negative transition probabilities. 
Nevertheless, p(a, t) is a non-negative function 

same importance as the underlying microdynamics. 
To describe the preparation effects we introduced a 
concept of preparation classes (re) characterized by an 
initial conditional probability w~ (2.4) which de- 
termines the statistical weight of macroscopically 
equivalent microstates. 
We derived a master equation for the single-event 
probability p(a, t) by means of well known projection- 
operator techniques. However, in contrast to usual 
exact equations of motion we obtained a decom- 
position of the rate of change of p(a, t) into two parts 
only, an instantaneous and a memory contribution. 
The absence of a third contribution, the usually ap- 
pearing inhomogeneity, leads to a unique decom- 
position of the macroscopic dynamics. We showed 
that the homogeneous master equation can exactly 
be transformed into a time-convolutionless form (5.3) 
where the new stochastic operator F~(t) is the genera- 
tor of a substitutive time-inhomogeneous Markov 
process. 
So far we have been concerned with exact results 
only. The exact master equation may be written as 

0 - -  vj(a) p(a, t) c~t p(a, t) = - ~ 0 
• oa i 

+ d 2o ida' 
• Djk(a ,a ' , t - -s )  ~ + D j o ( a , a , t - - s  ) p(a',s) (6.1) 

and approximations mainly concern the evaluation of 
the rather involved formal expression (A.8) for the 
matrix D. It should be noted that the quality of an 
approximation is strongly influenced by the prepara- 
tion• For  instance, in many cases we may neglect 
retardation effects in the master equation (usually 
referred to as Markov approximation), whereas this 
approximation cannot be adequate for the time- 
reversed process governed by the same master 
equation (6.1) with a different preparation (r0, howev- 
er. This preparation effect is apparent in our theory 
as the stochastic operators depend on the preparation 
explicitly. 
The vast variety of conceivable initial microdistri- 
butions is reduced drastically if only experimentally 
accessible ones, i.e., reproducible preparations are 
taken into account. Then the preparation itself is a 
macroscopic process and, hence, the variable Ao(q) 
introduced in Equation (A.3) usually has the property 
of a macrovariable that means it varies only slowly in 
time. 
Considering the rates of change of the macrovari- 
ables (including A0) as small one obtains a per- 
turbative approach to the matrix D. To make this 
approach systematic we may split the Liouvillian L 
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into two parts 

L = L o + La (6.2) 

so that L o describes the fast motion within a surface 
of fixed values A ( q ) = a ,  A o ( q ) = a  o of the macrovari- 
ables, whereas L~ is the slow motion orthogonal to 
these surfaces• Afterwards one expands D into powers 
of L 1 . 

D is at least of second order in L 1 by definition. In 
the lowest approximation D coincides with D o and is 
local in S space, 

Djk(a,a t)-- o , '; --Djk(a , a ,  t) "~ 
r L = 8(a-- a )Djk(a, t). (6.3) 

Using the definition (A.10) of the matrix D °, we see 
that an approximative locality in Z space of D o can 
only be established if the macrovariables do not 
change appreciably within the memory time. On the 
other hand this is the property of macrovariables 
needed to justify the Markov approximation (locality 
in time). Hence, Equation(6.1) is approximated con- 
sistently in the lowest order by the Fokker-Planck 
equation. It seems that whenever memory effects are 
important the nonlocality of D has to be taken into 
account too. The derivation of an exact homogeneous 
master equation given in the present paper may 
easily be generalized to systems in interaction with 
time-dependent external forces or fields, governed by 
a time-dependent Liouville operator L(t). Furtheron, 
if one has already a description of a system by a 
reduced set of variables whose probability distri- 
bution obeys an instantaneous master equation, a 
further reduction of the set of variables (second coarse 
graining) may be done in principle by the same 
method• 
So far, we have considered only the single-event 
probability p(a,t). A microscopic derivation of the 
equations of motion for the multivariate probability 
distributions p(")(t~,..., t,) will be given in a forthcom- 
ing publication. 

We wish to thank Profs. H. Thomas and W. Weidlich for useful 
comments. One of us (P.H.) thanks Prof. H. Haken for his in- 
vitation and hospitality during a stay in Stuttgart where a part of 
this work has been done. Also he is indebted to Dore, Elvira and 
WAG for various "schw~ibisch" specialities. 

Appendix 
Derivation o f  Equat ion (4.15) 

Using (4.9). (4.11-13) we get 

(CL(1 - P.) qS)(a) = (CL 4))(a) - (I2. C qS)(a) 

= - ~  ~ dq (5(A(q) - a)(Aj(q) - vj(a)) dp(q). (A.1) 

Furtheron, with definition (3.1) of K~ we derive 

((1 - P~) LK~ f ) (q)  = (LK~ f ) (q)  - (K~ I2~ f ) (q)  

= ~ da' t L w , ( q )  cS(A(q)- a') 

8 vk(a,)}f(a,)  (A.2) + 2k w~(q) ~(A(q) - a') 8a~ 

Introducing the variable 

Ao(q) = In w~(q) (A.3) 

we may write (A.2) by means of 

Lw~(q) 6 ( A ( q ) -  a') 

= w~(q) { ~  O@k f (A(q)- -a ' )  Ak(q) 

- -  6 ( A ( q )  - a ' )  Ao(q) } (A.4) 
in the form 

((1 - P.) LK~ f ) (q)  = - ~ da' w~(q) 8(A(q) - a') 

. { ~ ( A k ( q ) - - v k ( a ' ) ) ~ + ( A o ( q ) - - V o ( a ' ) ) } f ( a '  ) (1.5) 

where 

Vo(a)=~ ~ a  k vk(a) 

= S dq 8(A(q) - a) w~(q) Ao(q). (A.6) 

Here we have used Equations (4.11), (4.13) and (A.3). 
The definition (3.14) of As(t  ) yields together with 
(1.1), (1.5) 

( A ~ ( t ) f ) ( a ) = ;  ~da ' .  Djk(a,a ' ; t  ) 
d 

+ Djo(a, a'; t)} f (a ' )  (A.7) 

where the matrix D is determined by 

Djk(a, a' ; t) = ~ dq 6(A(q) - a)(Aj(q) - vj(a)) 

• e L(I ~'~)~ w~(q) 6(A(q) - a')(Ak(q) - vk(a')). (A.8) 

On the other hand the definition (4.3) of A°(t) leads in 
the same manner to 

(A~°(t) f ) (a)  = Djk(a , a ,  ~ a . ~ d  a, o " t )  8 
8a'k 

+ D°o(a, a', t)} f (a ' )  (1.9) 

where the matrix D o is defined by 

D j° (a, a' ; t )= ~ dq w,(q) cS(A(q) - a')(Ak(q) - vk(a')) 

• e Lt cS(A(q)- a)(Aj(q) - vi(a)). (A.10) 
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