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We study the arrival time distribution of overdamped particles driven by a constant force in a piecewise
linear random potential which generates the dichotomous random force. Our approach is based on the path
integral representation of the probability density of the arrival time. We explicitly calculate the path integral for
a special case of dichotomous disorder and use the corresponding characteristic function to derive prominent
properties of the arrival time probability density. Specifically, we establish the scaling properties of the central
moments, analyze the behavior of the probability density for short, long, and intermediate distances. In order
to quantify the deviation of the arrival time distribution from a Gaussian shape, we evaluate the skewness and
the kurtosis.
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I. INTRODUCTION

The overdamped equation of motion of a classical particle
in one dimension presents a simple yet very useful model for
the study of many physical, biological, economical, and
other systems. Depending on the character of the force field
acting on the particle, this equation provides a basis for de-
scribing different phenomena in these systems. Specifically,
if the force field contains the noise terms arising from the
influence of the environment, it describes a large variety of
noise-induced phenomena including noise-induced transi-
tions �1�, directed transport �2�, and stochastic resonance �3�,
to name only a few. It should be noted that in some cases,
especially within the white-noise approximation, the statisti-
cal properties of the solution of this equation can be obtained
analytically.

If the environment is disordered the force field contains
also the random functions of the spatial variable. In this case
the overdamped dynamics represents both the noise-induced
and disorder-induced effects and it can exhibit as well
anomalous behavior even in the simplest situation of additive
white noise �4�. For the latter situation a number of exact
results was obtained for Sinai disorder �4–8�, Gaussian dis-
order �9–13�, and also for some special cases of non-
Gaussian disorder �14–18�.

When the noise terms produced by a stochastic environ-
ment become negligible, the overdamped equation of motion
accounts solely for effects of quenched disorder. This equa-
tion effectively describes, e.g., the transport of particles in
deterministic ratchets with quenched disorder �19–21� and
can be used for the study of the dynamics of localized struc-
tures like domain walls in random magnets and vortices in
type-II superconductors. Although temporal noise terms are
absent, there are only very few exact results available. There-
fore, in order to fill this gap, we have examined the following
dimensionless equation of motion for an overdamped particle
�22�:

Ẋt = f + g�Xt� . �1.1�

Here, Xt denotes the particle coordinate that satisfies the
initial condition X0=0, f��0� is a constant force, and

g�x�=−dU�x� /dx= ±g is a dichotomous random force gener-
ated by a piecewise linear random potential U�x�, see Fig. 1.
It is assumed that the random intervals sj of a linearly vary-
ing U�x� are statistically independent and distributed with the
same �exponential� probability density p�s�. Moreover, we
assume that the conditions f �g and g�+0�=−g are imposed.

Equation �1.1� is of minimal form that accounts for the
effects of quenched disorder on the overdamped motion of
driven particles. Its main advantage is that many of the sta-
tistical properties of Xt can be described analytically in full
detail. Nevertheless, if the odd and even intervals sj are dis-
tributed with different exponential densities �in this case the
exact results exist as well�, then Eq. �1.1� can be used also
for studying a number of important physical issues. Specifi-
cally, this equation constitutes a basis for describing the adia-
batic transport of particles in randomly perturbed one-
dimensional channels and presents a simple model for
studying the low-temperature dynamics of charge carriers
and localized structures in randomly layered media. In addi-
tion to the listed examples, we point out a rather unexpected
application of Eq. �1.1� in astrophysics. Namely, if the clouds
in interstellar space are distributed uniformly then the dis-
tances between them are distributed with an exponential dis-
tribution. In this case, assuming that the light velocity in the
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FIG. 1. Schematic representation of �a� the piecewise linear ran-
dom potential U�x� and �b� the corresponding dichotomous random
force g�x�=−dU�x� /dx as functions of the coordinate x.

PHYSICAL REVIEW E 76, 031101 �2007�

1539-3755/2007/76�3�/031101�8� ©2007 The American Physical Society031101-1

http://dx.doi.org/10.1103/PhysRevE.76.031101


clouds is the same and the sizes of clouds are distributed
with an exponential distribution, Eq. �1.1� can be used for
studying the statistical properties of distances that pass the
light emitted by a star in different directions.

