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Abstract
Two strongly coupled quantum dots are theoretically and experimentally investigated. In
conductance measurements on a GaAs based low-dimensional system additional features to the
Coulomb blockade have been detected at low temperatures. These regions of finite conductivity
are compared with theoretical investigations of a strongly coupled quantum dot system and
good agreement between the theoretical and the experimental results has been found.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Electron transport through a single quantum dot in a two-
terminal configuration is governed by the interaction energy
of the electrons on the dot. In many experiments, the state
of the quantum dot is essentially characterized by the electron
number, since orbital degrees of freedom do not play a major
role and can thus be ignored. In the limit of weak dot–lead
coupling, the resulting current is determined by states with an
energy above the Fermi energy of one lead but below the Fermi
energy of the other lead. The other states suffer Coulomb
blockade: energy conservation together with Pauli’s exclusion
principle preserves their occupation number and, consequently,
they cannot contribute to the transport. Only when the dot–
lead coupling becomes larger do co-tunnelling processes start
to play a role and suspend Coulomb blockade.

When two or more quantum dots are in a linear transport
arrangement between two leads, the inter-dot tunnelling can
be incoherent or coherent, depending on the coupling strength.
Incoherent tunnelling is sequential, i.e. between two tunnelling
events, the electrons dwell in one particular dot. Coherent

tunnelling is found for strong inter-dot coupling such that the
electrons reside in the delocalized eigenstates of the double
dot. The analogy to π -electrons in molecules is reflected by
the term ‘artificial molecule’. A convenient theoretical picture
for coherently coupled quantum dots is of one single central
system in which orbital degrees of freedom play a role.

In an unbiased double dot, the relevant orbitals are the
bonding and the anti-bonding superposition of the localized
states. Then an electron prepared in one dot will tunnel
back and forth to the other dot with a frequency set by
the tunnel splitting. These coherent oscillations can be
observed by lowering, after a waiting time, the chemical
potential of, say, the right lead. If at that stage the
electron is in the right dot it will tunnel to the right lead.
Periodic repetition of this procedure yields a dc current that
reflects the coherent oscillations [1]. The coherence of
the superposition together with the possibility of performing
a readout allows one to devise charge qubits with double
quantum dots. The orbital degrees also influence the transport
under microwave excitation: microwave irradiation can induce
electron transitions from the ground state to an excited state
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Figure 1. (a) Scanning electron micrograph of the sample. Red
(darker) areas are highlighting 2DEG, grey (brighter) areas are
wet-etched and non-conducting. The annealed ohmic contacts (not
shown) are labelled. The depletion of the left channel (under
investigation) is controlled by the left in-plane gate. The channel can
be made narrower by applying a more negative voltage to the gate
until all electrons are forced out of the channel. In our experiment the
right channel is completely depleted by applying a sufficiently large
voltage (−4.5 V) to the right gate as shown in panel (b). (c) Wiring
scheme of the sample.

and thereby enhance the electron transport between the leads,
so that one observes photon-assisted tunnelling [2–4].

A further common method for characterizing low-
dimensional semiconductor systems such as the mentioned
quantum dots is conductance measurements at low tempera-
ture: since the current changes whenever an energy level enters
or leaves the voltage window, the differential conductance ex-
hibits a corresponding peak. Shifting, in addition, the energy
levels by a gate voltage yields the characteristic ‘Coulomb di-
amonds’ which are observed in the differential conductance as
a function of gate voltage and bias voltage. Within this work,
we study both theoretically and experimentally the fingerprints
of orbital degrees of freedom in the Coulomb diamond struc-
ture of coherently coupled quantum dots. In section 2 we de-
scribe our experimental setup and present transport measure-
ments, while in section 3 we study a minimal model that ex-
hibits the observed Coulomb diamonds. Moreover, we relate
our theoretical findings to the experimental data.

