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Abstract

We derive the exact time-evolution for a general quantum system under the influence of a bosonic bath that causes pure phase noise
and demonstrate that for a Gaussian initial state of the bath, the exact result can be obtained also within a perturbative time-local master
equation approach already in second order of the system–bath coupling strength. We reveal that this equivalence holds if the initial state
of the bath can be mapped to a Gaussian phase-space distribution function. Moreover, we discuss the relation to the standard Bloch–
Redfield approach.
� 2007 Elsevier B.V. All rights reserved.

PACS: 03.65.Yz; 03.65.Ta; 05.30.�d; 05.40.�a

Keywords: Decoherence; Phase noise; Quantum master equation

1. Introduction

The coherent evolution of small quantum systems is typ-
ically influenced by its interaction with environmental
degrees of freedom, which results in quantum dissipation
and decoherence. These ubiquitous phenomena play a cru-
cial role in various fields of physics and chemistry, such as
quantum optics, electron transfer reactions [1,2], the elec-
tron transport through molecular wires [3,4], and in partic-
ular in quantum information processing, where we recently
witnessed significant experimental progress [5–7]. The opti-
misation of the coherence properties of quantum devices
certainly requires a good theoretical understanding of the
processes that induce decoherence.

The environment of a quantum system is frequently
modelled as an ensemble of harmonic oscillators that cou-
ple to the system [8–11]. If the coupling is linear in the oscil-

lator position, one can eliminate the environment to obtain
a closed equation for the dissipative quantum system. Such
equations are in general not easy to deal with and, accord-
ingly, only a few exact solutions exist in dissipative quan-
tum mechanics, e.g. for the dissipative harmonic
oscillator [12–15] and its parametrically driven version
[16]. Recently, an exact solution has been found also for
the dissipative Landau–Zener problem at zero temperature
[17]. A whole class of system–bath models that can be
solved exactly are those in which the system Hamiltonian
and the system–bath coupling commute [18–27]. Herein
we focus on such so-called pure phase noise models.

Even though pure phase noise allows an exact solution
of the reduced quantum dynamics, it is sometimes conve-
nient to employ a perturbative master equation approach,
such as the Bloch–Redfield equation [28]. On the one hand,
those approaches may provide direct access to the dephas-
ing rates avoiding tedious algebra and in particular in the
limit of weak system–bath coupling, they are expected to
give quantitatively good results. On the other hand, it is
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possible to test their quality when an exact solution is avail-
able. We here show that for phase noise, the results of
approximate master equations can even be exact, despite
the fact that they are based on second-order perturbation
theory.

After introducing our system–bath model in Section 2,
we present in Sections 3 and 4 a master equation for weak
system–bath coupling and the exact time-evolution of the
reduced system density operator, respectively. In Section
5, we argue why the exact solution complies with the mas-
ter equation.

2. System–bath model

We model the dissipative quantum system by coupling
the central system to a quantum heat bath that consists
of harmonic oscillators, so that the total system–bath
Hamiltonian reads [10,11]

H ¼ H s þ H sb þ Hb ð1Þ
and H0 = Hs + Hb describes the system and the bath in the
absence of the coupling. While we will not specify the sys-
tem Hamiltonian, we employ for the bath an ensemble of
independent harmonic oscillators with the Hamiltonian

Hb ¼
X
k

�hxkb
y
kbk: ð2Þ

Here, byk and bk are the usual creation and annihilation
operators which obey the commutation relation
½bk; byk0 � ¼ dkk0 . We assume that the system couples linearly
to the bath with a hermitian system operator X, so that
the interaction Hamiltonian reads

H sb ¼ �hXn ð3Þ
with the effective bath coordinate

n ¼
X
k

ðgkbk þ g�kb
y
kÞ: ð4Þ

If the coupling operator X commutes with the system Ham-
iltonian, [X,Hs] = 0, the coupling (3) does not induce tran-
sitions between system eigenstates and, thus, constitutes
pure phase noise. Henceforth we shall focus on this case.