In �22� we derived the probability density of the solution
of Eq. �1.1� and investigated explicitly its time evolution. In
contrast, in this work we focus on the statistical properties of
the arrival time for the particles governed by Eq. �1.1�. The
paper is structured as follows. In Sec. II, we derive the path
integral representation for the probability density of the ar-
rival time. The characteristic function of the arrival time is
determined in Sec. III. In Sec. IV, we calculate the moments
of the arrival time and study their asymptotic and scaling
behavior. The basic properties of the arrival time probability
density are studied in Sec. V, both analytically and numeri-
cally. We summarize our findings in Sec. VI. Some technical
details of our calculations are deferred to the Appendix.

II. PATH INTEGRAL REPRESENTATION OF THE
ARRIVAL TIME PROBABILITY DENSITY

According to Eq. �1.1�, the arrival time tx, i.e., the time
that a particle spends moving from the origin to a position
x��0�, is given by the integral expression

tx = �
0

x dx

f + g�x�
. �2.1�

This time depends on the random function g�x� and thus
presents a random quantity. The probability density Px�t� that
tx= t for a fixed coordinate x, i.e., the probability density of
the arrival time, is defined in the well-known way as

Px�t� = ���t − tx�� , �2.2�

where the angular brackets denote an averaging over the
sample paths of g�x�, and ��t− tx� is the Dirac � function.

To obtain the explicit form of Px�t� we use a path integral
approach. Because of the dichotomous character of the ran-
dom function g�x�, it is convenient to present the probability
density in terms of the partial densities

Px�t� = �
n=0

�

Px
�n��t� , �2.3�

where Px
�n��t� is the probability density that for the sample

paths of g�x� which are undergoing n changes of the sign on
the interval �0,x� the condition tx= t holds. For a given
n��1� the solution of Eq. �1.1� can be written in the form

Xt
�n� = �

j=1

n

sj + s̃n+1 �2.4�

with s̃n+1� �0,sn+1�. On the other hand, because g�x�
= �−1� jg if x belongs to the interval sj, Eq. �2.1� yields

tx
�n� = �

j=1

n
sj

f + �− 1� jg
+

s̃n+1

f + �− 1�n+1g
. �2.5�

Setting Xt
�n�=x and replacing s̃n+1 by x−� j=1

n sj, the result
�2.5� can be recast to

tx
�n� =

x

f − �− 1�ng
−

g

f2 − g2�
j=1

n

��− 1�n + �− 1� j�sj . �2.6�

Let us next introduce the probability p�sj�dsj that the jth
jump of g�x� occurs in the interval dsj and also the probabil-
ity 	l

�p�s�ds that the distance between the nearest-neighbor
jumps exceeds l. Then, the probability dWn�x� that the func-
tion g�x� on the interval �0,x� experiences n jumps in the
intervals dsj �j=1, . . . ,n� assumes the form

dWn�x� = �
x− �

j=1

n
sj

�

p�s�ds

j=1

n

p�sj�dsj . �2.7�

Because s̃n+1�0, the positive variables of integration sj must
satisfy the condition � j=1

n sj �x. Denoting by �n�x� a region
in the n-dimensional space of these variables, being defined
by the aforementioned condition, we obtain

Px
�n��t� = �

�n�x�
��t − tx

�n��dWn�x� . �2.8�

Finally, taking into account that tx
�0�=x / �f −g� is the arrival

time at n=0 and W0�x�=	x
�p�s�ds is the total probability of

those sample paths of g�x� which do not change sign on the
interval �0,x�, we end up with the following path integral
representation for the probability density of the arrival time:

Px�t� = ��t − tx
�0��W0�x� + �

n=1

� �
�n�x�

��t − tx
�n��dWn�x� .

�2.9�

This form of the arrival time probability density is rather
general, but possesses a rather complex mathematical struc-
ture. Based on Eq. �2.9�, however, we arrive at two conclu-
sions that are valid for an arbitrary probability density p�s�:
�i� Px�t� at a fixed x is concentrated on the interval
�x / �f +g� ,x / �f −g��, and �ii� Px�t� is properly normalized,
i.e., 	0

�Px�t�dt=1. Indeed, since min tx
�n�=x / �f +g� and

max tx
�n�=x / �f −g�, we have ��t− tx

�n���0 and so Px�t��0 if
t� �x / �f +g� ,x / �f −g��. To prove the second assertion,
we first note that, according to Eq. �2.9�, 	0

