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Analytical and numerical simulation studies are performed on the diffusion of simple fluids in both thin slits
and long cylindrical pores. In the region of large Knudsen numbers, where the wall-particle collisions outnum-
ber the intermolecular collisions, we obtain analytical results for the self-diffusion coefficients for both slit and
cylindrical pore shapes. The results show anomalous behavior of the mean square displacement and the
velocity autocorrelation for the case of slits, unlike the case of cylindrical pores which shows standard Fick’s
law. Molecular dynamics simulations confirm the analytical results. We further study the wall-mediated diffu-
sion behavior conducted by a Smoluchowski thermal wall and compare with our analytical results obtained
from the stochastic thermal wall model proposed by Mon and Percus.
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I. INTRODUCTION

Transport phenomena of fluids in confined spaces have
been of long-standing interest. Owing to the development of
nanoscience, a number of interesting diffusion behaviors in
systems with strong geometric confinement have been re-
cently observed and studied. These systems include biologi-
cal �1� and artificial �2,3� channels, carbon nanotubes �4�,
templated porous materials �5,6�, molecularly imprinted ma-
terials �7�, nanoporous catalysts �8,9�, and membrane fuel
cells �10�. Thus a comprehensive understanding of diffusion
processes in porous systems has become essential.

The establishment of the relationship of the parameters
characterizing a fluid in a nanopore—pore shape, pore size,
and adsorbate’s density—with its diffusivity has been a chal-
lenge to theoreticians �11–26�. The classical study of diffu-
sion in a pore dates back to Knudsen’s seminal work �27�. In
his work, the diffusivity of a hard-sphere fluid in a cylindri-
cal pore was obtained analytically in the low density limit. In
the Knudsen diffusion regime, the intermolecular collisions
are neglected and the particles diffuse in a wall-mediated
manner. Each molecule performs a series of free flights and
changes its directions after collisions with the pore wall. The
wall collisions supply the stochastic driving force which is
necessary for a diffusive motion of the particles. Thus a sys-
tem in the Knudsen regime can be regarded as an ensemble
of noninteracting hard-sphere particles in a confined geom-
etry.

Several theoretical studies have been following since then
�28–31�. Recently, Bhatia and his co-workers have studied
the transport of soft spheres adsorbed in slit and cylindrical
nanopores at low density �11�, and then extended their study
to a higher density region by including a viscous term ob-
tained from the Navier-Stokes equations �12–16�.

Numerous theoretical studies on this subject have been
focused on the idealized geometries known as slit and cylin-
drical pores. In the Knudsen diffusion regime, the character-
istic features of a self-diffusion coefficient show distinctive
differences depending on the geometry of the pore. While the
self-diffusion coefficient in a cylindrical pore has been
known to be a finite quantity �27,28,32�, there is a good
reason that the self-diffusivity in a slit pore shows divergent
behavior �18�. In order to circumvent the divergence and
obtain a finite valued diffusion coefficient, Arya et al. intro-
duced a transverse cutoff velocity, which is physically a rea-
sonable compromise when considering real pore systems
with a large but finite Knudsen number �18�.

Various thermal wall models which have stochastic char-
acter have been introduced to describe the collision of gas
molecules with a wall having a roughness on a realistic
atomic scale. Knudsen assumed all the gas-wall collisions to
be diffusive, i.e., every particle that collides with the wall
loses its momentum and becomes fully thermalized �Knud-
sen wall� �27,33,34�. Knudsen’s treatment was subsequently
generalized by Smoluchowski �32�. He proposed a more re-
alistic thermal wall model by using Maxwell’s slip boundary
condition at a wall-fluid interface �35�. His thermal wall
model is designed to consider the diffusion of the particle
affected by both random thermal scattering and specular �re-
flective� scattering motion �Smoluchowski wall�. Another
wall model which is simple enough to be treated in an ana-
lytical manner, but still contains the essential feature of a
stochastic thermal wall, has been proposed by Mon and Per-
cus �MP wall� �36,37�. In this model, in each collision with
the wall, the component of the momentum perpendicular to
the wall is reversed, while its component parallel to the wall
is either reversed with a prescribed probability or otherwise
is preserved. In spite of the simplicity, this wall model has
the virtues that the average kinetic energy is conserved and
that it is able to reflect the tendency of specular motion of the
scattered particle by adjusting the reversal probability
�36,37�.