2. Experimental setup

In this work we used a GaAs/AlGaAs heterostructure for
sample fabrication, where the two-dimensional electron gas
(2DEG) is located approximately 55 nm beneath the sample
surface [5]. First, a mesa structure was defined by
photolithography, followed by wet-etching and annealing
of ohmic contacts for source, drain and in-plane gates.
Then the nanostructure formation was processed by electron
beam lithography and wet-etching [6]. Figure 1 shows the
nanostructure under investigation. While the grey (light) areas
were etched, the red (dark) areas depict the regions containing

Figure 2. Measured current through the left channel with decreasing
voltage on the left in-plane gate at 1.3 K. The applied source–drain
voltage is VSD = 0.1 mV. The system is evolving from the 1D
regime, characterized by current plateaus, into the QD regime with
characteristic Coulomb oscillations. Inset: blow-up of the very first
oscillation (Vgate = −2.66 V) next to the pinch-off.

a high mobility 2DEG. The structure is 8 μm long and in total
about 10 μm wide. The inner structure is sawtooth shaped
with four teeth and asymmetric with respect to the vertical
centre line. The conductive channels between the sawtooth-
tip and in-plane gates are approx. 0.9 μm wide. The 2DEG
has an electron density of 3.95 × 1015 μm−2 and a mobility of
51.7 m2 V−1 s−1 (both measured in the dark at T = 4.2 K).
The sample allows us to carry out measurements individually
on each channel. Here, we report only on measurements on
the left channel. In order to ensure that only the left channel
is conductive and the measurement is not affected by the right
channel, a relatively high negative voltage of −4.5 V is applied
to the right in-plane gate. This causes a depletion [7, 8] of
the 2DEG in the right channel such that no electrons can pass
from source to drain. This situation is shown in figure 1(b),
while figure 1(c) sketches the wiring scheme of the sample.
In the same manner, the left channel can be depleted as well.
If a negative gate voltage is applied, the channel becomes
narrower until three potential barriers between the depleted
areas, developed from the voltage on the gate and the wet-
etched tines, are formed. Now, the 1D channel is separated into
shorter channels and with decreasing gate voltage it eventually
evolves into small quantum dots. At a certain voltage, the
so-called pinch-off, the channel is completely depleted and,
consequently, no current can flow. Such an evolution from a
one-dimensional (1D) channel [9, 10] over quantum dots (QD)
[10–14] to total depletion is shown in figure 2. At less negative
gate voltages, characteristic 1D conductance quantization
in the form of current steps—conduction plateaus—can be
seen. At even more negative voltages current oscillations
were observed, being characteristic for QD transport. The
irregularity of the current peaks as a function of the side gate
voltage already indicates the existence of a rather complicated
electronic structure close to the pinch-off. The measurement
in figure 2 was carried out at temperature T = 1.3 K with a
source–drain bias voltage VSD = 0.1 mV.

Because it is quite difficult to estimate the exact landscape
of the barriers and to explain the measurements in greater
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a)

b)

c)

Figure 3. False colour plot of the differential conductance dI/dVSD

as a function of source–drain bias and gate voltage. Bright
corresponds to low conductance and blue to high conductance. The
experimental data (a) described in section 2 are compared to
theoretical results for a double quantum dot with interacting (b) and
non-interacting (c) electrons. The theoretical calculations are for
dot–lead couplings �L = 0.2�, �R = 0.25� and temperature
T = 0.1�/kB.

detail if the channel consists of more than one QD, we focused
on measurements very close to the pinch-off, where the first
current oscillation appears. The first current peak is at Vgate =
−2.66 V (see inset of figure 2). This quantum dot system
can be characterized by a set of current measurements for
different source–drain voltages [15]. Figure 3 shows the
corresponding differential conductance dI/dVSD which exhibit
a characteristic Coulomb diamond structure [11–13, 15]. From
the slopes of the transition from high to low conductivity
shown in figure 4, one can extract the effective parameters
which we use later in our theoretical description [15]: the
capacities Cgate = (4 ± 1) × 10−18 F, Cdrain = (51 ±
15) × 10−18 F and C� = (103 ± 8) × 10−18 F where
Cgate is the capacity between the dot and the gate, Cdrain

the dot–drain capacity and C� the total dot capacity. The
single electron charging energy is EC = 0.78 ± 0.06 meV
and the energy spacing between two levels inside the dot is

Figure 4. Sketch of the system characteristics superimposed on the
experimental data. From the slope of the dashed lines one can
estimate the capacities of the dot; the dotted lines highlight the
stripes of elevated conductivity. The symbols ∗, + and # mark
parameter regions mentioned in the text. The total capacity of the
system, C� , can be estimated from the value of �VSD [15].