�Px�t�dt
=W0�x�+�n=1

� Wn�x�, where Wn�x�=	�n�x�dWn�x� is the prob-
ability that the function g�x� has undergone n jumps in the
interval �0,x�. Next, introducing the quantities Sn�x�
=	�n�x�
 j=1

n p�sj�dsj, we find the representations W0�x�
=1−S1�x� and Wn�x�=Sn�x�−Sn+1�x�, see also �22�. Finally,
taking into account that S��x�=0 and �n=1

� Wn�x�=S1�x�, we
assure that the normalization condition holds true for an ar-
bitrary p�s�.
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III. CHARACTERISTIC FUNCTION
OF THE ARRIVAL TIME

By use of the integral formula for the � function,

��t − tx
�n�� =

1

2�
�

−�

�

e−i	�t−tx
�n��d	 , �3.1�

we can rewrite the probability density �2.9� in the form of a
Fourier integral, i.e.,

Px�t� =
1

2�
�

−�

�


x�	�e−i	td	 . �3.2�

According to Eqs. �2.9�, �3.1�, and �3.2�, the characteristic
function 
x�	�, which determines all the statistical properties
of the arrival time tx, is obtained as


x�	� = ei	tx
�0�

W0�x� + 
̃x�	� , �3.3�

where


̃x�	� = �
n=1

� �
�n�x�

ei	tx
�n�

dWn�x� . �3.4�

In the general case of an arbitrary p�s�, the characteristic
function has a complex structure involving an integration
over the n-dimensional domain �n�x� and a summation over
all n. Remarkably, however, 
x�	� can be expressed in terms
of elementary functions if the random intervals sj are expo-
nentially distributed, i.e., if p�s�=�e−�s, where �−1 is the
average length of sj. In this case the probability �2.7� be-
comes

dWn�x� = e−�x�n

j=1

n

dsj , �3.5�

and Eq. �3.4� reduces to


̃x�	� = e−�x�
n=1

�

�n�
�n�x�

ei	tx
�n�


j=1

n

dsj . �3.6�

For the calculation of 
̃x�	� it is convenient to transform
the right-hand side of Eq. �3.6� into a form with separate
integrations over the variables sj. To this end, we use an
approach �22� based on the integral representation of the step
function

1

2�
�

−�

+� e�i�+�y

i� + 
d� = �1 if y � 0

0 if y � 0
�3.7�

which is valid for arbitrary �0. Applying Eq. �3.7� to Eq.
�3.6� and setting y=x−� j=1

n sj, one obtains the desired result:


̃x�	� =
e−�x

2�
�
n=1

�

�n�
−�

�

d�
e�i�+�x

i� + 
�

0

�

¯ �
0

�

ei	tx
�n�

� e−�i�+� �
j=1

n
sj


j=1

n

dsj . �3.8�

Then, using the identity �n=1
� an=�m=1

� �a2m−1+a2m� and
taking into account that, according to Eq. �2.6�,

tx
�2m−1� =

x

f + g
+

2g

f2 − g2�
j=1

m

s2j−1,

tx
�2m� =

x

f − g
−

2g

f2 − g2�
j=1

m

s2j , �3.9�

we reduce the formula �3.8� to the form


̃x�	� =
e−�x

2�
�

−�

� e�0x

�0
�
m=1

�

�Im−1��0�Im��1�ei	x/�f+g�

+ Im��0�Im��2�ei	x/�f−g��d� . �3.10�

Here,

I��k� = �
0

�

p�s�e−��k−��sds =
�

�k
�3.11�

�Re �k�0, k=0,1 ,2� and

�k = i� +  + i
2q	

f2 − g2�k �3.12�

with �0=0, �1=−1, and �2=1. We note that the right-hand
side of Eq. �3.10� contains an arbitrary positive parameter .
According to the definition �3.4�, however, the left-hand side
of Eq. �3.10� does not depend on . This implies that the
final result of evaluating the series and integral in Eq. �3.10�
does not depend on  as well. Therefore for auxiliary ma-
nipulations we may choose a most convenient value for this
parameter.

