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We present the noise-free escape of a chain of linearly interacting units from a metastable state over a cubic
on-site potential barrier. The underlying dynamics is conservative and purely deterministic. The mutual inter-
play between nonlinearity and harmonic interactions causes an initially uniform lattice state to become un-
stable, leading to an energy redistribution with strong localization. As a result, a spontaneously emerging
localized mode grows into a critical nucleus. By surpassing this transition state, the nonlinear chain manages
a self-organized, deterministic barrier crossing. Most strikingly, these noise-free, collective nonlinear escape
events proceed generally by far faster than transitions assisted by thermal noise when the ratio between the
average energy supplied per unit in the chain and the potential barrier energy assumes small values.
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I. INTRODUCTION

The cornerstone work by Kramers �for a comprehensive
review see Ref. �1�� has instigated an ever ongoing interest in
the dynamics of escape processes of single particles, of
coupled degrees of freedom, or of small chains of coupled
objects out of metastable states. In undergoing an escape the
objects considered manage to overcome an energetic barrier,
separating the local potential minimum from a neighboring
attracting domain.

Stochastic — i.e., noise-assisted — escape is the predomi-
nant phenomenon being studied in statistical physics. Then,
the system energy fluctuates while permanently interacting
with a thermal bath. This causes dissipation and local energy
fluctuations, and the process is conditioned on the creation of
a rare optimal fluctuation, which in turn triggers an escape
�1�. In other words, an optimal fluctuation transfers sufficient
energy to the chain so that the latter statistically overcomes
the energetic bottleneck. Characteristic time scales of such a
process are determined by the calculation of corresponding
rates of escape out of the domain of attraction. In this realm,
many extensions of Kramers escape theory and of first-
passage time problems in overdamped and underdamped ver-
sions have been widely investigated �1,2�. Early generaliza-
tions to multidimensional systems date back to the late 1960s
�3�. This method, nowadays, is commonly utilized in bio-
physical contexts and for a great many applications occur-
ring in physics and chemistry �4–11�.

With this work we present a different scenario of a pos-
sible exit from a metastable domain of attraction which has
recently been put forward in Ref. �12�. The model we shall
study is a purely deterministic dynamics of a linearly coupled
chain of nonlinear oscillators. Put differently, no additional
coupling to a thermal bath promotes the escape. Henceforth,
dissipation vanishes as well within this setup. The underlying
mechanism to create an escape is caused solely by the
strongly nonlinear Hamiltonian deterministic dynamics.

We explore macroscopic discrete, coupled nonlinear oscil-
lator chains with up to 1000 links. These may appear as
realistic models in mechanical and electrical systems, in vari-
ous biophysical contexts, in neuroscience, or in networks of

coupled superconductors, to name but a few �13–17�. A de-
terministic escape in the absence of noise is particularly im-
portant in the case of low temperatures when activated es-
cape becomes far too slow. Also the case of many coupled
nonlinear units in the presence of nonthermal intrinsic noise
that scales inversely with the square root of the system size
then calls, in the limit of large system sizes, for a determin-
istic nonlinear escape scenario.

In the nonlinear regime an initially, almost homogeneous
chain is able to generate spontaneous structural modulations.
This process proceeds in a self-organized manner. More spe-
cifically, due to the modulational instability, unstable grow-
ing nonlinear modes give rise to the formation of coherent
structures �18� such that the originally uniformly distributed
energy becomes concentrated to a few degrees of freedom.
With regard to nonlinear localization phenomena, intrinsic
localized modes or discrete breathers, such as time-periodic
and spatially localized solutions of nonlinear lattice systems,
have turned out to present the archetype of localized excita-
tions in numerous physical situations �19–23�.

An escape is related to a crossing of a saddle point in
configuration space, corresponding to a bottleneck �1� or a
transition state. The latter is associated with an activation
energy Eact to be concentrated in the critical localized mode.
We will show that the critical localized mode can be reached
in the microcanonical situation spontaneously �12�. Thus, we
encounter a self-organized creation of the transition state
which is in clear contrast to noise-activated escape. In par-
ticular, we demonstrate that intrinsic nonlinear effects on a
long discrete chain of N units induce a transition over an
energetic barrier by enhancing one, or several, localized
breather states �15–17�. Due to this mechanism, the initially
almost uniformly distributed energy is dynamically concen-
trated by use of an internal redistribution; no assistance of
energy exchange with a thermal bath is thus needed. We
show as well that the nonlinear mechanism of energy local-
ization may promote a faster escape dynamics as compared
to the noise-assisted situation where the system experiences
an enduring stochastic forcing.