In this work we utilize these features of the MP wall to
analytically examine the diffusion process of the fluid par-
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ticles confined in a micropore in the low density limit for
various shapes of micropores. We obtain the diffusion coef-
ficient as well as the long time behavior of the velocity au-
tocorrelation function �VACF� in analytical forms and com-
pare them with results obtained from a molecular dynamics
�MD� simulation study for both cylindrical and slit pores.
Moreover, we find that the MP wall model is essentially
equivalent to the Knudsen-Smoluchowski wall model by
choosing an adequate reversal probability.

The present paper is organized as follows. In Sec. II, ana-
lytical results of the mean square displacement in the low
density limit are derived for the MP wall model. In Sec. III,
numerical simulation results are presented which confirm our
analytical results. Further, the relationship between the MP
wall and the Knudsen-Smoluchowski wall are discussed.
Concluding remarks follow in the last section.

II. BEHAVIORS OF THE MEAN SQUARE
DISPLACEMENTS IN LOW DENSITY REGIONS

A. Analytical result for the slit pore

We consider a hard-sphere particle moving in a slit pore
confined by two parallel walls separated by a distance of
length L. We choose the coordinate axis so that the walls are
parallel to the xy plane and located at z= �

1
2L, respectively.

It suffices to consider a single gas particle because in the
Knudsen regime the particles are independent of each other.
The considered particle, having diameter � and mass m, is
initially positioned at �0,0 ,z0� with initial velocity v0. Be-
cause of the confinement, the z component of the particle’s
position satisfies

−
1

2
L̂ � z �

1

2
L̂ , �1�

where L̂=L−� is the effective pore width in which the center
of the particle can move.

Let us assume that the wall-particle interaction follows
the mechanism of the MP wall with a longitudinal momen-
tum reversal probability q. Then the particle moves freely
except for the moment when it collides with a wall. A par-
ticle hitting either wall with the velocity vin= �vx ,vy ,vz� has
an outgoing velocity determined by

vout = ��vx,vy,− vz� w.p. p = 1 − q ,

�− vx,− vy,− vz� w.p. q ,
� �2�

where w.p. is an abbreviation of “with probability.” So the
magnitude of the particle velocity equals the constant values
�v0� through the whole process.

In order to construct the complete analytical description
of the motion of a particle in a slit pore with MP walls, we
start with the observation that the motion projected on the xy
plane lies on a straight line, which depends on the initial
position and velocity. Moreover, the time of free flight be-
tween subsequent collisions is constant. We denote the dis-
placement of the particle from its initial position and the
velocity by �x and v, respectively. The only possible values
of the velocity projected onto the xy plane are v= �v0,

where the bar over any vector a= �ax ,ay ,az� denotes its pro-
jection onto the xy plane, i.e., a= �ax ,ay ,0�. Thus the dis-
placement �x is parallel to the direction of v0. We can set
this direction as the x direction for our convenience. Then,
the two-dimensional vector �x can be replaced by a scalar
variable �x.

In this coordinate system adapted to the particle motion,
v0 can be written as �v0

x ,0 ,v0
z�, where v0

x is the magnitude of
the initial velocity projected on the xy plane, i.e., v0

x = �v0�,
and v0

z is the component of the initial velocity normal to the
xy plane. From now on, we assume, without loss of general-
ity, v0

z �0. The case where v0
z �0 is essentially the same due

to symmetry. Then the speed of the particle projected on the
xy plane and the sojourn time between subsequent collisions
become

v = v0
x , �3�

� =
L̂

v0
z , �4�

respectively. The time when the particle first hits one of the
walls is given by

�0 =
L̂/2 − z0

v0
z . �5�

Therefore the dynamics of the considered particle is reduced
to a one-dimensional problem.

We denote the conditional probability density of a particle
starting at z0 with lateral velocity v and transversal velocity
v0

z to proceed a lateral distance �x at time t by
	���x , t��0 ,� ,v�, where for the sake of convenience we have
expressed the conditions vz

0 and z0 by the dynamical param-
eters � and �0. By a convenient translation of time t and
position �x, the lateral condition z0 can always be shifted to

the value z0=− 1
2 L̂, i.e., to �0=�. Denoting the conditional

probability density at z0=− 1
2 L̂ by 	̃���x , t�� ,v�=	���x , t��0

=� ,� ,v�, the following relation holds for 0��0��:

	���x,t��0,�,v� = 	̃„�x + v�� − �0�,t + ��� − �0���,v… �6�

which reveals that 	̃���x , t�� ,v� contains the same informa-
tion as 	���x , t��0 ,� ,v�.