From this point of view, it is reasonable to choose ��.
This is so because in this case I��k�  �1 and the series in
Eq. �3.10� can be easily evaluated:

�
m=1

�

Im−1��0�Im��1� =
��0

�0�1 − �2 ,

�
m=1

�

Im��0�Im��2� =
�2

�0�2 − �2 . �3.13�

Substituting Eq. �3.13� into Eq. �3.10� and using that W0�x�
=e−�x and

ei	tx
�0�

W0�x� =
e−�x

2�
�

−�

� e�0x

�0
ei	x/�f−g�d� , �3.14�

from Eq. �3.3� we obtain


x�	� =
e−�x

2�
�

−�

�

e�0x��ei	x/�f+g�

�0�1 − �2 +
�2ei	x/�f−g�

�0�2 − �2 �d� .

�3.15�

Upon calculating the integrals in Eq. �3.15� �the details
are given in the Appendix � we find a remarkably simple
expression for the characteristic function of the arrival time,
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x�	� = e−�x�1−i�f/g��cosh��x�1 − �2�

+
1 + i�
�1 − �2

sinh��x�1 − �2�� , �3.16�

where

� =
	g

��f2 − g2�
. �3.17�

We note that 
x�	�, being the characteristic function, satis-
fies the conditions 
x�	�  �1, 
x�0�=1, and 
x�−	�
=
x

*�	�, where the asterisk indicates the complex conjuga-
tion. Equation �3.16� is our main result which allows us to
study the essential properties of the arrival time analytically.

IV. MOMENTS OF THE ARRIVAL TIME

The moments of the arrival time are defined in the usual
way as �tx

m�=	−�
� tmPx�t�dt, and can be deduced through the

characteristic function as follows:

�tx
m� =

1

im� dm

d	m
x�	��
	=0

. �4.1�

According to Eqs. �3.16� and �4.1�, the first moment, i.e., the
mean arrival time, emerges as

�tx� =
1

2��f2 − g2�
�2�fx + g − ge−2�x� . �4.2�

At small distances from the origin, when �x�1, the formula
�4.2� yields �tx�=x / �f −g�. This result is expected: The total
probability of those sample paths of g�x� which do not
change the sign on the interval �0,x� tends to 1 as �x→0,
and thus the average particle velocity tends to f −g. In the
other limiting case, when �x�1, the formula �4.2� ap-
proaches �tx�= fx / �f2−g2�. This result is corroborated by the
fact that the long-time asymptotic of the average particle
velocity equals �f2−g2� / f �22�.

The moments of higher order can also be calculated
straightforwardly. In particular, for the second moment we
obtain

�tx
2� =

1

2�2�f2 − g2�2 �2�2f2x2 + 2�g�f + g�x

− g2 − g�2�fx − g�e−2�x� . �4.3�

The central moments, ��tx− �tx��m�, can be determined
from the finite series

��tx − �tx��m� = �
j=0

m

�− 1�m−jCm
j �tx

l ��tx�m−l, �4.4�

where Cm
j is the binomial coefficient, or, alternatively, by the

formula

��tx − �tx��m� =� 1

im

dm

d	m
x�	�e−i	�tx��
	=0

. �4.5�

Specifically, using either of these definitions, the variance of
the arrival time, �x

2= ��tx− �tx��2�, can be written in the form

�x
2 =

g2

4�2�f2 − g2�2 �4�x − 3 + 4e−2�x − e−4�x� . �4.6�

At short distances, when �x�1, the variance reduces to

�x
2 =

4�g2

3�f2 − g2�2x3, �4.7�

and at long distances, when �x�1, it reduces to

�x
2 =

g2

��f2 − g2�2x . �4.8�

Moreover, the central moments of the arrival time possess
interesting scaling properties. Namely, using Eq. �4.5� with
Eqs. �3.16� and �4.2�, one obtains

��tx − �tx��m� = � g

��f2 − g2��
m

�m��x� , �4.9�

where

�m��x� = e−�x� dm

dzm��z,�x��
z=0

�4.10�

is a function of the single variable �x, and

��z,�x� = exp�− z
1 − e−2�x

2
��cosh��x�1 + z2�

+
1 + z

�1 + z2
sinh��x�1 + z2�� . �4.11�

Thus the central moments exhibit a universal dependence on
f , g, and �, i.e., ��tx− �tx��m�� �g /��f2−g2��m.