�E = 1.6±0.1 meV. The relatively large uncertainties follow
from the estimated uncertainty of reading the quantities from
figure 3 and from the calculated propagation of uncertainty. If
one assumes a parabolic potential, the energy spacing lets us
estimate the lateral dimension of (14 ± 1) × 10−15 m2 of the
dot and the diameter of (136 ± 6) nm. However, because of
the triangular shape from the lithographically defined sawtooth
potential, it is unlikely that the dot is perfectly round and a
irregular shape is assumed.

Figure 3(a) shows the differential conductance dI/dVSD.
It exhibits some differences from ‘regular’ Coulomb diamonds.
First, the diamond is slightly tilted to the left. This is an
indication for asymmetric tunnelling barriers between the QD
and the leads as seen in almost every Coulomb diamond
measurement. Second, some additional structures in the
diamond can be spotted. The most obvious one is the small
area of high conductivity in the centre section where the tips
of conductive areas almost merge (marked with ∗ in figure 4).
A further interesting feature is the narrow stripes of finite
conductance alongside the main areas (marked with +). These
mentioned areas are also rather symmetric due to bias source–
drain voltage and asymmetric along the gate voltage, i.e. they
appear only for lower gate voltages whereas the transition
from electron transport to Coulomb blockade for higher gate
voltages is very sharp. The third area (marked with #) exhibits
a high conductivity and is also symmetric in the source–drain
voltage but not as a function of the gate voltage.

3. Theoretical description

For a master equation description of electron transport at very
low bias voltages one needs to take particular care to avoid
inconsistencies like the emergence of spurious non-vanishing
transport in equilibrium situations. Such problems typically
arise from the approximation in the interaction representation
of the coupling operator [4, 16]. A detailed derivation of such
a master equation approach has been presented in [17], for
example. Here, we will briefly review this approach.
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Figure 5. Tight-binding model for a double QD coupled to two
leads. An external bias voltage V = (μR − μL)/e is applied to the
mesoscopic system.

3.1. Model

The setup at hand for studying coherent quantum transport is
shown in figure 5 and the corresponding Hamiltonian reads

H = Hdots + Hleads + Hdots−lead. (1)

The individual terms describe the QDs, the electron reservoirs
of the leads and the coupling of the dots to the leads. The
system itself is treated in a tight-binding approximation which
we restrict in the following to two orbital degrees of freedom.
Since we aim at exploring blocking effects, the corresponding
wire Hamiltonian, incorporating the Coulomb repulsion in the
limit of a large interaction strength U , assumes the form

Hdots =
∑

n

Enc†
ncn − �

(
c†

2c1 + c†
1c2

)
+ U

2
N (N − 1). (2)

The fermion operators c†
n (cn) create (annihilate) an electron in

the orbital |n〉, n = 1, 2, and En denotes the respective on-site
energy. In the Coulomb interaction term, N = ∑

n c†
ncn is the

operator counting the excess electrons on the dots. The inter-
dot coupling is characterized by the hopping matrix element
�. The leads attached to the dots are modelled by ideal Fermi
gases,

Hleads =
∑

�=L,R

∑

q

εqc†
�q c�q, (3)

where c†
�q (c�q) creates (annihilates) an electron with energy

εq in lead � = L, R. As an initial condition, we employ
the grand-canonical ensemble of the electrons in the leads at
inverse temperature β = 1/kBT and with electrochemical
potentials μL/R. Therefore, the lead electrons are described
by the equilibrium Fermi function f�(εq) = {1+exp[−β(εq −
μ�)]}−1. For the initial density matrix, we then have

ρleads,eq ∝ exp [−β(Hleads − μL NL − μR NR)] , (4)

where N� = ∑
q c†

�qc�q denotes the electron number in the
left and right lead, respectively. From this it follows that all
expectation values of the lead operators can be traced back to
the expression 〈c†