Once an analytical result of 	���x , t��0 ,� ,v� is known, the
second moment of �x and the mean square displacement
�MSD� of an ensemble of noninteracting hard-sphere par-
ticles can be obtained by taking the average with respect to
the initial position z0 and the initial velocity v0. Instead of
taking an average over z0, we perform the equivalent average
over �0. Assuming a uniform distribution of z0 on the interval

− 1
2 L̂�z0�

1
2 L̂, so is �0 on 0��0��. The second moment of

the displacement, conditioned on the initial velocity v0, is
defined as

��x2�t��v0	 = K��t��,v� , �7�

where
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K��t��,v� =
1

�



0

�

d�0

−





d��x�	���x,t��0,�,v���x�2. �8�

For Maxwell-Boltzmann distributed initial velocities, the
MSD becomes

��x2�t�	 = 

0




dv0
x


−





dv0
zK��t��,v���v0

x,v0
z� , �9�

where

��v0
x,v0

z� =� m3

2��kBT�3v0
x exp�−

m�v0
x�2 + �v0

z�2�
2kBT

� .

�10�

An analytical derivation of 	̃���x , t�� ,v� is feasible because
the wall mediated diffusion problem is essentially deter-
mined by a discrete time persistent random walk on a one-
dimensional lattice, which was studied by Goldstein �38� in
some detail. The states of this random walk are those equi-
distant points at which the particle along its trajectory can hit
either of the two planes confining the slit pore when it started

with velocity v0 at z0=− 1
2 L̂. Accordingly the distance be-

tween neighboring states is d=v� and the time step is �.
After a collision with the wall, the particle proceeds moving
in the direction into which it moved before the collision with
probability p and changes its direction with probability q
=1− p. The probabilities to arrive at the state kd from the left
or from the right at time t=n� are denoted by �n ,k� and
��n ,k�, respectively. Under the assumption that the prob-
abilities for a change of the direction are independent from
each other in each particle wall collision, the probabilities
�n ,k� and ��n ,k� satisfy the following discrete time Mar-
kovian master equations:

�n + 1,k� = p�n,k − 1� + q��n,k − 1� ,

��n + 1,k� = p��n,k + 1� + q�n,k + 1� , �11�

with the initial conditions

�1,k� = �k,1 and ��1,k� = 0, �12�

which result from the assumption that the particle started
with a positive velocity.

A formal solution of the persistent random walk is known
in terms of the characteristic functions pertaining to the prob-
abilities �n ,k� and ��n ,k� �38�. For our present purpose it is
most important to note that the autocorrelation of the incre-
ments of the persistent random walk decays exponentially
fast. Therefore the displacement of the particle is a sum of
weakly correlated random numbers. The central limit theo-
rem then applies and consequently the displacement becomes
Gaussian distributed at long times t corresponding to large n.

Once the probabilities �n ,k� and ��n ,k� of the discrete
time process are known, the probability density 	̃���x , t�� ,v�
can be determined as

	̃���x,t��,v� = �
n=0




fn���x,t��,v�In�t,�� , �13�

where In�t ,�� is the indicator function of the time interval
between the nth and �n+1�st particle collision with the wall,
i.e.,

In�t,�� = �1 if n� � t � �n + 1�� ,

0 otherwise,
� �14�

and where fn���x , t�� ,v� specifying the probability density
for this interval is given by

fn���x,t��,v� = �
k

�n + 1,k + 1��„�x − kd − v�t − n��…

+ �
k

��n + 1,k − 1��„�x − kd + v�t − n��… .

�15�

Here the delta functions governing the deterministic motion
of the particle between two collisions are weighted by the
probabilities for the respective left and right running trajec-
tories.