The paper is organized as follows: In the next section we
introduce the model of the coupled oscillator chain and dis-
cuss in Sec. III the modulational instability as the localiza-
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tion mechanism. In Sec. IV we proceed by focusing our in-
terest on the low-energy modes corresponding to nearly
equilibrium states of the lattice chain. The properties of lo-
calization induced by the dynamical formation of breather
arrays are explored. Concerning the escape itself, special at-
tention is paid to the passage of lattice states through a criti-
cal localized mode �transition state� in Sec. V. Subsequently,
in Sec. VII we demonstrate that the rate of escape may be
crucially affected by the coupling strength. In Sec. VI the
escape rates obtained under microcanonical conditions are
compared with those found for thermally activated barrier
crossings. In this context we assume not only flat-state initial
preparations of the microcanonical system, but also random
chain configurations with a fairly broad distribution of the
coordinates and/or momenta. In Sec. VIII we deal with the
influence of the chain length on the escape process. We con-
clude with a summary of our results.

II. COUPLED OSCILLATOR CHAIN MODEL

We study a one-dimensional lattice of coupled nonlinear
oscillators. Throughout the following we shall work with di-
mensionless parameters, as obtained after appropriate scaling
of the corresponding physical quantities. The coordinate q of
each individual oscillator of mass unity evolves in a cubic,
single well on-site potential of the form

U�q� =
�0

2

2
q2 −

a

3
q3. �1�

This potential possesses a metastable equilibrium at qmin=0,
corresponding to the rest energy Emin=0, and the maximum
is located at qmax=�0

2 /a with energy Emax��E=�0
6 / �6a2�.

Thus, in order for particles to escape from the potential well
of depth �E over the energy barrier and subsequently into
the range q�qmax, a sufficient amount of energy has to be
supplied.

The Hamiltonian of the one-dimensional coupled nonlin-
ear oscillator chain is given by

H = �
n=1

N � pn
2

2
+ U�qn�� +

�

2 �
n=1

N

�qn+1 − qn�2. �2�

The coordinates qn�t� quantify the displacement of the oscil-
lator in the local on-site potential U at lattice site n �see Fig.
1�, and pn�t� denotes the corresponding canonically conju-
gate momentum. The oscillators, also referred to as “units,”
are coupled linearly to their neighbors with interaction
strength �.

The equations of motion derived from the Hamiltonian
given in Eq. �2� then read

d2qn

dt2 + �0
2qn − aqn

2 − ��qn+1 + qn−1 − 2qn� = 0. �3�

Throughout this work we use periodic boundary conditions
according to q1�t�=qN+1�t�. Note that in Eq. �3� the nonlin-
earity is solely contained in the local force term.

For a setup with interacting strength � the barrier height
can be estimated by assuming that only one unit of the chain

is elongated, which yields a value �E�= ��0
2+2��3 / �6a2�.

Hence, compared to the isolated unit, a unit coupled to its
neighbors experiences an increase of the barrier height.

For sufficiently small energy per unit of all chain mem-
bers as compared to the potential barrier, a linear regime with
a=0 holds true in the considered potential �1�, yielding os-
cillatory solutions in phase space such that the elongations
are restricted to the neighborhood of the potential bottom.
The corresponding linearized system

�q̈n + �0
2�qn − ���qn+1 + �qn−1 − 2�qn� = 0 �4�

possesses exact plane-wave solutions �phonons�

�qn�t� = u0 exp�i�kn − �t�� + c.c. �5�

The wave number k=2�m /N, with integer m� �−N /2 ,
N /2�, and the frequency � are related by the dispersion re-
lation

�2 = �0
2 + 4� sin2	 k

2

 . �6�

This expression determines the frequency of linear oscilla-
tions in the phonon band with k� �−� ,��.

The superposition of phonon modes causes oscillatory
states wherein distinguished units may temporarily accumu-
late energies that are comparable to the barrier energy. How-
ever, in a harmonic potential with a=0 these states are highly
unlikely. If at all, they occur at a time scale comparable to
the Poincaré recurrence time of the system.

Nonetheless, utilizing nonlinear effects with a�0, an ini-
tial state near the metastable minimum is structurally un-
stable which mobilizes structural transition of the chain such
that a transition state is adopted. This mechanism will be
elaborated on in the next section.

III. MODULATIONAL INSTABILITY

It is well established that the formation of localized exci-
tations in nonlinear systems can be caused by a modulational
instability �24–27�. This mechanism initiates an instability of
an initial plane wave when small perturbations of nonvanish-
ing wave numbers are imposed. The instability, giving rise to
an exponential growth of the perturbations, destroys the ini-
tial wave at a critical wave number, so that a localized hump
is formed.

FIG. 1. Potential barrier landscape with a chain positioned at the
bottom. The parameter values are a=1 and �0

2=2.
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To analyze the nonlinear character of the solutions of Eq.
�3� a nonlinear discrete Schrödinger equation for the slowly
varying envelope solution, un�t�, has been derived in Refs.
�28,29�:

2i�0u̇n + ��un+1 + un−1 − 2un� + ��un�2un = 0, �7�

with the nonlinearity parameter �=10a2 /3�0
2. The stability

of a plane-wave solution of Eq. �7� of the form

un�t� = u0 exp�i	n� + c.c., �8�

with 	n=kn−�t, can be investigated in the weakly nonlinear
regime by assuming small perturbations of the amplitude u0
and phase 	n that have the form of sinusoidal modulations
with wave number Q and frequency 
. One then finds for
the perturbational wave the following dispersion relation
�28,29�:

�
 − 2� sin�Q�sin�k��2

=
2�

�0
2 sin2	Q

2

cos�k��2� sin2	Q

2

cos�k� − �u0

2 .