We choose an initial condition of the Feynman–Vernon
type, i.e. one for which the total density operator R at time
t = 0 can be factorised into a system and a bath contribu-
tion q and qb, respectively, i.e.

Rð0Þ ¼ qð0Þqbð0Þ: ð5Þ
The bath itself is frequently assumed to be initially at ther-
mal equilibrium. However, if the initial expectation value
of the coupling operator X does not vanish, the coupling
(3) entails a force on the bath oscillators. Then the natural
initial state qb = qb(0) of the bath is rather a displaced ther-
mal state which falls in the class of non-squeezed Gaussian
states. A convenient basis for these states is provided by the
coherent states {|bki} defined by the eigenvalue equation

bk |bki = bk|bki. Owing to the overcompleteness of this
basis, any hermitian operator can be written in a diagonal
form, which assigns to each operator a P-function [29,30].
In particular, the bath density operator can be written as

qb ¼
Z

jb1; b2; . . .ihb1b2; . . . j
Y
k

P kðbk; b
�
kÞd2bk; ð6Þ

where d2bk denotes integration over the complex plane.
Henceforth, we assume that the P-function of each oscilla-
tor k is a Gauss function, such that

Pkðbk; b
�
kÞ ¼

1

pnk
exp

�ðbk � �bkÞðbk � �bkÞ�
nk

� �
: ð7Þ

As a central property of a Gaussian state, all expectation
values are fully determined by �bk ¼ hbkib and nk ¼
hbykbkib � jhbkibj2, where
h. . . ib ¼ trbðqb . . .Þ ð8Þ
denotes the expectation value with respect to the bath state
qb. An important particular case is the canonical ensemble
of the bath at temperature T such that qb / exp(�Hb/kBT),
which corresponds to hbkib = 0 and 2nk = coth(�hxk/
2kBT) � 1.

The dynamics of the system plus the bath is governed by
the Liouville–von Neumann equation

_eRðtÞ ¼ fLeRðtÞ ð9Þ
with the Liouvillian fLð. . .Þ ¼ �i½ eH sbðtÞ; . . .�=�h. The tilde
denotes the interaction-picture representation with respect
to H0, i.e. ~AðtÞ ¼ U y

0ðtÞAU 0ðtÞ, with the free propagator
U0(t) = exp(�iH0t/�h). The interaction-picture representa-
tion of the effective bath coordinate n is easily obtained
from ~bkðtÞ ¼ bk expð�ixktÞ, while for pure phase noise,eX ðtÞ ¼ X , owing to the relation [X,Hs] = 0. For the same
reason, Hs and X possess a complete set of common eigen-
states {|ni}, for which the respective eigenvalues are de-
noted by En and Xn.

We are exclusively interested in the state of the system,
so our goal is to find the reduced density operator
~qðtÞ ¼ trbeRðtÞ. In the subsequent sections, we derive expli-
cit expressions for the reduced dynamics.

3. Master equation approach

A common and successful approach to dissipative
quantum dynamics is provided by master equations, i.e. dif-
ferential or integro-differential equations of motion for the
reduced density operator [30–32]. There exist various for-
mally exact quantummaster equations in time-convolution-
less [16,33–42] and time-non-local form [43–45] which,
however, generally cannot be solved explicitly and, thus,
one often has to resort to a perturbative treatment.

Here, we employ a time-convolutionless quantum mas-
ter equation of the form

_~qðtÞ ¼ KðtÞ~qðtÞ; ð10Þ
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with a time-dependent superoperatorKðtÞ. Note that there
arises no inhomogeneity since we are assuming a factoris-
ing initial state of the form (5), which leads to a linear
equation of motion [46]. Eq. (10) is formally exact and pos-
sesses an apparently simple form, but it generally cannot be
solved analytically. Thus, it is convenient to expand the
generator KðtÞ in powers of the interaction, i.e.
KðtÞ ¼ P