Using Eqs. �6� and �7� one can express the conditional
second moment of the displacement ��x2�t� �v0	 in terms of
second moments Pn�t ,s� of the probability densities fn��x , t�
and obtain for n�� t� �n+1��

��x2�t��v0	 =
1

�



0

�n+1��−t

Pn�t,s�ds +
1

�



�n+1��−t

�

Pn+1�t,s�ds ,

�16�

where

Pn�t,s� = 

−





�x − vs�2fn�x,t + s�dx . �17�

By means of Eq. �15�, Pn�t ,s� can be expressed by the total
probabilities �k�n ,k� and �k��n ,k� as well as by the first
two moments of the individual probabilities �n ,k� and
��n ,k�. It is convenient instead to consider linear combina-
tions of the individual probabilities defined by

��n,k� = �n,k� + ��n,k� ,

��n,k� = �n,k� − ��n,k� . �18�

For the respective moments simple recursion relations can be
derived which together with the initial conditions �12� lead to
the following expressions:

�
k

��n,k� = 1,

�
k

k��n,k� =
1

2
�1 + r��1 − cn� ,

�
k

k2��n,k� = nr −
1

2
�r2 − 1��1 − cn� ,
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�
k

��n,k� = cn−1,

�
k

k��n,k� =
1

2
�1 + r��1 − cn� , �19�

where r= p /q and c= p−q. The second moment �k2��n ,k�
vanishes exponentially fast for large values of n. With these
results we find

Pn�t,s� = v2�2�1

2
�1 − cn��2n + 1 − r2� + n�n + rcn��

+ v2���1 − cn��rt − 2sn − t − 2s� − 2nt�

+ 2v2s�1 − cn��t + s� + v2t2. �20�

By substituting Eq. �20� into Eq. �16�, we obtain the explicit
form of the conditional displacement K��t�� ,v� as follows:

K��t��,v� = v2�an
�1��2 + an

�2��t + an
�3�t2 + an

�4� t
3

�
� , �21�

where n�� t� �n+1�� �n=0,1 ,2 , . . .� and

an
�1� = n�1 − c�cn�1

3
n2 +

1

2
r2 + r�n + 1�� + �1 − cn��1

6
−

1

2
r2�

−
1

2
ncn�2nc + c + 1� ,

an
�2� = cn�2cn − n�1 − c��2r + n� − r� + r ,

an
�3� = cn��1 − c��r + n� − c� ,

an
�4� = −

1

3
cn�1 − c� . �22�

Integrating K��t�� ,v� with respect to v0
x and v0

z �see Eq. �9��,
we finally obtain ��x2�t�	. While the integration over v0

x is
straightforward, the integration over v0

z does not lead to a
closed form solution. We can obtain, however, an asymptotic
expansion of ��x2�t�	 in the long time limit, which has the
following form:

��x2�t�	 = At�B + C + 2 ln t� + O�1� , �23�

where

A =� kBT

2�m
L̂r , �24�

B = �0 if p =
1

2
,

�r −
1

3r
��c + ln c Ei�1,− ln c�� otherwise,�

�25�

C =
6 + c

3r
− r − �EM + ln

2kBT

mL̂2
. �26�

Here, �EM=−�0

e−x ln xdx is known as the Euler-Mascheroni

constant and Ei�n ,x�=�1

t−ne−xtdt is the exponential integral.

Note that the second moment of the displacement grows with
t ln t slightly faster than it would do according to normal
diffusion. By using the relation between the VACF and the
MSD,

�v�t� · v�0�	 =
1

2

d2��x2�t�	
dt2 , �27�

we obtain the following form of the long time behavior of
the VACF:

�v�t� · v�0�	 � At−1. �28�

It decays only as 1 / t. This is consistent with a diverging
diffusion constant as discussed at the end Sec. III.

B. Analytical result for cylindrical pore system

Let us consider a cylindrical pore with radius R, whose
axial direction is taken as the x axis. We choose the y axis
such that the velocity v0 of the particle lies in the xy plane,
i.e., v0= �v0

x ,v0
y ,0� with v0

y �0. As in the case of the slit pore,
we assume v0

x �0 without loss of generality. We assume that
the initial position of the particle is at �0,y0 ,z0� in the chosen

coordinate system. Let R̂=R− 1
2� and �x=x�t�−x�0� denote

the effective pore radius and the particle’s displacement
along the x axis, respectively. The behavior of the projected
motion on the x axis, expressed by �x, is governed by the
same migration problem that was considered in the context
of the slit pore problem. Just as in the case of the slit pore,
we denote � as the time between subsequent collisions, �0 as
the time when the first collision occurs, and v as the constant
speed of the projected motion. Then, these quantities are
given in terms of the initial conditions as