�9�

Stability of the perturbations necessitates that 
 is real. Con-
versely, if the right-hand side in Eq. �9� is negative, the per-
turbation grows exponentially with a rate

� = �2�

�0
2 sin2	Q

2

cos�k�	�u0

2 − 2� sin2	Q

2

cos�k�
1/2

.

�10�

Notably, this modulational instability is possible only in the
range of carrier wave numbers k� �0, � /2�. Thus, patterns
of short wavelength are insensitive with respect to modula-
tions.

In the following we focus our interest on the k=0 mode.
In Fig. 2 we depict the growth rate for different values of the
coupling strength for a mode with u0=0.2, k=0, and N
=100. The inequality

�u0
2 − 2� sin2	Q

2

 � 0 �11�

puts a constraint on the allowed wave numbers. For rela-
tively small coupling strength �=0.02 the whole range of
wave numbers, �Q��, is responsible for the modulational
instability, albeit with different weights. Enlarging � not only
increasingly shifts the cutoff for the allowed wave numbers
toward Q=0, but in addition makes the instability bands also
narrower. In other words, the modulational instability be-
comes more mode-selective. Nevertheless, the maximum of
the growth rate,

�max =
1

2�0
�u0

2, �12�

is unaffected by alterations of �, while its position

Qmax = 2 sin−1	��u0
2

4�

 �13�

moves closer to zero with increasing coupling strength �.
The way the growth rates with corresponding weights for

perturbations at different wave numbers Q contribute to a

mean growth rate is determined by the quantity �̄, reading

�̄ =
2

N
�
n=0

N/2

�	Q =
2�

N
n, k = 0
 . �14�

This quantifier is depicted in Fig. 3 as a function of the
coupling strength �. The maximum around ��0.023 sug-
gests that a sizable divergence of the perturbations is in-
duced. To the left of its maximum the mean growth rate
drops drastically while on its right the decrease considerably
weakens.

IV. ENERGY SHARING AND FORMATION OF ARRAYS
OF BREATHERS

In order to enhance the energy localization in the dynam-
ics of Eq. �3� we propose the following scenario: An amount
of energy E0=Etotal /N is applied per unit which allows the
activation of nonlinear, self-organized excitations of the
chain.
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FIG. 2. Growth rate in dependence of the wave number Q for
different coupling strengths �, as indicated on the graphs. The pa-
rameter values are k=0, u0=0.2, a=1, �0

2=2, and N=100.
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FIG. 3. Mean growth rate versus the coupling strength. The
parameter values used are the same as in Fig. 2.
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Thus, the chain possesses a total energy Etotal=NE0. For
an escape to take place we have Etotal�Eact��E. This in-
equality conveys the fact that more than just one unit gov-
erns the escape mechanism. The initial energy E0 is supplied
as follows: �i� First, the whole chain is elongated homoge-
neously along a fixed position q0 near the bottom of the well.
�Notice that from Eq. �8� it follows that this corresponds to a
flat mode being equivalent to a k=0 plane-wave solution and
thus q0=2u0.� �ii� Then, the position of all units and their
momenta are isoenergetically randomized while keeping the
total energy a constant—i.e., Etotal=NE0=const.

The random position values are chosen from a bounded
interval �qn�0�−q0��q and, likewise, the random initial
momenta, �pn�0�− p0��p. From Eq. �5� for a plane-wave
solution with wave number k=0 one deduces that p0=0. The
whole chain is thus initialized close to an almost homoge-
neous state, but yet sufficiently displaced ��q�0� in order
to generate nonvanishing interactions, enabling the exchange
of energy among the coupled units.

As the role of the deviation of the initial conditions from
a completely homogeneous state for the instigation of the
energy exchange process is concerned we observe that the
attainment of an array of humps proceeds the faster the larger
is the width �p and/or �q. More precisely, due to the emer-
gence of a modulational instability, a pattern evolves in the
course of time �of the order of t�5�102� where for some
lattice sites the amplitudes grow considerably whereas they
remain relatively small in the adjacent regions. This feature
is illustrated in Fig. 4, depicting the spatiotemporal evolution
of the site energy:

En =
pn

2

2
+ U�qn� +

�

4
��qn+1 − qn�2 + �qn−1 − qn�2� . �15�

The breather states possessing a relatively high energy occur
spontaneously at an average distance of the inverse wave
numbers Qmax

−1 , corresponding to the maximal growth rate
�max in Eq. �12�. Upon moving, these breathers tend to col-
lide inelastically with others. In fact, various breathers merge
to form larger-amplitude breathers, proceeding preferably
such that the larger-amplitude breathers grow at the expense
of the smaller ones. As a result, a certain amount of the total
energy becomes strongly concentrated within confined re-

gions of the chain. This localization scenario is characteristic
for nonlinear lattice systems �29–37�.

