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We investigate an optimal regime of negative-valued conductance,
emerging in a resistively and capacitively shunted Josephson junction, which
is driven simultaneously by both, a time-periodic (ac) and a constant (dc)
current. We analyze the current-voltage characteristics in the regime of
absolute negative conductance. We additionally explore the stability of the
negative response with respect to the ac-current frequency.
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1. Introduction

The problem of far-from-equilibrium transport in periodic systems con-
tinues to attract considerable attention during the last decade. Research in
this field provides an important contribution to the foundations of thermo-
dynamics and statistical physics. For example, the interplay of nonlinearity,
dissipation, fluctuations and external driving in the presence of chaotic dy-
namics can lead to a number of unusual scenarios of dynamical behavior
of Brownian particles. The most prominent example is a Brownian motor
system [1, 2]. Despite all the interesting features revealed in the last years
like Brownian ratchet transport [3], current reversals [4], noise-induced phase
transitions and the general fact that noise can play constructive role in many
cases [5], there exist still unexplored areas of dynamical phenomena awaiting
to become disclosed. Such a rich plethora of transport behaviors emerges
when inertia effects start to dominate the transport characteristics [6]. As an
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example we recall the prominent phenomenon of anomalous response due to
external driving which can appear in relatively simple systems such as in
an ac-driven and dc-biased Josephson junction [7]. For the systems in ther-
modynamic equilibrium the input–output relationship is in accordance with
the linear response theory (LRT). Yet there are circumstances where LRT
holds perfectly well also far away from equilibrium [8]. A good example
is the over-damped classical [9] and quantum [10] transport of Brownian
particles in a washboard potential: the velocity is an increasing function of
the small external static force (positive mobility). However, this intuitive or
“normal” situation where the effect follows the cause may change radically
when the system is subjected to several forcing degrees of freedom. There
exists a broad variety of physical systems which can exhibit “anomalous” be-
havior. One of them is the already mentioned ratchet effect, which is caused
by a symmetry breaking and a source of non-equilibrium forcing. When the
static force affects the time-periodically driven massive Brownian particle
moving in spatially periodic structures [11], it can respond with a nega-
tive differential mobility (NDM) [12, 13] or even with an absolute negative
mobility (ANM) [7]. In terms of an electric transport, one can observe an
absolute negative conductance (ANC) when upon an increase of the static
voltage bias, starting out from zero, a current is induced in the opposite di-
rection. This situation was experimentally confirmed in p-modulation-doped
multiple quantum-well structures [14] and semiconductor super-lattices [15].
ANC (ANM) was also studied theoretically for ac-dc-driven tunneling trans-
port [16] and in the dynamics of cooperative Brownian motors [17], for Brow-
nian transport in systems of a complex topology [18] and in some stylized,
multi-state models with state-dependent noise [19], to name but a few.

In this paper, we continue our prior studies of the same system detailed
in Refs. [7, 20, 21] and analyze the optimal regime of negative-valued con-
ductance. In Section 2, we present the details of the model of the resistively
and capacitively shunted Josephson junction. In Section 3, we study novel
aspects of current-voltage characteristics in the optimal regime while putting
special emphasis on the frequency dependence of the ac-driving source on
the anomalous response.

2. Stewart–McCumber model

We explain the dynamics of the Josephson junction in terms of the well
known Stewart–McCumber model [22] in which the current through the
junction is a sum of a Josephson supercurrent characterized by the critical
current I0, a normal ohmic current characterized by the resistance R and
a displacement current accompanied with a capacitance C. The Johnson
noise plays the role of the thermal equilibrium noise which is associated
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with the resistance R. The quasi-classical dynamics of the phase difference
φ = φ(t) between the macroscopic wave functions of the Cooper electrons
on both sides of the junction is described by the following equation [22]