� =
2�R̂2 − z0

2

v0
y , �29�

�0 =
�R̂2 − z0

2 − y0

v0
y , �30�

v = v0
x . �31�

Therefore we can use the previous result in Eq. �21�. How-
ever, in the case of the cylindrical pore, the time step � is
further dependent on the initial position, z0. So, if we want to
know the ensemble-averaged MSD with respect to the initial
position, we must perform an additional average over the
distribution of z0,

��x2�t��v0	 = 

−R̂

R̂
K��t��,v���z0�dz0. �32�

For a uniform distribution of points with y0
2+z0

2� R̂2, one
obtains
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��z0� =
2

�R̂2
�R̂2 − z0

2 for − R̂ � z0 � R̂ . �33�

By introducing a new variable,

� = sin−1� z0

R̂
� , �34�

Eq. �32� becomes

��x2�t��v0	 =
2

�



−�/2

�/2

K��t��,v�cos2 �d� . �35�

By taking the ensemble average with the initial velocity v0,
we have �compare with Eq. �9��

��x2�t�	 =
2

�



−





dv0
x


0




dv0
y


−�/2

�/2

d�K��t��,v���v0
y,v0

x�cos2 � .

�36�

From here, we can apply the same technique used in the case
of the slit pore system. The asymptotic expansion of MSD
and VACF in the long time limit can be written as follows:

��x2�t�	 =
16

3
� kBT

2�m
R̂rt −

1

2
�3r2 − 1�R̂2 ln t + O�1� ,

�37�

�vx�t�vx�0�	 �
1

2
�3r2 − 1�R̂2t−2. �38�

This confirms that the dynamics of a rarified gas in a cylin-
drical pore follows the laws of normal diffusion.

III. COMPARISON WITH THE MOLECULAR DYNAMIC
SIMULATION RESULTS

We consider two different geometrical shapes of nanop-
ores confining N fluid particles—a slit pore with width L and
a cylindrical pore with radius R. For the case of the slit pore,
a rectangular structure of simulation cell with V=Lx�Ly
�Lz �Lx=Ly �Lz ,Lz=L� is employed. Periodic boundary
conditions are applied for the x and y directions, and two
walls, parallel to each other and also to the xy plane, are
located at z= �

1
2L, respectively. For the case of the cylindri-

cal pore, a cylindrical simulation cell with radius R and
height Lx is employed with a periodic boundary condition at
x= �

1
2Lx. The fluid particle is considered as a hard sphere

with diameter � and mass m. The number density 	 is de-
fined as N /V and the temperature T is obtained from the
average kinetic energy obeying the equipartition theorem,

3

2
NkBT =� 1

2�
i=1

N

mvi
2� . �39�

In our simulations, all physical quantities are given in dimen-
sionless units by setting kBT, m, and � to unity. Accordingly,
the time scale is also set as �MD=�m�2 /kBT=1.

We performed molecular dynamics simulations for the
systems consisting of 500 hard-sphere particles. Systems

with densities 	=0.0001 and 	=0.01 are studied, and the
validity of the noninteracting particle assumption is checked.
The desired number density is achieved, in the case of the
slit pore, by adjusting the lengths along the x and y directions
with fixed width L=6, and, in the case of the cylindrical
pore, by adjusting the length Lx along the x direction with
fixed radius R=3. We chose Lx=Ly =912.87 and Lx=Ly
=91.29 for the slit pore, and Lx=176 838.83 and Lx
=1768.39 for the cylindrical pore to obtain the number den-
sity 	=0.0001 and 	=0.01, respectively.

The walls of both types of pores are smooth and hard.
Three different simulations have been performed which are
distinguished by the ways according to how particles are
scattered at the walls. The first kind of wall considered is the
MP wall, which has a simple enough structure to be em-
ployed for the analytical study. The particle, after scattered
by this wall, reverses the transversal component of the mo-
ment, whereas its longitudinal component of the moment is
either preserved or reversed according to a prescribed prob-
ability. The second one is the Knudsen wall, which scatters
the fluid molecule in a fully random manner. Still it con-
serves the temperature of the fluid system by taking the ve-
locity of the scattered particle from a Maxwell-Boltzmann
distribution with specified temperature. In the third case of a
Smoluchowski wall, the two types of particle wall collisions
occur with an assigned probability: either the particle is scat-
tered elastically, or after the collision it assumes a random
velocity as in the case of a Knudsen wall.