�′q ′ c�q〉 = δ��′δqq ′ f�(εq). The two dots couple
via the tunnelling matrix element V�q to the state |�q〉 in the
respective lead. The Hamiltonian describing this interaction
has the form

Hdot−lead =
∑

q

(VLqc†
Lqc1 + VRqc†

Rqc2) + H.c. (5)

It will turn out that the influence of the tunnelling matrix
elements is completely characterized by the spectral density
��(ε) = 2π

∑
q |V�q|2δ(ε − εq) which becomes a continuous

function of ε if the lead modes are dense. If all relevant lead
states are located in the centre of the conduction band, the
energy dependence of the spectral densities is not relevant and
can be replaced by a constant, �L/R(ε) = �L/R. This defines
the so-called wide-band limit.

3.2. Master equation approach

The computation of stationary currents can be achieved by
deriving a master equation for the dynamics of the dot
electrons. Thereby, the central idea is to consider the contact
Hamiltonian (5) as a perturbation. From the Liouville–von
Neumann equation ih̄ρ̇ = [H, ρ] for the total density operator
ρ one obtains by standard techniques [18] the approximate
equation of motion

ρ̇(t) = − i

h̄
[Hdots(t) + Hleads, ρ(t)]

− 1

h̄2

∫ ∞

0
dτ [Hdot−lead, [H̃dot−lead(−τ ), ρ(t)]]. (6)

The tilde denotes operators in the interaction picture with
respect to the central system and the lead Hamiltonian,
X̃(t) = U †

0 (t) X U0(t), where U0 is the propagator without the
coupling. The stationary current defined as the net (incoming
minus outgoing) electrical current through contact � is given by
minus the time-derivative of the electron number in that lead
multiplied by the electron charge −e, IL(t) = e(d/dt)〈N�〉.
From the master equation (6) it follows that

IL(t) = e tr[ρ̇(t)NL]
= − e

h̄2

∫ ∞

0
dτ

〈[H̃dot−lead(−τ ), [Hdot−lead, NL]]〉. (7)

In the following, we specify the master equation (6) and
the current formula (7) for studying two limiting cases: the
first limit U = 0 describes non-interacting electrons. The
second limit refers to strong Coulomb repulsion such that U is
much larger than any other energy scale of the problem. Then,
only the states with at most one excess electron on the wire are
relevant.

3.2.1. Non-interacting electrons. In general, the relation
between the states |φα〉 and the many-particle Hamiltonian (1)
is established via the Slater determinant. Alternatively, one can
resort to Green’s functions. In the present case, knowledge
of the Green’s function at time t = 0 is already sufficient.
Apart from a prefactor, it is given by the expectation value
Pαβ = 〈c†

βcα〉 for which one obtains from equation (7) for the
stationary current the expression

I0 = e��

h̄

∑

α

[∑

β

〈φβ |n�〉〈n�|φα〉Pαβ − |〈n�|φα〉|2 f�(εα)
]
,

(8)
where the index 0 refers to U = 0. It can be shown that
the current is independent of the index �, i.e. independent of
the contact at which it is evaluated. This reflects for a two-
probe setting the validity of the continuity equation. For the
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steady state expectation values Pαβ , we obtain from the master
equation (6) the condition

i(εα − εβ)Pαβ =
∑

�=L,R

��

2

{
〈φα|n�〉〈n�|φβ〉 [

f�(εα) + f�(εβ)
]

−
∑

α′
〈φα|n�〉〈n�|φα′ 〉 Pα′β −

∑

β ′
〈φβ ′ |n�〉〈n�|φβ〉 Pαβ ′

}
.

(9)

In a non-equilibrium situation, the solution of this set
of equations generally possesses non-vanishing off-diagonal
elements, which in some cases turn out to be crucial.