‘K‘ðtÞ. By a direct calculation [47,48] or by
using a time-convolutionless projection operator technique
[39,49,50], it is possible to obtain an expression for the ‘th
order generator K‘. In doing so, we assign to a superoper-
ator G of the total system a reduced superoperator hGi
defined by its action on a system operator Y, that is
hGiY ¼ trbfGðYqbÞg. With this notation, the time-convolu-
tionless generators read K1ðtÞ ¼ hfLðtÞi, and

K‘ðtÞ ¼
Z t

0

dt1

Z t1

0

dt2 . . .
Z t‘�2

0

dt‘�1

� hhfLðtÞfLðt1Þ . . .fLðt‘�1Þiioc; ð11Þ

for ‘ = 2, 3,. . . The symbol hh� � �iioc denotes an ordered
cumulant [31,48], i.e. a sum of certain products of reduced
superoperators of the form hfLðtÞfLðt1Þ . . .i.

The fact that the Liouvillians at different times generally
do not commute makes it practically impossible to write
down an explicit expression for the ‘th cumulant for large
‘. However, for weak system–bath coupling it is possible to
neglect higher than second-order terms in the expansion of
the generator, i.e. we may approximate KðtÞ � K1ðtÞþ
K2ðtÞ. Fortunately the second time-ordered cumulant
takes the simple form hhfLðtÞfLðt1Þiioc ¼ hfLðtÞfLðt1Þi�
hfLðtÞihfLðt1Þi. Considering now explicitly the interaction
Hamiltonian (3), we obtain the ‘‘standard’’ time-local
weak-coupling equation

_~qðtÞ ¼ �ih~nðtÞib½X ; ~qðtÞ� �
Z t

0

ds Sðt; t � sÞ½X ; ½X ; ~qðtÞ��ð
þiAðt; t � sÞ½X ; fX ; ~qðtÞg�Þ; ð12Þ

where {A, B} = AB + BA denotes the anti-commutator,
and where we have defined the symmetric and anti-sym-
metric correlation functions

Sðt; t0Þ ¼ 1

2
hfD~nðtÞ;D~nðt0Þgib; ð13Þ

Aðt; t0Þ ¼ 1

2
h½D~nðtÞ;D~nðt0Þ�ib ð14Þ

of the operator-valued fluctuation D~nðtÞ ¼ nðtÞ � hnðtÞib.
Note that for a Gaussian initial state qb of the bath, the
mean value hn(t)ib of the bath coordinate in general does
not vanish. Thus, it explicitly appears in the master equa-
tion (12).

It is convenient to expand the master equation (12) into
the eigenbasis of the system–bath interaction. We then
obtain for a matrix element hmj~qjni ¼ ~qmn the differential
equation

_~qmnðtÞ ¼
�
� iðXm � XnÞh~nðtÞib

� ðXm � XnÞ2
Z t

0

dsSðt; t � sÞ

�iðX 2
m � X 2

nÞ
Z t

0

dsAðt; t � sÞ
�
~qmnðtÞ: ð15Þ

For the diagonal matrix elements ~qnn the right-hand side of
Eq. (15) vanishes, i.e. the populations remain constant in
time as one expects for a pure dephasing model. This im-
plies that generally the system will not reach thermal equi-
librium. Although no energy is exchanged and, thus, the
interaction is dissipationless, the relative phases between
eigenstates will be randomised. As a consequence, off-diag-
onal elements of the reduced density matrix may decay,
which reflects the process of decoherence.

Using the coherent state representation (7) for a Gauss-
ian bath state, we can evaluate the mean value of the bath
coordinate ~n and the correlation functions in an explicit
form and find

h~nðtÞib ¼
X
k

ðgk�bke
�ixk t þ g�k�b

�
ke

ixk tÞ; ð16Þ

Sðt; t � sÞ ¼
X
k

jgkj2 cosðxksÞð1þ 2nkÞ; ð17Þ

Aðt; t � sÞ ¼ �
X
k

jgkj2 sinðxksÞ: ð18Þ

Note that the correlation functions Sðt; t0Þ and Aðt; t0Þ
depend on the time difference t � t 0 only, with Aðt; t0Þ inde-
pendent of the initial state of the bath. If the correlation
functions vanish sufficiently fast, it is possible to employ
a Markov approximation, i.e. to extend the upper integra-
tion limits in Eq. (15) to infinity. Then, the master equation
(15) reduces to the standard Bloch–Redfield equation [28]
and, moreover, is of Lindblad form, so that the complete
positivity of the reduced density operator is conserved even
for arbitrarily short times [51,52].