For our simulations the set of coupled equations �3� has
been numerically integrated by use of a fourth-order Runge-
Kutta scheme. The accuracy of the calculation was checked
by monitoring the conservation of the total energy with pre-
cision of at least 10−5. The investigated chain consists of 100
coupled oscillators.

To relate the energy localization with an escape over the
barrier we note that in the beginning the average amount of
energy contained in a single unit, E0=Etotal /N, lies signifi-
cantly below the barrier energy as expressed by the low ratio
E0 /�E=0.06. Thus, a single unit must acquire the energy
content of at least 16 nearby units before it is able to over-
come the barrier.

For further illustration we depict in Fig. 5 snapshots of
qn�t� at two different instants of time. In the beginning the
energy is virtually equally shared among all units �not
shown�. After a certain time has evolved, the local energy
accumulation is enhanced in such a manner that at least one
of the involved units possess enough energy to overcome the
barrier. The question then is, does such an escaped unit con-
tinue its excursion beyond the barrier or can it even be pulled
back into the bound chain formation �qn�qmax� by the re-

FIG. 4. Spatiotemporal evolution of the energy distribution
En�t�. Initially, the coordinates are uniformly distributed �k=0�
within the interval �qn�0�−q0��q with an average at q0=0.3 and
width �q=0.01 and zero momenta—i.e., p0=�p=0. This yields a
total energy Etotal=8.1�6.075 �E. The parameter values are given
by a=1, �0

2=2, N=100, and �=0.3.

(a)

(b)

FIG. 5. Snapshots of the amplitudes qn�t� of a segment of the
lattice covering ten oscillators, illustrating the formation of a local-
ized structure with a subsequent barrier crossing event of the chain.
Initial conditions are q0=0.45, �q=0.01, and p0=�p=0. Parameter
values are �0

2=2, a=1, N=100, and �=0.2. Top panel: snapshot
taken at time t=473: Emergence of localized structures. Bottom
panel: snapshot taken at time t=673: Depicted is a segment of the
lattice with one unit located beyond the barrier. The dashed lines in
the �qn−n� plane designate the position of the potential’s minimum
and maximum.
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storing binding forces exercised by its neighbors? On the
other hand, the unit that has already escaped from the poten-
tial well might drag neighboring ones closer to or, in the
extreme, even over the barrier. Thus a concerted escape of
the chain from the potential valley becomes plausible.

V. TRANSITION STATE

Whether a unit of growing amplitude can in fact escape
from the potential well or is held back by the restoring forces
of their neighbors depends on the corresponding amplitude
ratio as well as on the coupling strength. The critical chain
configuration—that is, the transition state separating
bounded �qn�qmax� from unbounded �qn�qmax� lattice
solutions—is determined by q̈n�t�=0. The system of equa-
tions �3� then reduce to the stationary system of equations

−
�U

� q̃n

+ ��q̃n+1 + q̃n−1 − 2q̃n� = 0. �16�

Interpreting n as a “discrete” time, with 1nN, Eq. �16�
describes the motion of a point particle in the inverted po-
tential −U�q̃�. This difference system can be cast in the form
of a two-dimensional map by defining xn= q̃n and yn= q̃n−1
�38�, which gives

xn+1 = ��0
2xn − axn

2�/� + 2xn − yn,

yn+1 = xn. �17�

The fixed points of this map are found as

x0 = y0 = 0, x1 = y1 =
�0

2

a
. �18�

A linear stability analysis reveals that �x0 ,y0� represents an
unstable hyperbolic equilibrium while at �x1 ,y1� a stable cen-
ter is located. The map is nonintegrable. The stable and un-
stable manifolds of the hyperbolic point intersect each other,
yielding homoclinic crossings as illustrated in Fig. 6.

The corresponding homoclinic orbit of the map, consist-
ing of the points of intersections between Ws and Wu, is on
the lattice chain equivalent to a stationary localized hump
solution �q̃n

h�, centered at site n=nc, which resembles the
form of a �pointed� hairpin �for details concerning the rela-
tion between homoclinic orbits and localized lattice solutions
see �38,39��. In Fig. 7 profiles of this hairpinlike critical
localized mode �CLM�, or critical nucleus, with displace-
ments �q̃n

h� are depicted for several coupling strengths. We
observe that the stronger the coupling is, the larger the maxi-
mal amplitude of the hump is, q̃nc

h = q̃max
h , and the wider the

spatial extension of the latter is. We underline that on a suf-
ficiently extended lattice this CLM represents a narrow chain
formation with its width being much smaller than the total
chain length.