3.2.2. Strong Coulomb repulsion. In the limit of strong
Coulomb repulsion, U is assumed to be so large that at most
one excess electron resides on the system. Thus, the available
Hilbert space is restricted to the states {|0〉, c†

α|0〉}α=1,2, such
that the density operator can be written as

ρ = |0〉ρ00〈0| +
∑

α

(
c†
α|0〉ρα0〈0| + |0〉ρ0α〈0|cα

)

+
∑

αβ

c†
α|0〉ραβ 〈0|cβ. (10)

while the current expectation value (7) becomes

I∞ = e��

∑

α

[∑

β

〈φβ |n�〉〈n�|φα〉 f̄�(εα)ραβ

− |〈φα|n�〉|2 f�(εα)ρ00
]
, (11)

where f̄ = 1 − f . The decomposition of the master
equation (6) into the single-particle states c†

α|0〉 provides for
the stationary state the set of equations

i(εα − εβ)ραβ =
∑

�=L,R

��

2

{
〈φα|n�〉〈n�|φβ〉( f�(εα)

+ f�(εβ)
)
ρ00 −

∑

α′
〈φα|n�〉〈n�|φα′ 〉 f̄�(εα′)ρα′β

−
∑

β ′
〈φβ ′ |n�〉〈n�|φβ〉 f̄�(εβ ′)ραβ ′

}
. (12)

In order to fully determine the density operator, we need in
addition an expression for ρ00 which can also be derived from
the master equation. A more convenient alternative is provided
by the normalization condition tr ρ = ρ00 + ∑

α ραα = 1. For
the sake of completeness, we remark that it follows from the
master equation (6) that ρα0 = ρ0α = 0 in the stationary state.

3.3. Comparison with experimental data

Before establishing a quantitative relation between our model
and the experimental results, we discuss the transport
properties of the double-dot model qualitatively. Thereby we
reveal that both Coulomb repulsion and an orbital degree of
freedom play a role in the behaviour of a fixed, not too small
source–drain voltage while the gate voltage is changed. For
very large negative values of Vgate, the eigenstates of the double
dot lie well above the chemical potential of both leads, and thus
outside the voltage window. This means that lead states being
in resonance with the dot states remain unoccupied, such that
electron transport can only occur via co-tunnelling processes.
Thus, the current will be rather small. When Vgate becomes

Figure 6. Sketch of the transport through eigen energy levels for
different gate voltages. The arrows indicate the possible tunnel
events for electrons into and out of the system. In panel (a), Vgate is
so large that only one level lies within the voltage window, while the
other one lies well above and is never occupied. Consequently,
transport is interaction independent. If one level lies below both
chemical potentials (b), it will be occupied in the steady state and,
thus, strong Coulomb repulsion inhibits the electron transport.

larger such that the lower dot level lies within the voltage
window (see figure 6(a)), resonant transport becomes possible,
yielding a noticeable current. Increasing the voltage further,
such that the second level also enters the voltage window,
opens a second path for non-interacting electrons through the
dots. In the case of strong Coulomb repulsion, however, double
occupation of the dot is impossible and, thus, the second
orbital cannot fully contribute to the transport. Accordingly,
the increase of the current is smaller.

The most significant difference between the two cases is
found when only the upper level lies within the voltage window
while the lower level is below both chemical potentials,
as sketched in figure 6(b). Then the stationary state is
characterized by an occupied lower level. Whether or not a
further electron can enter and cause a non-vanishing current
now depends on the strength of the Coulomb repulsion—for
strong repulsion, transport is Coulomb blocked. Consequently,
for the two limits under investigation, we obtain a current only
in one of non-interacting electrons. This is visible as an even
qualitative difference in the Coulomb diamond structure of
figure 3: the scenario for non-interacting electrons complies
with particle–hole symmetry. This has the consequence that
the corresponding Coulomb diamond (figure 3(c)) is invariant
under changing the sign of both the source–drain voltage and
the gate voltage. For strong Coulomb repulsion, in contrast,
the symmetry concerning the sign of Vgate is no longer present
(see figure 3(b)). In particular for VSD ≈ 0, the experimental
data exhibit only one spot with high conductance, which is in
clear contrast to the theoretical result for the non-interacting
case shown in figure 3(c).
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The limits of strong and zero interaction have in common
that when the two energy levels enter the voltage window from
above, the current increases in two steps whose separation
is determined by the energy splitting δE of the two levels,
i.e. they are separated by the voltage δE/e. This enables one to
determine the excitation energy of an orbital degree of freedom
by conductance measurements. Moreover, the source–drain
voltage relates to the steepness of the triangle. Figure 4 shows
again the measurement of figure 3(a) but now with the idealized
diamond structure marked by dashed lines.