4. Exact solution

The dynamics of a system subject to pure phase noise
can, at least in principle, be solved analytically [18–27].
The formal solution of the Liouville–von Neumann equa-
tion (9) after tracing over the bath’s degrees of freedom
reads

~qðtÞ ¼ trbfUðtÞRð0ÞU yðtÞg ð19Þ
with the propagator

UðtÞ ¼ T exp
1

i�h

Z t

0

ds eH sbðsÞ
� �

ð20Þ

and the time-ordering operator T. Although the consider-
ation of the time-ordering can often be quite cumbersome,
it nevertheless can be accomplished for the model discussed
here. We deferred the explicit derivation to Appendix A,
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where we find for the elements of the reduced density ma-
trix the exact expression

~qmnðtÞ ¼ ~qmnð0Þe
iðX 2

m�X 2
nÞ/ðtÞ�ðXm�XnÞ2

P
k

jzkðtÞj2=2

�
Y
k

vkðzkðtÞ½Xm � Xn�; z�kðtÞ½Xm � Xn�Þ; ð21Þ

with the time-dependent phase

/ðtÞ ¼
X
k

jgkj2
x2

k

½xkt � sinðxktÞ�; ð22Þ

the quantum characteristic function [30]

vkðkk; k�kÞ ¼
Z

ekkb
�
k�k�kbk P kðbk; b

�
kÞd2bk ð23Þ

and the time-dependent complex number zkðtÞ ¼
g�k ½1� expðixktÞ�=xk. To arrive at Eq. (21), we only used
the assumption that initially the system and the bath are
uncorrelated and that the initial bath state qb factorises
with respect to the modes k [see Eqs. (5) and (6)]. For the
case of a Gaussian distribution of the bath modes, it is pos-
sible to calculate the integral in the characteristic function
(23) explicitly. We finally find the exact time-evolution of
the reduced matrix element

~qmnðtÞ ¼ qmnð0Þ expf�ðXm � XnÞ2KðtÞ
þ i½ðX 2

m � X 2
nÞ/ðtÞ þ ðXm � XnÞuðtÞ�g ð24Þ

with the phases /(t) defined in Eq. (22) and

uðtÞ ¼ 2
X
k

Im
�b�
kg

�
k

xk
½1� eixk t�

� �
: ð25Þ

The time-dependent damping amplitude K(t) does not de-
pend on the mean values �bk of the bath modes and reads

KðtÞ ¼
X
k

jgkj2
1� cosðxktÞ

x2
k

ð1þ 2nkÞ: ð26Þ

Note that a similar result was obtained recently for a bath
initially in a squeezed thermal state [53].

Upon computing the time-derivative of the exact solu-
tion (24) and noting that the relations

_uðtÞ ¼ hnðtÞib; ð27Þ
_/ðtÞ ¼ �

Z t

0

dsAðt; t � sÞ; ð28Þ

_KðtÞ ¼
Z t

0

ds Sðt; t � sÞ ð29Þ

hold, we find the surprising fact that the exact solution
obeys the quantum master equation (15)! Or put differ-
ently, for pure phase noise, the exact result can be obtained
within second-order perturbation theory from the master
equation (12). For large times t, this master equation be-
comes the standard Markovian Bloch–Redfield equation.
Thus, we find that the latter contains the exact long-time
limit of the rates (27)–(29).