V. PROPERTIES OF THE ARRIVAL TIME
PROBABILITY DENSITY

As it follows from Eq. �3.16�, the characteristic function
tends to e−�x+i	x/�f−g� as 	  →�. According to Eq. �3.2�, this
suggests that the probability density of the arrival time con-
tains the �-singular contribution, i.e.,

Px�t� = ��t −
x

f − g
�e−�x + P̃x�t� , �5.1�

where

P̃x�t� =
1

2�
�

−�

�


̃x�	�e−i	td	 �5.2�

denotes the regular part of Px�t� and


̃x�	� = 
x�	� − e−�x+i	x/�f−g�. �5.3�

Because the intensity of the �-singular part decreases expo-
nentially with increasing x, its contribution to Px�t� plays a
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crucial role only at short distances from the origin. The regu-
lar part rules the behavior of Px�t� at longer distances.

A. Behavior at short distances

At �x�1 we can obtain the probability density Px�t� in a
simple way, without the need to evaluate the integral in Eq.
�5.2�. To this end, we first note that the �-singular part of
Px�t� is formed by those sample paths of g�x� that do not
change the sign on the interval �0,x�. Accordingly, only the
sample paths which have at least one change of the sign on

this interval do contribute to the regular part P̃x�t�. For small
values of �x repeated changes of the sign are unlikely. There-

fore, in order to determine P̃x�t�, we consider the sample
paths with a single change of the sign. In this case the prob-

ability P̃x�t�dt is equal to dW1�x�=�e−�xds1 and, because t

= tx
�1�=x / �f +g�+2gs1 / �f2−g2�, the relation P̃x�t�dt=dW1�x�

at �x�1 then yields

P̃x�t� =
��f2 − g2�

2g
. �5.4�

Finally, substituting Eq. �5.4� into Eq. �5.1�, we find the
probability density of the arrival time at �x�1:

Px�t� = ��t −
x

f − g
��1 − �x� +

��f2 − g2�
2g

. �5.5�

At first sight, this result may come as a surprise because
the regular part of the probability density does not depend
explicitly on x and t. It should be stressed, however, that the
formula �5.4� is derived under the condition that t
� �tmin, tmax�, where tmin=x / �f +g� and tmax=x / �f −g� �we re-

call that P̃x�t��0 if t� �tmin, tmax��. This means that P̃x�t�
depends on x and t implicitly leading to the broadening of

P̃x�t� if x increases. At the starting point x=0 we have tmin

= tmax=0, therefore P̃0�t�=0 and, in accordance with the con-
dition t0=0, P0�t�=��t�. We note also that the normalization
condition 	tmin

tmaxPx�t�dt=1, which holds true also for Eq. �5.5�,
further corroborates the validity of Eq. �5.4�.

B. Behavior at long distances

To study the long-distance behavior of the probability
density Px�t�, it is convenient to introduce the new time vari-
able �= �t− �tx�� /�x. The corresponding scaled probability
density Px��� is expressed through Px�t� as Px���
=�xPx��tx�+�x�� and, according to Eq. �3.2�, it can be writ-
ten in the form

Px��� =
1

2�
�

−�

�


x��/�x�e−i��tx�/�x−i��d� . �5.6�

Using Eqs. �3.16�, �4.2�, and �4.6�, the characteristic function
of Px��� then reads


x��/�x�e−i��tx�/�x = e−�x�„i��2
−1/2��x�,�x… , �5.7�

where the function ��z ,�x� is defined by Eq. �4.11� and

�2��x� = �x −
3

4
+ e−2�x −

1

4
e−4�x. �5.8�

Because the characteristic function �5.7� depends only on �x
and the integration variable �, the scaled probability density
�5.6� possesses the remarkable property that Px��� is a func-
tion of �x and � which depends neither on the external force
f nor on the amplitude g of the dichotomous random force
g�x�.

In the case of long distances, if �x�1, the characteristic
function �5.7� at �4��x can be approximated by the two
terms of its expansion:


x��/�x�e−i��tx�/�x = e−�2/2�1 −
�4

8�x
� . �5.9�

Substituting Eq. �5.9� into Eq. �5.7� and calculating the inte-
grals, we find the two terms of expression of the scaled prob-
ability density

Px��� =
e−�2/2

�2�
�1 −

3 − 6�2 + �4

8�x
� �5.10�

which is valid if �x�max�1,�4�. Thus in accordance with
the central limit theorem of probability theory �see, e.g., Ref.
�23��, the limiting probability density approaches a Gaussian
form, i.e., P����= �2��−1/2e−�2/2, and Px���−P����� ��x�−1

as �x→�.