For a more quantitative treatment, we compare the
structure of the experimental result in figure 3(a) with the
theoretical Coulomb diamond in figure 3(b). This allows one
to read off the tunnel coupling � = 0.8 meV. For the slightly
asymmetric lead–dot couplings �L = 0.2� and �R = 0.25�,
we obtain at the plateaus for the current the values 2.2 nA and
2.4 nA, respectively, which is of the order of the measured
values at the edges of the Coulomb diamonds (2–3 nA).

The quantitative agreement between the experiment and
the theoretical result for U = ∞ suggests that electrons in
the relevant localized states of our sample strongly repel each
other. This raises the question of which part of the sample
(see figure 1) the localized states are formed in. The sawtooth
pattern has been created by the chemical wet-etching, and four
narrow constrictions intersect the long wire into three separate
regions. In figure 2, features of a 1D system have been detected
for less negative side gate voltages as discussed in an earlier
section. This means that one of the narrower constrictions
must govern the conduction process in the open channel
regime, because it is unlikely that all constrictions represent
identical tunnel barriers. However, we cannot identify which
constriction dominates. Moreover, in samples like the one used
in this work, randomly distributed charged impurities from the
doping process are present. They can strongly influence the
potential profile depending on their position during the cooling
down process [19].

Unfortunately, without further investigation, we are not
able to determine in which part of the sample the relevant levels
are localized. With the data from the theoretical model for
strong inter-dot coupling we nevertheless can infer that both
dots must be rather close. Taking the curved shape of the
etched potential into account, an unintentionally emerged dot
is very likely as well.

4. Conclusion

We have studied Coulomb oscillations on lateral fabricated
QDs near the pinch-off. In order to gain a theoretical
understanding, we investigated a two-site model which implies
the consideration of one orbital excitation. A comparison of
the measured Coulomb diamond with theoretical predictions
indicates that both Coulomb repulsion and orbital degrees of
freedom play a significant role in the transport. The importance
of Coulomb repulsion is emphasized by the fact that the
corresponding model with non-interacting electrons makes

qualitatively wrong predictions. Moreover, the theoretical
results allow us to gauge the gate voltage and to determine
the energy splitting associated with the orbital excitation. As
a drawback, the measurement does not yield any conclusion
about the nature and the location of the two relevant states.
Studying a sample in which more orbital degrees of freedom
play a dominant role might provide additional information.
Such experiments should be accompanied by theoretical
studies of finite Coulomb repulsion strength.
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[18] May V and Kühn O 2003 Charge and Energy Transfer

Dynamics in Molecular Systems 2nd edn (Weinheim:
Wiley–VCH)

[19] Nicholls J, Frost J, Ritchie D, Grimshaw M and Jones G 1993
Phys. Rev. B 48 8866

6

http://dx.doi.org/10.1103/PhysRevLett.91.226804
http://dx.doi.org/10.1103/RevModPhys.75.1
http://dx.doi.org/10.1016/j.physrep.2004.01.004
http://dx.doi.org/10.1016/j.physrep.2004.11.002
http://dx.doi.org/10.1088/0034-4885/59/2/003
http://dx.doi.org/10.1103/PhysRevLett.48.196
http://dx.doi.org/10.1080/13642817808245309
http://dx.doi.org/10.1126/science.274.5291.1332
http://dx.doi.org/10.1103/PhysRevB.61.R16315
http://dx.doi.org/10.1126/science.268.5216.1440
http://dx.doi.org/10.1209/epl/i2002-00174-3
http://dx.doi.org/10.1016/j.chemphys.2005.08.005
http://dx.doi.org/10.1103/PhysRevB.48.8866

	1. Introduction
	2. Experimental setup
	3. Theoretical description
	3.1. Model
	3.2. Master equation approach
	3.2.1. Non-interacting electrons.
	3.2.2. Strong Coulomb repulsion.

	3.3. Comparison with experimental data

	4. Conclusion
	Acknowledgments
	References