Before discussing the relation between both approaches
in more detail, we like to close this section by writing the
exact solution (24) also in terms of the usual bath spectral
density [10,11]

JðxÞ ¼
X
k

jgkj2dðx� xkÞ: ð30Þ

For the important special case of a heat bath that is
initially at thermal equilibrium, we find u(t) = 0, while
the phase /(t) and the damping amplitude K(t) read

/ðtÞ ¼
Z

dx JðxÞxt � sinðxtÞ
x2

; ð31Þ

KðtÞ ¼
Z

dx JðxÞ 1� cosðxtÞ
x2

coth
�hx
2kBT

� �
: ð32Þ

5. When second-order is exact

We have seen that the time-local master equation (10)
derived within second-order perturbation theory provides
the exact time evolution of the reduced density matrix,
which implies that in the expansion of the Liouvillian
KðtÞ, all higher order contributions vanish. This on the
one hand nicely simplifies practical calculations. On the
other hand, it poses the question whether we face a coinci-
dence or whether there is any profound reason for the
equivalence. In order to underline the latter point of view,
we now demonstrate that for phase noise, the time-ordered
cumulant in the ‘th order generator (11) is proportional to
the usual classical cumulant of the initial bath state. Con-
sequently, we can argue that for the Gaussian initial state
(7), the series KðtÞ ¼ P

‘K‘ðtÞ terminates after ‘ = 2,
which implies that the second-order time-local master
equation (12) is exact.

We start out by defining averages with respect to the P-
function as

h� � � iP ¼
Z

� � �
Y
k

Pðbk; b
�
kÞd2bk: ð33Þ

With this notation, the exact solution (21) reads

~qmnðtÞ ¼ exp

Z t

0

dsfmnðsÞ
� �� 	

P

~qmnð0Þ ð34Þ

with the complex-valued function

fmnðtÞ ¼ iðX 2
m � X 2

nÞ/ðtÞ �
X
k

ðXm � XnÞ2 jzkðtÞj
2

2

(

� ðXm � XnÞ½zkðtÞb�
k � z�kðtÞbk�

)
: ð35Þ

The average in Eq. (34) is obtained from a distribution
function for the c-numbers bk. Thus, it can be formally
considered as the averaged solution of a stochastic differen-
tial equation that obeys a time-local differential equation of
the form (10), but with the generator K now being a
c-number, not an operator. Thus, we can adapt the line
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of argumentation given by van Kampen for classical
Gaussian stochastic processes [48]: Differentiating the Tay-
lor expansion of Eq. (34), we find

_~qmnðtÞ ¼ hfmnðtÞiP þ
Z t

0

dt1hfmnðtÞfmnðt1ÞiP
�
þ
Z t

0

dt1

Z t1

0

dt2hfmnðtÞfmnðt1Þfmnðt2ÞiP þ � � �
�
~qmnð0Þ:

ð36Þ
A time-local equation of motion for ~qmnðtÞ can be obtained
by inserting ~qmnð0Þ from Eq. (34), which yields [48]

_~qmnðtÞ ¼
X1
‘¼1

Z t

0

dt1

Z t1

0

dt2 . . .
Z t‘�2

0

dt‘�1

� hhfmnðtÞfmnðt1Þ . . . fmnðt‘�1ÞiiP ~qmnðtÞ; ð37Þ
where hh� � �iiP denotes the cumulants with respect to the P-
function. Note that for the cumulants of a classical process,
time-ordering is not relevant [48]. Thus the only difference
of this expansion and the one in Eq. (11) for the quantum
master equation is that the latter contains time-ordered
cumulants.

For a Gaussian P-function, all cumulants of bk and b�
k

beyond second-order vanish [54]. Since fmn(t) is linear in
these variables, the same is true for the cumulants in Eq.
(37) and, consequently, only the terms with ‘ = 1,2 con-
tribute to this expansion. Evaluating the expansion coeffi-
cients explicitly, one finds that they are identical to those
of the second-order time-local master equation (15).