(

~

2e

)2

Cφ̈ +
(

~

2e

)2 1

R
φ̇ = −

~

2e
I0 sin(φ) +

~

2e
Id

+
~

2e
Ia cos(Ωt + φ0) +

~

2e

√

2kBT

R
ξ(t) . (1)

The dot denotes differentiation with respect to time t, Id and Ia are the
amplitudes of the applied dc and ac, respectively, Ω denotes the angular
frequency of the ac driving source and φ0 defines the initial phase value.
The parameter kB is the Boltzmann constant and T stands for temperature
of the system. The ubiquitous thermal equilibrium fluctuations are modeled
by δ-correlated Gaussian white noise ξ(t) of zero mean and unit intensity.

The dimensionless form of this equation then reads [7, 20, 21]:

ẍ + γẋ = −2π sin(2πx) + f + a cos(ωs + φ0) +
√

2γD Γ (s) . (2)

Here x = φ/2π and the dot denotes differentiation with respect to the di-
mensionless time s = t/τ0 = ω0t , where the characteristic time τ0 = 1/ω0 =

2π
√

~C/2eI0 and ω0 is the plasma frequency [7]. Other dimensionless pa-
rameters after rescaling assume the form: friction coefficient γ = τ0/RC;
the amplitude and the angular frequency of the ac-current are denoted by
a = 2πIa/I0 and ω = Ωτ0, respectively. The dimensionless bias load stands
for f = 2πId/I0, the rescaled zero-mean Gaussian white noise Γ (s) pos-
sesses the auto-correlation function 〈Γ (s)Γ (u)〉 = δ(s − u), the noise inten-
sity D = kBT/EJ and the Josephson coupling energy is EJ = (~/2e)I0. The
actual stationary averaged voltage reads

V =
~ω0

2e
v , v = 〈ẋ〉 , (3)

where the stationary dimensionless averaged voltage is v = 〈ẋ〉. The brackets
denote an average over the initial conditions, over all realizations of the
thermal noise and the long time limit over one cycle of the external ac-
driving.

3. Negative conductance

It often proves useful to use the mechanical analog of the system (2),
being an inertial Brownian particle which performs a one-dimensional ran-
dom motion in the periodic potential U(x) = − cos(2πx). The phase is the
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equivalent of the space coordinate of the Brownian particle and the currents
play the role of driving forces on the particle [13, 23]. Because Eq. (2) is
equivalent to a set of three ordinary differential equations, the phase space
of (2) is three-dimensional. In consequence, the deterministic (D = 0) non-
linear system (2) typically may exhibit chaotic properties [22]. In general,
the deterministic dynamics (D = 0) exhibits a very rich behavior. One can
detect periodic, as well as quasi-periodic and chaotic solutions depending on
the system’s parameters. Switching on finite thermal noise one thereby acti-
vates the diffusive dynamics where stochastic escape events among existing
attractors become possible. Moreover, the particle can now visit any part
of the phase space and proceed within some finite time interval by following
closely any of the existing stable or unstable orbits.

Assuming a zero dc (f = 0), the motion is unbiased and symmetric in
the ac-amplitude. The stationary averaged velocity (or voltage) in this case
then must be zero. The simplest option to destroy this symmetry is to apply
a dc-bias, i.e. we set f 6= 0. It breaks the reflection symmetry x → −x of
the potential and in turn allows the averaged velocity (voltage) to assume
non-zero values, which typically assume the same sign as f . Any deviation
from this rule is counterintuitive. As we have shown previously, a Josephson
junction exhibits many exciting features, including absolute negative con-
ductance (ANC) [7, 20], negative differential conductance (NDC), negative-
valued nonlinear conductance (NNC) or the reentrant effect of the negative
conductance [21]. In mechanical, particle-like motion terms, it corresponds
to a negative mobility of the Brownian particle.