Starting with the initial positions and velocities of the
particles with uniform distribution and the Maxwell-
Boltzmann distribution, respectively, the system is evolved
via the discontinuous MD simulation method �39,40�. The
trajectory of a given particle is determined by successive
collision events. Since the particle performs a free motion
between each collision, the equation of motion can be solved
exactly up to the machine precision, which makes simula-
tions stable over long periods of time.

The longitudinal MSDs computed from the MD simula-
tions using the MP wall, the Knudsen wall, and the Smolu-
chowski wall were compared with the analytically obtained
MSD �see Eqs. �23� and �37��. The results are depicted in
Fig. 1. In the asymptotic region �	=0.0001�, the numerically
obtained MSDs exactly match with the analytical results.
This tells us that the noninteracting particle approximation is
working well in this density regime. From the simulations, it
is also revealed that the MSDs obtained by using the MP
wall show the same behavior as those obtained for the
Knudsen-Smoluchowski wall when the fraction of thermal
scattering  �see Eq. �41�� and the reversal probability q of
the MP wall satisfy the relation =2q.

The action of a given wall on a colliding particle can be
characterized by a transfer function relating the incoming
particle velocity u to the outgoing velocity v. In the cases of
the MP and the Knudsen-Smoluchowski walls, the relevant
part of the transfer function is given by the probability den-
sity for the parallel component of the velocity v after a col-
lision on the condition that the parallel component of the
incoming velocity is assigned as u. For the MP wall v equals
u with probability 1−q and −u with probability q, respec-
tively. For the Smoluchowski wall the collision is elastic, i.e.,
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v=u with probability 1− and, with probability , takes a
random value out of the Maxwell-Boltzmann distribution
f�v�=� m

2�kBT exp�− mv2

2kBT �. Consequently the transfer functions
of the two walls become

gMP��v�u� = �1 − q���v − u� + q��v + u� , �40�

gSmoluchowski��v�u� = �1 − ���v − u� + f�v� . �41�

One confirms by inspection that both transfer functions
leave the Maxwell-Boltzmann distribution invariant, i.e.,



−





g��v�u�f�u�du = f�v� . �42�

In order to further examine the properties of the two walls,
we calculate each nth moment �vn �u	 associated with the
transfer functions defined in Eqs. �40� and �41�, respectively.
For the MP wall described by Eq. �40�, the nth moment
becomes

�vn�u	 = �u2k, n = 2k

�1 − 2q�u2k+1, n = 2k + 1,
� �43�

and for the Smoluchowski wall described by Eq. �41�

�vn�u	 = �u2k − �u2k − �u2k	� , n = 2k

�1 − �u2k+1, n = 2k + 1,
� �44�

where

�u2k	 =
 u2kf�u�du =
�2k�!
2kk!

� kBT

m
�k

. �45�

The comparison of Eq. �43� with Eq. �44� reveals that the
condition, =2q, makes all odd order moments associated
with the two transfer functions identical to each other. The
even moments differ by �ui

2k− �ui
2k	�. However, this term

vanishes if we take the equilibrium ensemble average with
respect to the velocity u before the collision. Thus, when 
=2q, the moments of equal order n associated with the two
transfer functions coincide with each other in equilibrium
state. Figure 2 reveals that the coincidence between the MSD
obtained using the MP wall and that obtained using the
Smoluchowski wall holds not only in the low density regime
�	=0.0001� but also for the much higher density 	=0.01.