The equivalence of the second-order master equation
and the exact solution is based on two requirements: First,
the coupling operator X needs to be diagonal in the eigen-
basis of the system, so that its interaction-picture represen-
tation is time-independent, eX ðtÞ ¼ X , and, thus, it can be
effectively treated as a c-number. Hence the quantum
mechanical time-ordering affects only the bath coordinate
~nðtÞ for which we can express multi-time expectation values
as cumulants of the P-function. In that way, we can cir-
cumvent the tedious task of normal-ordering the operators
bk and byk. With this precondition, secondly, the Gaussian
initial state of the bath ensures that the cumulant expan-
sion terminates after the second-order and agrees with
the expansion of the master equation (10). For any non-
Gaussian state, infinitely many higher-order cumulants
are non-zero both in the classical case [55–57] and in the
quantum mechanical case [58–60]. Consequently, the
expansion of the Liouvillian is of infinite order and any
truncation represents an approximation.

Let us finally stress that the second-order Nakajima–
Zwanzig master equation [43,44], which was not considered
in this work, can be expressed in terms of cumulants (the
so-called partial cumulants), as well [61,62]. Note that the
ordered and the partial cumulants up to second-order coin-
cide. However, the second-order Nakajima–Zwanzig equa-
tion is not of a time-local form and therefore cannot yield
the exact result for the model discussed here [63]. Thus,

phase noise constitutes an example for which the time-local
approach is more accurate than the time-non-local one
when comparing their perturbation expansions up to the
same order. This outcome is in agreement with some recent
findings for harmonic oscillator baths [64,65] and for spin
baths [66,67]. For example for a two-level system coupled
via XY Heisenberg interaction to a spin bath, the differ-
ences of both approaches have been analysed quantita-
tively [66]. Nevertheless, we do not give a general
recommendation in favour of one or the other approach
because the quality of each seems to be model dependent
[61,68–70].

6. Conclusion

Quantum systems under the influence of pure phase
noise represent an important special case of dissipative
quantum mechanics owing to the existence of an exact
solution. Moreover, on short time scales, on which the
coherent system dynamics cannot manifest itself, the
behaviour of the phase noise model is even generic [23].
Here, we have presented the explicit exact solution for a
quantum system under the influence of phase noise with
a general Gaussian initial bath state. Thereby, we have
demonstrated that the coherence decay is determined by
the symmetric bath correlation function, while the anti-
symmetric correlation function gives rise to a time-depen-
dent phase shift. In turn, from the exact relations
(27)–(29), one can obtain information about the spectral
properties of the bath by comparing our results with the
experimentally observed dephasing at short times.

Despite the exact solvability of the phase-noise problem,
it is often convenient to study the resulting dephasing
within a master equation approach based on second-order
perturbation theory in the system–bath coupling. For the
(time-non-local) Nakajima–Zwanzig equation, this consti-
tutes an approximation. For the time-local version of such
a master equation, by contrast, we have found that it pro-
vides the exact solution. After noticing that this facilitates
practical calculations, one might wonder why and when
this equivalence holds true. By mapping the initial bath
density operator to a P-function, we showed that a formal
expansion of the time-local master equation for phase noise
is in fact an ordinary cumulant expansion. Consequently,
for a Gaussian initial bath state, all terms beyond the sec-
ond-order vanish, so that the master equation becomes
exact. Thus for a bosonic heat bath, there are two condi-
tions for the exact agreement: first, the system–bath cou-
pling must commute with the system Hamiltonian
constituting the case of pure phase noise and, second, the
initial state of the bath must correspond to a Gaussian
P-function. If one of these conditions is violated, there
might still exist an exact solution, but it can no longer be
obtained within second-order perturbation theory, as for
example is the case for the dissipative harmonic oscillator
[13,14].
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The second-order time-local master equation employed
in this work agrees with the exact solution at any time.
In particular in the long-time limit, it becomes Markovian
and identical to the standard Bloch–Redfield master equa-
tion, which for pure phase noise is of Lindblad form. This
also explains the previously observed ‘‘excellent agree-
ment’’ [71] between the exact dynamics and results
obtained within Bloch–Redfield theory.
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Appendix A. Derivation of the exact solution