Equation �16� can be derived from an energy functional
with vanishing kinetic energy, reading

E��q̃n�� = �
n
	U�q̃n� +

�

2
�q̃n − q̃n−1�2
 , �19�

with �E /�q̃n=0. Apparently, with increasing coupling
strength � a larger activation energy

Eact = E��q̃n
h�� �20�

is required to bring the chain into its critical localized mode
configuration.

FIG. 6. First intersections of the stable Ws �thin gray line� and
the unstable Wu manifold �thick dark line� of the hyperbolic point of
the map in Eq. �17� at the map origin �0, 0�. The parameter values
are �0

2=2, a=1, and �=1. The homoclinic point labeled �q̃nc

h ; q̃nc+1
h �

and its map iterate �q̃nc+1
h ; q̃nc+2

h � correspond on the consecutive lat-
tice sites n=nc, nc+1, nc+2 to a decaying pattern whose amplitudes
with q̃n

h� q̃n+1
h are represented by the arrows of varying length in the

schematic representation in the upper left corner. Map iterations of
the homoclinic point �q̃nc+1

h ; q̃nc+2
h � result in further homoclinic

points approaching asymptotically the hyperbolic point at the map
origin.
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κ = 0.3
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barrier

FIG. 7. Amplitude profile of the critical chain configuration,
being symmetrically centered at site nc, for different coupling
strengths �=0.1 �circles�, �=0.3 �diamonds�, and �=1.0 �triangles�.
For better illustration only we depict the central part of the lattice
chain with sizable elongations. The parameter values are �0

2=2 and
a=1.
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The activation energies for different coupling strengths
are depicted in Fig. 8.

For small coupling the maximal amplitude q̃max
h is beyond

but still close to qmax=�0
2 /a �the position of the maximum of

the potential U�q�� while the remaining units practically re-
side at the minimum of the potential U�q�. For larger cou-
plings the maximal amplitude q̃max

h lies at larger distances
beyond qmax. Most importantly, for escape we have that
��U�q̃� /�q̃�q̃=q̃max

h �0.
It can be shown that the critical localized mode, being

associated with an unstable saddle point in configuration
space, is indeed dynamically unstable. Setting qn�t�= q̃n

h

+wn�t� with �wn��1 the linearized equations of motion are
derived as

ẅn�t� = − � �2U�qn�
�qn

2 �
qn=q̃n

h
wn�t�

+ ��wn+1�t� + wn−1�t� − 2wn�t�� . �21�

With the ansatz wn�t�=�n exp���t� for the solution of Eq.
�21� one arrives at an eigenvalue problem

��n = − Vn�n + ���n+1 + �n−1 − 2�n� , �22�

with

Vn = � �2U�qn�
�qn

2 �
qn=q̃n

h
= �0

2 − 2aq̃n
h. �23�

The second-order difference equation �22� is of the discrete
stationary Schrödinger type, with a nonperiodic potential
−Vn, breaking the translational invariance so that localized
solutions exist �so called stopgap states�. The evolution of
the two-component vector ��n+1 ,�n�T is determined by the
following Poincaré map:

M:	�n+1

�n

 = �En − 1

1 0
	 �n

�n−1

 , �24�

with on-site energy En= ��+Vn� /�+2. The nodeless even-
parity ground state of Eq. �22�, with its energy under the
lower edge of the energy band of the passing band states,
corresponds to an orbit of the linear map M being ho-
moclinic to the hyperbolic equilibrium point at the origin �0,
0� of the map plane. For the presence of a hyperbolic equi-

librium the following inequality has to be satisfied:

Trace�M� = En =
� + Vn

�
+ 2 � 2, �25�

implying that � must fulfill the constraint

� � max
n

�− Vn� = 2a max
n

q̃n
h − �0

2 � 0. �26�

With the maximal amplitude of the CLM lying beyond the
barrier—viz., maxn q̃n

h��0
2 /a—one finds

� � �0
2 � 0. �27�

Therefore, the ground state belongs to a positive eigenvalue
from which we deduce that perturbations of the correspond-
ing solution in the time domain grow exponentially. Hence,
if the kinetic energy overcomes the critical nucleus, the sub-
sequent escape of its neighbors is initiated, which progress
on the chain to the left and to the right of the hairpin as a
propagating kink and antikink, respectively �see Refs.
�7,40,42,43��. In phase space the units move parallel to the
unstable manifold of the hyperbolic equilibrium �which is
related to the saddle point at the maximum of the potential
U�q��, realizing in this way an efficient lowering of the total
potential energy. Because the kinetic energy of this outward
motion is consequently increasing, a return backward over
the barrier into the original well is hereby prevented. Figure
9 illustrates the kink-antikink motion showing the escape
time Tesc

�n� of the units versus the position on the lattice. The
escape time of a unit is defined as the moment at which it
passes through the value qesc=5qmax beyond the barrier. We
remark that qesc is chosen such that U�qesc� is sufficiently
lowered so that the return of an escaped unit over the barrier
into the potential well is practically excluded. Consecutively,
all oscillators manage to eventually climb over the barrier
one after another in a relatively short time interval. �The
position of the first escape event varies in general for random
samples of initial conditions.�

0 0.2 0.4 0.6 0.8 1
1

2

3

4

κ

E
ac

t/∆
E

FIG. 8. Activation energy Eact as a function of the coupling
strength �. Solid line: fitted data with slope s=3.54±0.01. The re-
maining parameter values are �0

2=2 and a=1.
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FIG. 9. The escape time Tesc
�n� of the individual chain units versus
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VI. COMPARISON WITH THERMALLY ACTIVATED
ESCAPE

We next compare the microcanonical escape process with
the corresponding thermally assisted escape process at a tem-
perature T �1,2,7–9,40,42,43�. The associated Langevin sys-
tem reads

d2qn

dt2 +
dU

dqn
− ��qn+1 + qn−1 − 2qn� + �

dqn

dt
+ �n�t� = 0,

�28�

with a friction parameter � and where �n�t� denotes a Gauss-
ian distributed thermal, white noise of vanishing mean
��n�t��=0, obeying the well-known fluctuation-dissipation re-
lation ��n�t��n��t���=2�kBT�n,n���t− t�� with kB denoting the
Boltzmann constant. We define the escape time of a chain as
the mean value of the escape times of its units �see again
above�.

Escape times

Our results are summarized in Fig. 10 depicting the mean
escape time as a function of E0 /�E. The averages were per-
formed over 500 realizations of random initial conditions or
the noise in the microcanonical and Langevin systems, re-
spectively. For the deterministic and conservative system �3�
the excitation energy E0 is given by the �average� initial en-
ergy content of one unit, E0=Etotal /N. For the simulations we
varied q0 while keeping �q=0.01 and p0=�p=0 and ob-
tained thus different values of Etotal. In the case of the Lange-
vin system �28� for sufficiently low T the energy E0 is taken
as the thermal energy kBT. This ratio thus corresponds to the
inverse Arrhenius factor �1�; indeed, at sufficient low tem-

perature �large ratio �E /E0� the logarithmic escape time fol-
lows an almost linear behavior versus the Arrhenius factor,
as expected for a noise-driven escape at weak noise strength
�1�.

The Langevin equations were numerically integrated us-
ing a two-order Heun stochastic solver scheme �44�. In both
cases there occurs a rather distinct decay of Tesc with grow-
ing ratio E0 /�E in the low-energy region. This effect weak-
ens gradually upon further increasing E0. Remarkably, for
low E0 �indicated as the breather region in the plot� the es-
cape proceeds distinctly faster for the noise-free case as com-
pared with a situation of a chain that is coupled to a heat bath
at temperature T. This implies a large enhancement of the
rate of escape as compared to the thermal rate. Near
E0 /�E�0.36, there occurs a crossover, with the mean es-
cape time of the deterministic system at even higher ratios
closely following that of the thermal Langevin dynamics. At
these values the escape times become comparable with the
relaxation time which is determined by the inverse of the
friction strength. Apparently in the region of lower kBT non-
linear excitations are damped out in the Langevin system at
longer time scales. Hence they will not accelerate the escapes
in the case with fluctuations and damping.

To sharpen our finding that the escape proceeds typically
faster in the noiseless situation as compared to the case with
a coupling to a heat bath, we investigated also the escape
process of nonflat chain patterns starting out from strongly
randomized initial conditions. For these initial conditions the
coordinates and momenta are chosen at random from fairly
broad ranges −0.251qn�0�0.534 and −0.251 pn�0�
0.534. For various energy values the averages were per-
formed over 100 realizations of initial conditions belonging
to isoenergetic configurations with ratio E0 /�E each.

The findings for the mean escape time as a function of the
mean initial energy content of the units relative to the barrier
height E0 /�E are included in Fig. 10 with the diamond sym-
bols. Most importantly, even for random initial conditions
the mean escape time assumes smaller values in the micro-
canonical situation as compared to the Langevin dynamics.
This underpins our general statement that noiseless escape
indeed proceeds faster than thermally activated escape.

We note that the breathers present robust chain configu-
rations that are formed rather fast as compared to the escape
time. In contrast, the forever impinging stochastic forces
seemingly impede a fast growth of the critical nucleus and
may even cause a possible destruction of the critical chain
formation, leading to recrossings of the transition region,
which only hampers a speedy escape. This inhibition for es-
cape is most effective at small ratios of E0 /�E, being in-
duced either by high barrier heights or low temperatures �im-
plying a small E0�. A deterministic scenario thus presents a
more favorable route toward accelerated escape in situations
with very weak noise or very large barrier heights. Having
performed also simulations for more general situations �i�
with nonharmonic, nonlinear chain interactions, �ii� in higher
dimensions, and �iii� with differing on-site potentials, we find
�41� that the phenomenon of an enhanced, noise-free escape
remains robust in regimes of a large effective Arrhenius fac-
tor with the latter given by the ratio of the barrier height �E
and the initial energy per unit, E0.
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FIG. 10. Mean escape time Tesc vs the ratio E0 /�E of energy
per unit E0 and the barrier energy �E for the noise-free case with
initial k=0 mode �solid line� with �q=0.01 and p0=�p=0 �for q0,
see text�, the case with strongly randomized initial conditions �dia-
monds� where −0.251qn�0�0.534, −0.251 pn�0�0.534, and
the noise-assisted escape �dashed line�, respectively. The parameter
values are �0

2=2, a=1, and �=0.3 and the friction strength is �
=0.1. The inset depicts the same data, but now plotted versus the
effective Arrhenius factor �E /E0.