C. Numerical verification

Our numerical calculations pursue two goals, namely �i�
to verify the analytical findings and �ii� to illustrate and vi-
sualize the obtained findings. The former is achieved by
comparison of the probability density �5.1� with that derived
from the numerical simulation of the arrival time �2.1�. We
use the Maple package for calculating the Fourier integral in
Eq. �5.2� and employ the histogram procedure to numerically
evaluate the probability density. In short, this procedure con-
sists of successive generations of random intervals sj accord-
ing to the exponential distribution and evaluating the arrival
time to a fixed position x for different realizations of random
intervals. The probability density is then presented as the
histogram of arrival times of the particle. For further details
about this procedure we refer the interested reader to Ref.
�22� where a similar approach was used for the numerical
evaluation of the probability density of the particle position
at a fixed time t. In doing so, we made sure that the simulated
probability density function is in perfect agreement with the
theoretical one, see Fig. 2.

Figure 3 illustrates the short-distance behavior of the
probability density �5.1�. As can be seen in Fig. 3�a�, at very
small values of x the probability density of the arrival time is
described by the approximate formula �5.5�. In accordance
with the assumption made in its derivation, this suggests that
the sample paths of g�x� which on the interval �0,x� have
more than one change of the sign are responsible for the

explicit dependence of P̃x�t� on t. If x is not too small, i.e.,
the total probability of these sample paths is small but non-

zero, then, as shown in Fig. 3�b�, P̃x�t� is an almost linear
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function of t. With increasing of x the role of these sample

paths becomes increasingly important: The function P̃x�t� be-
comes nonlinear, assumes a unimodal form, and eventually
approaches a Gaussian shape, see Fig. 4.

D. Skewness and kurtosis

In order to quantitatively describe the difference between
the arrival time probability density and a Gaussian density
with identical mean and variance as Px�t�, we calculate the
skewness

s�x� =
��tx − �tx��3�

�x
3 �5.11�

that characterizes the degree of asymmetry of Px�t�, and as
well the kurtosis

k�x� =
��tx − �tx��4�

�x
4 − 3 �5.12�

that characterizes the degree of peakedness of Px�t�. Because
s�x��0 and k�x��0 if the arrival time tx follows a Gaussian
distribution, one can consider the skewness and kurtosis as
appropriate measures of deviation of the arrival time distri-
bution from a Gaussian shape. Using the representation �4.9�
for the central moments, from the definitions �5.11� and
�5.12� we obtain

s�x� =
�3��x�

�2
3/2��x�

, k�x� =
�4��x�
�2

2��x�
− 3, �5.13�

i.e., s�x� and k�x� are universal functions of the single vari-
able �x, see Fig. 5. Calculating �3��x� and �4��x� and tak-
ing into account Eq. �5.8�, we find an explicit expression for
the skewness,

s�x� = −
2

�4�x − 3 + 4e−2�x − e−4�x�3/2 �2 + �3 − 12�x�e−2�x

− 6e−4�x + e−6�x� , �5.14�

and for the kurtosis,

k�x� =
6

�4�x − 3 + 4e−2�x − e−4�x�2 �13 − 8�x − 8�1

+ 4�x�e−2�x − 4�3 − 4�x�e−4�x + 8e−6�x − e−8�x� .

�5.15�

The formulas �5.14� and �5.15� yield in leading order of
�x the following relations: s�x�=−�3�3/4���x�−1/2 and k�x�
= �9/5���x�−1 at �x�1, and s�x�=−�1/2���x�−3/2 and k�x�
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FIG. 2. �Color online� Theoretical and simulated probability
density of the arrival time for x=2.4. The solid line �red online� and
histogram represent the analytical result �5.1� and the numerical
simulation of the arrival time �2.1�, respectively. The parameters of
the force field are chosen as f =1, g=0.3, and �=1. The vertical
arrow depicts the �-singular contribution to Px�t�.
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FIG. 3. Short-distance behavior of the probability density of the
arrival time Px�t� at �a� x=10−3 and �b� x=0.2. The other parameters
are the same as those in Fig. 2.