In this appendix, we outline the derivation of the exact
reduced dynamics discussed in Section 4. As a first step,
we perform a transformation to the interaction picture with
respect to H0, so that the coupling Hamiltonian (3)
becomeseH sbðtÞ ¼ eV ðtÞ þ eV yðtÞ ðA:1Þ
with eV ðtÞ ¼ �hX

P
kgkbk expð�ixktÞ and the hermitian sys-

tem operator X. The two operators eV and eV y do not com-
mute. However, their commutator is an operator in the
Hilbert space of the system, while being a c-number in
the bath Hilbert space. To be specific, one obtains
½eV ðtÞ; eV yðt0Þ� ¼ f ðt � t0Þ, where
f ðtÞ ¼ �h2X 2

X
k

jgkj2e�ixk t: ðA:2Þ

Hence, we can use the Baker–Campbell–Hausdorff formula
(see Ref. [30]) to express the time-ordered propagator (20)
as a product of two exponentials

UðtÞ ¼ exp
1

i�h

Z t

0

ds eH sbðsÞ
� �

� exp � 1

�h2

Z t

0

ds
Z s

0

ds0f ðs� s0Þ
�

� ½hðs� s0Þ � hðs0 � sÞ�
�
: ðA:3Þ

The first exponential in Eq. (A.3) can be written as

exp
1

i�h

Z t

0

ds eH sbðsÞ
� �

¼
Y
k

DkðzkX Þ ðA:4Þ

with the complex number zk ¼ g�k ½1� expðixktÞ�=xk and the
displacement operators DkðY Þ ¼ expðYbyk � Y ybkÞ. The sec-
ond exponential in Eq. (A.3) provides the time-dependent
phase factor exp{iX2/(t)} with

/ðtÞ ¼
Z t

0

ds
Z s

0

ds0
X
k

jgkj2 sinðxks
0Þ: ðA:5Þ

We will now consider the elements of the reduced density
matrix in the eigenbasis {|ni} of the system Hamiltonian.
Using the initial condition (5), Eq. (19) becomes

~qmnðtÞ ¼ trbhmjUðtÞqð0ÞqbU
yðtÞjni ðA:6Þ

¼ qmnð0Þei½X
2
m�X 2

n�/ðtÞ
Y
k

Dy
kðXnzkÞ

Y
k0

Dy
k0 ðXmzk0 Þ

* +
b

;

ðA:7Þ
where h. . .ib = trb(qb. . .). By virtue of the relations
Dy

kðY Þ ¼ Dy
kð�Y Þ and

DkðY ÞDkðZÞ ¼ DkðY þ ZÞ expfðYZy � Y yZÞ=2g; ðA:8Þ
which hold for any commuting system operators Y and Z,
we obtain

~qmnðtÞ ¼ qmnð0Þei½X
2
m�X 2

n�/ðtÞþigmn �
Y
k

Dkðzk½Xm � Xn�Þ
* +

b

:

ðA:9Þ
Note that an additional phase gmn ¼ 2

P
kjzkj2ImðX �

mX nÞ
vanishes, since the system operator X is hermitian. It re-
mains to evaluate the expectation value in the second line
of Eq. (A.9). This is readily established by writing the bath
state qb in its P-function representation [see Eq. (6)] and
noticing that expectation values of normal-ordered prod-
ucts of annihilation and creation operators are identical
to the moments of the P-function, where byk and bk have
to be replaced by b�

k and bk, respectively [30]. Thus, by
using the Baker–Campbell–Hausdorff formula

expðkbyk � k�kbkÞ ¼ expðkbykÞ expðk�bkÞ expð�jkj2=2Þ ðA:10Þ
for each mode k, we write the second line of Eq. (A.9) in its
normal-ordered form

e
�½Xm�Xn�2

P
k

jzk j2=2 Y
k

ezk ½Sm�Sn�bykez
�
k ½Sm�Sn�bk

* +
P

; ðA:11Þ

where h. . .iP denotes the average (33) with respect to the
P-function. Using also the fact that the P-function (7) fac-
torises with respect to the modes k, we arrive at Eq. (21).
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