SELF-ORGANIZED ESCAPE OF OSCILLATOR CHAINS IN … PHYSICAL REVIEW E 76, 041110 �2007�

041110-7



VII. OPTIMAL COUPLING AND RESONANCE
STRUCTURE IN THE ESCAPE PROCESS

Furthermore, we study the impact of the coupling strength
� on the escape process. The results concerning the mean
escape time are illustrated with Fig. 11.

Strikingly, the mean escape time exhibits a resonance
structure; viz., there exists a coupling strength ��res=0.31�
for which the escape proceeds faster than for all other cou-
plings strengths. Upon lowering ���res we notice a substan-
tial rise of the escape time while for ���res the graph ex-
hibits only a moderately growing slope with growing
coupling strength �. In this sense �res=0.31 from Fig. 11
represents indeed the optimal coupling strength for which
escape is achieved within a minimal amount of time. Finally,
outside the range �� �0.05, 1.5� not even the escape of a
single unit has been observed. The reason is that the time
scale for a pronounced formation of energy concentration,
being vital for escape �due to breather coalescence and en-
ergy accumulation in the critical localized mode�, exceeds
the simulation time �taken here as t=5000�.

A physical explanation for the appearance of a resonance-
like structure can be given in terms of the different degrees
of instability of the underlying motion facilitating the de-
struction of the initial flat mode by modulational perturba-
tions. We recollect that with the variation of the perturbation
strength the growth rate changes �cf. Sec. III� from a more
flat to a strongly curved single-peaked structure. To illustrate
the impact of the growth rate on the degree of localization of
emerging patterns we present in Fig. 12 the energy distribu-
tion defined in Eq. �15� at an early instant of time—namely,
after the formation of the spatially localized structure due to
spontaneous modulational instability has taken place. For
comparison, patterns for three coupling strengths are shown.
In all cases a number of isolated localized humps are formed.
The number of humps, Nhumps, can be attributed to the wave
number at maximal growth rate as follows: �patternNhumps
=N and �pattern=2� /Qmax. Most importantly, the number of
humps �besides their height and width� regulates how the
total energy is shared among them. Clearly, for �=0.31 �Fig.
12�b�� the energy is more strongly localized �fewer humps
and of higher height� than in the case of �=0.09 �Fig. 12�a��.

In comparison for �=1 �Fig. 12�c�� the number of humps is
further diminished, but they are of lower height than most of
the humps for �=0.31. In fact, for �=0.31 the energy con-
tained in the unit at site n=35 is close to the one of the
barrier. Thus, a localized pattern appropriate for escape is
provided already by the mechanism of modulational instabil-
ity. In particular, no further �major� energy accumulation,
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FIG. 11. Resonant behavior in the mean escape time Tesc as a
function of the coupling strength � with the remaining parameter
values as in Fig. 4. The initial conditions are for the coordinates
q0=0.45 and �q=0.1 and for the momenta p0=�p=0. The aver-
ages were performed over 500 realizations of random initial
conditions.
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which would delay the escape process considerably, is hence
required.

To gain further insight into the efficiency of energy local-
ization it is illustrative to suppose that the whole lattice can
be divided into a periodic array of �noninteracting� segments
where each of them supports a single localized hump. The
energy of one segment is determined by

Es =
Etotal

Nhumps
=

Etotal

N/�pattern
. �29�

Defining es=Es /�E as the ratio of the energy per segment to
the net barrier energy we obtain

es =
2�Etotal

QmaxN�E
. �30�

Appropriate conditions for escape are provided when the en-
ergy contained in each segment, es, is close to the activation
energy eact measured in units of the barrier energy—i.e.,
eact=Eact /�E. The efficiency of energy localization is then
determined by the following ratio:

� =
es

eact
. �31�

For a given value of the coupling strength � the activation
energy is known; cf. Fig. 8. Fixing the initial energy and
using Eq. �10� we infer the value of Qmax and finally using
Eqs. �30� and �31� we obtain �. In Fig. 13 the ratio � is
plotted as a function of the coupling strength �. The plot
exhibits a maximum at �=0.3, which corroborates the find-
ing of the resonance found for the escape versus coupling
strength as depicted in Fig. 11. Moreover, the curvature of
the graphs of Figs. 11 and 13 are similar.