FIG. 4. �Color online� Plots of the probability density of the
arrival time for different distances from the origin of the coordinate
system. The vertical surfaces �green online� depict the regular part
of Px�t�. In order to visually demonstrate that the intensity of the
�-singular part of Px�t� exponentially decreases with x, we depicted
the length of the vertical arrows �red online� in the form
0.8+2e−�x. For the convenience of comparison, the force field char-
acteristics are chosen as in Figs. 2 and 3.
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FIG. 5. Plots of the skewness s�x� �dashed line� and the kurtosis
k�x� �solid line� of the arrival time probability density vs the nor-
malized distance �x.

DENISOV et al. PHYSICAL REVIEW E 76, 031101 �2007�

031101-6



=−3��x�−1 at �x�1. These results clearly evidence that the
arrival time probability density Px�t� distinctly differs from a
Gaussian density at short distances and approaches this
Gaussian shape at long distances. Moreover, since
k�x� /s�x�  →� as both, �x→0 and �x→�, the kurtosis can
be considered as a unique measure of non-Gaussianity of
Px�t�. We note that, because of the condition s�x��0, the left
tail of Px�t� is always heavier than the right tail. Also, Px�t� is
more peaked compared to the Gaussian density at distances
where k�x��0, and is more flattened at distances where
k�x��0.

VI. CONCLUSIONS

We applied the path integral approach to calculate the
characteristic function of the arrival time for overdamped
particles driven by a constant bias in a piecewise linear ran-
dom potential producing a dichotomous random force with
exponentially distributed spatial intervals. Using the charac-
teristic function, we derived the moments of the arrival time,
established universal scaling properties of the central mo-
ments, and demonstrated that the arrival time probability
density Px�t� contains both a �-singular contribution and a
regular part. While the �-singular part, whose weight de-
creases exponentially with increasing x, plays the main role
at short distances, the regular part of Px�t� dominates at large
distances x.

At very small distances the regular part is defined by the
sample paths with only one change of the sign on the interval
�0,x� and in this case its value does not depend on x. Upon
increasing x the contribution of other sample paths leads to
the transformation of this part of Px�t� into an almost linear
function of t, and subsequently into unimodal form, and fi-
nally, at x→�, it tends to a Gaussian density as x−1. More-
over, in order to characterize the difference of the arrival
time probability density from the Gaussian density, we cal-
culated the skewness and kurtosis. The function Px�t� is more
peaked in comparison with the Gaussian density at small x
and is more flattened at large x.
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APPENDIX: DERIVATION OF THE CHARACTERISTIC
FUNCTION

For calculating the integrals in Eq. �3.15�,

Y =
1

2�
�

−�

� �e�0x

�0�1 − �2d� ,

Z =
1

2�
�

−�

� �2e�0x

�0�2 − �2d� , �A1�

we use the method of contour integration �24�. According to
Eqs. �3.12� and �3.17�, the integrands in Eq. �A1�, R���
=�e�0x / ��0�1−�2� and S���=�2e�0x / ��0�2−�2�, can be writ-
ten in the form

R��� = −
�

�� − �1��� − �2�
e�i�+�x,

S��� = −
i� +  + 2i��

�� − �3��� − �4�
e�i�+�x, �A2�

where

�1,2 = i ± i��1 − �2 + �� ,

�3,4 = i ± i��1 − �2 − �� . �A3�

The formulas �A2� exhibit that both R��� and S��� as func-
tions of the complex variable � have two poles of the first
order at �=�1,2 and �=�3,4, respectively. If �� then all
poles are located in the upper half plane of the complex �
plane, and the residue theorem yields

Y = i�Res R��1� + Res R��2�� ,

Z = i�Res S��3� + Res S��4�� . �A4�

Since the residues in Eq. �A4� are defined as
Res R��1,2�=lim�→�1,2

��−�1,2�R��� and Res S��3,4�
=lim�→�3,4

��−�3,4�S���, from Eqs. �A2� and �A3� we obtain

Y =
1

�1 − �2
sinh��x�1 − �2�ei�x�,

Z = � i�
�1 − �2

sinh��x�1 − �2� + cosh��x�1 − �2��e−i�x�.

�A5�

Finally, substituting Eq. �A5� into the formula


x�	� = e−�x�Yei	x/�f+g� + Zei	x/�f−g�� �A6�

which follows from Eqs. �3.15� and �A1�, we get the desired
characteristic function �3.16�.
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