The self-diffusion coefficients along the longitudinal di-
rection are defined as

Dslit = lim
t→


��x2�t�	
4t

�46�

for the slit pore and
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FIG. 1. Plots of MSD as a function of time obtained from the
MD simulations for various values of q and  �a� for the slit pore
system and �b� for the cylindrical pore system at 	=0.0001. The
MSD using the MP wall is plotted with solid lines and the MSD
using the Knudsen-Smoluchowski wall is plotted with dashed lines.
The analytical results of MSD are displayed with dotted lines. �1�
q=0.3, =0.6; �2� q=0.4, =0.8; and �3� q=0.5, =1.
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FIG. 2. Plots of MSD as a function of time obtained from the
MD simulations for various values of q and  �a� for the slit pore
system and �b� for the cylindrical pore system at 	=0.01. The MSD
using the MP wall is plotted with solid lines and the MSD using the
Knudsen-Smoluchowski wall is plotted with dashed lines. �1� q
=0.3, =0.6; �2� q=0.4, =0.8; and �3� q=0.5, =1.
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Dcylinder = lim
t→


��x2�t�	
2t

�47�

for the cylindrical pore, respectively. Therefore from Eqs.
�23� and �37�, the analytically obtained self-diffusion coeffi-
cients for the slit and cylindrical pore are

Dslit = lim
t→


A

2
�B + C + 2 ln t� , �48�

Dcylinder =
8

3
� kBT

2�m
R̂r , �49�

respectively, where A, B, and C are defined in Eqs.
�24�–�26�. The diffusion coefficient for the slit pore, Dslit,
shows a logarithmic divergence as a function of time in the
long time region, whereas the diffusion coefficient Dcylinder of
the cylindrical pore is constant with respect to time �18,27�.
These different kinds of behavior are confirmed by the simu-
lation results for ��x2�t�	 / t as a function of t using the Knud-
sen wall model �=1� at the density �	=0.0001� �see Fig. 3�.
As time increases, ��x2�t�	 / t of the cylindrical pore system
shows fast convergence to a finite value. However, no con-
vergence is obtained for the respective quantity ��x2�t�	 / t in
the case of the slit pore.

This divergence of the self-diffusion coefficient in the slit
pore system can also be inferred from the behavior of the
VACF. The Green-Kubo relation tells us that the self-
diffusion coefficient is related with the VACF as �39�

Dx = lim
t→




0

t

�vx�t�vx�0�	dt . �50�

If the VACF decays faster than t−1, then Eq. �50� yields a
finite self-diffusion coefficient. If it decays as t−1, the right-
hand side of Eq. �50� diverges logarithmically. According to
our analytical results as shown in Eqs. �28� and �38�, the
VACF of the slit pore behaves as t−1, and the VACF of the
cylindrical pore decays as t−2. The log-log plots of VACF
versus time obtained from the MD simulations using the
Knudsen wall model are depicted in Fig. 4 for 	=0.0001.

Both cases show algebraic decaying patterns in the long time
limit, and the slopes obtained from the plots well match with
the analytical results.

IV. CONCLUSIONS

Wall-mediated transport phenomena in micropores with
two prototypes of geometries were investigated by both ana-
lytical and numerical means. The MP wall, due to its sim-
plicity, provides a complete analytical description of the self-
diffusion behavior of simple fluids for both slit and
cylindrical pores in the regime of large Knudsen numbers.
The diffusion process through the cylindrical pore obeys
Fick’s law, as it is well-known from previous studies. On the
other hand, the diffusion coefficient in slit pores obtained
from the time dependence of the MSD and the VACF con-
sistently shows a logarithmic divergence. Our molecular dy-
namic simulation results confirmed these analytical predic-
tions. We further showed that two different types of thermal
walls, the MP wall and the Knudsen wall/Smoluchowski wall
are equivalent for a proper choice of the reversal probability;
not only in the low density region but also in the intermedi-
ate density region where the relative magnitude of the colli-
sion rate between particles is comparable to the wall-particle
collision rate. Finally we note that a modification of the de-
tails of the particle-wall interaction will not change the dy-
namics at large times as long as the Maxwell boundary con-
ditions hold.
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FIG. 3. Plots of ��x2�t�	 / t as a function of time obtained from
the MD simulations with the Knudsen wall at 	=0.0001. The MSD
for the slit pore system is shown with a solid line and the MSD for
the cylindrical pore system is shown with a dashed line.
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FIG. 4. Log-log plots of VACF obtained from the MD simula-
tions as functions of time �a� for the slit pore system and �b� for the
cylindrical pore system at 	=0.0001 with Knudsen wall model
�solid lines�. The dashed lines having slopes �a� −1 and �b� −2,
respectively, are displayed to facilitate the comparison.
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