VIII. INFLUENCE OF CHAIN LENGTH ON THE ESCAPE
TIME

We also study the influence of “size”—i.e., the number of
oscillators, N, on the escape process. A general constraint on
the escape process arising from varying the chain length is
formulated. We discuss the escape time statistics for chains
with constant energy density and for chains with fixed total
energy, but varying number of oscillators, respectively. Our
studies apply to a homogeneous initial state �k=0 mode�.

First of all, the initial homogeneous state must become
unstable with respect to a modulational instability. With re-
lation �11� a constraint is established on the allowed wave
numbers, giving rise to the modulational instability. They
form a discrete set, and we can derive a lower bound for the
number of oscillators, Nmin, needed for the onset of the
modulational instability:

Nmin �
�

arcsin	��u0
2

2�

 . �32�

In the case of u0
2�2� /� the initial homogeneous state is

always unstable, independent of the number of oscillators, N.
However, for an initial state in the weakly nonlinear regime,
which means u0

2�2� /�, the inequality �32� yields a condi-
tion for the minimal number of units on the chain that are
necessary for modulational instability. On the other hand,
once the conditions are provided that the chain be able to
adopt the transition state, the addition of further lattice sites
beyond a certain number leaves the activation energy unal-
tered. This is due to the fact that the transition state is rep-
resented by the CLM, which is strongly localized in space
with exponential decaying tails.

A. Case with constant energy density

Let us first consider chains with constant energy density
�=Etotal /N=const. One would at first glance expect a faster
escape with increasing number of oscillators and thus with
increasing total energy. This is, however, not necessarily the
case. For an explanation it is suitable to consider the limit of
very long chains, N→1000.

In Fig. 14 the average time for which the first and last
escape incidents of a unit take place is depicted versus vary-
ing chain length N. The averages were performed again over
500 realizations of random initial conditions. In addition, we
as well depict the mean escape time of the chain. We set the
initial coordinates around a mean value of q0=0.50 and
spread at �q=0.01, yielding �=0.156 �E. Apparently the
longer the chain is, the more humps �breathers� that are
formed due to the modulational instability. This offers the
possibility that a larger number of interacting breathers con-
tribute to an enhanced energy localization in a confined re-
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gion of the chain, which in turn boosts the formation of the
critical localized mode. Hence, the time it takes for the first
unit to escape shrinks with increasing chain length, while the
last escape time increases due to the enlarged number of
escaping units. Also, the mean escape time becomes insensi-
tive to variations of the chain length for sufficiently large
length N�500, and thus it tends to saturate.

B. Fixed total energy

We next consider the situation when a fixed amount of
total energy—i.e., Etotal=const—is provided to the system
and the number of units on the lattice is varied. To obtain a
certain value of Etotal upon altering the number of units, N,
we adopted q0 appropriately while keeping �q=0.01 and
p0=�p=0 fixed. The maximal energy content per unit is
restricted to the range E0�0.5 �E. The results for the mean
escape time are depicted in Fig. 15. Generally, we observe an
increase of Tesc with growing N. Interestingly enough, the
slope passes through intermediate stages of subexponential
and hyperexponential and eventually approaches an expo-
nential behavior.

IX. SUMMARY

In this paper we have explored the conservative and de-
terministic dynamics of a one-dimensional chain consisting
of linearly coupled anharmonic oscillators that are placed
into a cubic on-site potential. Attention has been paid to the
collective barrier crossing of the whole chain. Initially the
system is placed into a metastable state for which all units
are trapped near the bottom of the potential. An overcoming
of the barrier of the whole chain is prevented at short initial
times because of a too high net barrier height. Nevertheless,
as we convincingly demonstrated, the spontaneous formation
of localized modes upon evolving time serves to enrich en-
ergetically a segment on the chain to such a degree that it
adopts the transition-state energy in assuming the form of a
hairpin. We have shown that the associated critical localized
lattice state is dynamically unstable and eventually a barrier
crossing proceeds as the propagation of a kink-antikink-like
pair along the chain. Strikingly, there exists a resonantlike
coupling strength � for which the escape time �rate� becomes
minimal �maximal� �cf. Fig. 11�.

In view of potential applications we note that this deter-
ministic collective escape process provides nonlinear sys-
tems with the unique possibility to self-promote their activa-
tion dynamics. Particularly, the ability to operate
efficiently—i.e., exhibiting an enhanced collective coherent
escape—although not optimally initialized �meaning that one
starts out with a far too low energy density compared to the
barrier height� underpins the beneficial use of this physical
scenario. Remarkably, while at weak thermal noise the rate
of thermal escape is exponentially suppressed, a determinis-
tic nonlinear breather dynamics yields a robust critical
nucleus configuration, which in turn causes an enhancement
of the noise-free escape rate. Thus, the freezing out of noise
may prove advantageous for transport in metastable land-
scapes, whenever the deterministic escape dynamics can be
launched in a single shot via an initial energy supply.
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