In a related study [21], we found an optimal regime of the negative con-
ductance in the parameter space {a, ω, γ}. This regime is located around
the values a ∈ (12, 21), ω ∈ (6.5, 7.5) and γ ∈ (0.9, 1.4). This regime seems
to be optimal in the sense that the negative conductance is most profound
in a relatively large domain with relatively large values of the dimension-
less voltage. The occurrence of a negative conductance may be governed by
various mechanisms. In some regimes negative response is induced solely
by thermal equilibrium fluctuations, i.e. the effect is absent for vanishing
thermal fluctuations. Yet in other regimes, ANC can occur in the noiseless,
deterministic system while a finite temperature either destroys the effect
or diminishes its strength [7, 21]. Nevertheless, both situations have their
origin in the noise-free (D = 0) structure of the stable and unstable orbits.
To be more concrete, let us consider a particular set of parameters, namely,
a = 19.5, γ = 1.2 and ω = 6.9. For this set of parameters, the deterministic
behavior can be understood if one studies the structure of the underlying
attractors and the corresponding basins of attraction. In the upper panel of
Fig. 1, we show the long-time averaged voltage. It turns out that the system
possesses four attractors: two transporting in the positive direction, v = 1.1
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Fig. 1. (color online) Upper panel: colored lines represent the time averaged velocity

in the deterministic case D = 0. The four colors correspond to the four attractors

v = −2.2,−1.1, 1.1, 2.2. The black line denotes the long-time velocity (voltage),

averaged over initial conditions (position, velocity and phase). In the lower panel,

the corresponding basins of attraction are depicted: yellow and green mark regimes

where transport occurs in the negative direction (i.e. for v = −2.2 and v = −1.1,

respectively); blue and red mark regimes for which the attractor is transporting in

the positive direction (i.e. for v = 1.1 and v = 2.2, respectively). The averaged

velocity (voltage) for f = 0.1 is determined by the structure of the basins of

attraction rather than by the attractor itself: Although the positively transporting

attractor (red) possesses a larger velocity v, its basin of attraction is much smaller

than the one transporting into negative direction. Thus, the contribution of this

smaller basin to the total transport remains small. The presence of noise does

not markedly change this characteristics (see Fig. 3 for f = 0.1). The remaining

parameters read: a = 19.5, γ = 1.2, ω = 6.9. The basins of attraction are shown

for the initial phase value at φ0 = −π/2.
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and v = 2.2, and two transporting in the negative direction v = −1.1 and
v = −2.2. Notably, if one performs the average over all initial conditions
(position, velocity and initial phase) with a corresponding, non-weighted uni-
form distribution then the resulting voltage v behaves in the way depicted
by the black curve. The zero voltage for the case f =0 follows from symme-
try arguments, see in Fig. 2. The right panel in this figure can be obtained

φ = −π/2
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Fig. 2. (color online) An example of two corresponding sets of basins of attraction

for the deterministic dynamics, D = 0 at vanishing bias f = 0. The left part

is exactly the same as the left part in the lower panel of Fig. 1. The right part

corresponds to the transformed initial conditions (x, v, φ0) → (−x,−v, φ0 +π). We

recall that the system is periodic with period 1. Noting the present symmetry one

obtains zero voltage after averaging over all initial conditions.

from the left panel by the transformation (x, v, φ0) → (−x,−v, φ0 + π)
or, what is easier visible, rotation about the origin (0,0) by the angle π.
In other words, for each trajectory transporting to the right direction there
exists its partner transporting exactly in the opposite direction. So, both
contributions cancel each other and thus all averages of the voltage over sym-
metrical distributions in phase space become zero, yielding v = 0. When a
finite bias is applied, this symmetry becomes broken, now typically yielding
a non-vanishing velocity v. A small positive bias results in this regime in
a positive voltage (normal response). A further increase of the dc-current
destabilizes two attractors, namely, v = −2.2 and v = 1.1, and for example
at f = 0.1 there exist only two attractors: v = −1.1 and v = 2.2, see Fig. 1.
By taking the arithmetic average of these two numbers one could expect that
the voltage v would be positive (and thus no ANC is expected). However, if
one performs the averaging over all initial uniformly distributed initial con-
ditions then the voltage v is negative and its value is very close to v = −1.1.
To explain this result one has to inspect the basins of attraction of orbits
with v = −1.1 and v = 2.2. It turns out that for the positively transporting
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attractor v = 2.2, the basin of attraction covers a much smaller area than
the basin of attraction for the negative transporting attractor v = −1.1. This
is depicted with the right lower panel of Fig. 1: The green (light) regions
are much larger than the red (dark) regions. As a consequence, directed
transport is dominated by orbits which carry a negative voltage v.
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Fig. 3. (color online) The dimensionless stationary averaged voltage v as a function

of the dc-bias current f . The black (thin) line corresponds to the deterministic

(D = 0) dynamics, the blue (intermediate-thick) line corresponds to a dimensionless

temperature of D = 0.005, while the red (thick) line corresponds to D = 0.001.

For a non-zero temperature, absolute negative conductance (or absolute mobility)

occurs. The remaining fixed parameters read: a = 19.5, γ = 1.2, ω = 6.9. For small

values of the dc-current f < 0.05, the temperature changes dramatically the v − f

characteristics.

The influence of temperature is presented in Fig. 3, where we depict
the dimensionless stationary averaged voltage v versus the dimensionless
dc-current f ∈ [0, 0.4] for three selected values of the noise intensity D =
kBT/EJ = 0, 0.001, 0.0005. We clearly detect that at non-zero temperature
(D > 0) and for a small positive dc-current f , the voltage v is negative. This
case illustrates the phenomenon of absolute negative conductance (ANC).
Let us emphasize the constructive role of noise here: In the noiseless, de-
terministic case (D = 0) and for small bias, the system response behaves
normal: The averaged voltage is positive for a positive dc-current (normal
transport behavior). One can notice that an increase of the temperature
typically diminishes the effect. The above ANC effect can be explained by
the fact that the dynamics of the system located close to the bifurcation
point, if perturbed by thermal noise, takes place in the region of the phase
space where the stable attractor is emerging beyond the bifurcation point.
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Fig. 4. (color online) The stationary, averaged voltage is depicted versus the ac

frequency for D = 0.001 at two dc-currents f = 0.1 and f = 0.27. The other

parameters are as in Fig. 3.

Finally, the impact of the frequency of the ac-current on the average
voltage is depicted in Fig. 4 for two different values of the dc-current: f = 0.1
(dashed blue line) and f = 0.27 (solid red line). We see that up to the value
of ω ≃ 5.8 the average voltage remains zero. A further increase of angular
driving frequency leads to finite transport with a positive voltage. For ω ≃
6.7 the voltage suddenly drops and crosses over into a negative average value,
thus representing a negative-valued conductance. This situation remains
essentially for the remaining regime of frequencies up to ω ≃ 8. One can
also observe that in some regions of ω, the voltage stays close to the same
value for both, f = 0.1 and f = 0.27, cf. Fig. 4 and the regime around
ω ≈ 6.5 or ω ≈ 7.3. It means that in the current–voltage characteristics one
could observe Shapiro steps [24]. Please note that for both scenarios with
f = 0.1 and f = 0.27 the variation of the voltage with increasing angular
frequency depicts a qualitatively robust similar behavior, despite the fact
that the deterministic dynamics can behave quite different (not shown).

In summary, we put forward an analysis of the negative conductance
occurring in the system of a resistively and capacitively shunted Josephson
junction. For this phenomenon to occur it is necessary that two driving
sources operate simultaneously, namely an ac and a dc source. We have
related the deterministic dynamics with its stable and unstable orbits to the
normal and anomalous response of the junction to the external stimuli. We
are confident that this very regime of ANC can be successfully tested with an
experiment involving a single Josephson junction, and the presented setup
will be stable within small variations of any of the structural parameters.
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