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In this paper we develop the new approach in time series analysis with a variable time
step and present the results of quantitative and qualitative estimation of randomness and
regularity, and the study of non-Markovian effects of the X-ray emission intensity of the
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analysis of the time series with a variable time step. The new theory allows us to extract
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of statistical memory in the intensity of the X-ray emission. The analysis of the experimen-
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1. Introduction

The problems of randomness and stochas-
tic behavior, regularity and robustness have been
in the focus of attention in the studies of real
complex systems of various nature over the past
years. The analysis of individual properties and
characteristics of real complex systems is impos-
sible without registration and quantitative esti-
mation of various information on manifestation
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of chaoticity and randomness. By the change of
the measure of randomness or regularity it is pos-
sible to judge about the complex dynamics of the
system and its evolution. The discovery of the
phenomenon of chaos in dynamic systems has al-
lowed to take a new look at functioning of com-
plex systems. Chaos is absence of order and it
characterizes randomness and unpredictability of
changes in the behavior of a system and impossi-
bility to determine their origin and reasons.

While studying multiform manifestations of
randomness, the authors have defined chaos, and
its the parameters describing chaotic and regu-
lar stochastic processes in different ways. As a
rule, the search for the most accurate criteria for
the estimation of randomness or regularities in
the dynamics of real objects is carried out if we
have the information on the behavior of the well-
known models of nonlinear dynamics such as, for
example, Lorentz model, Poisson model etc. Ini-
tially for the similar systems one calculates the
parameters determining their chaotic dynamics.
Further the given parameters are calculates for
real physical objects. On the basis of the compar-
ative analysis of these characteristics it is possible
to come to certain conclusions about the evolu-
tion and further dynamics of the studied system.
However the above mentioned models of nonlin-
ear dynamics do not carry sufficient information
about the internal properties of real objects. The
models similar to real physical objects allow to
avoid these defects. The model description of a
gas, liquid and solid by the methods of molecular
dynamics simulations can serve as an example.

In addition for the estimation of opti-
mal qualitative and quantitative parameters and
characteristics of non-Markovian effects and ef-
fects of randomness and regularity of X-ray
emission intensity dynamics of the microquasar
GRS 1915+105 we use the method of molecu-
lar dynamics. The galactic microquasar GRS
1915+105 was discovered as an X-ray transient in
1992 [1], and has been observed to be extremely
luminous ever since. This binary system contains
a 14 M¯ black hole [2] accreting from a late-
type giant of mass 0.8 ± 0.5 M¯ [3] via Roche

lobe overflow. GRS 1915+105 is unique among
accreting Galactic black holes spending much of
its time at super-Eddington luminosities [4]. It
is an extremely variable source, exhibiting dra-
matic, aperiodic variability on a wide range of
timescales, from milliseconds to months [5]. GRS
1915+105 is located on the Galactic plane at a
distance of ∼ 11 − 12 kpc [2, 6] and suffers a
large extinction of 25-30 mag in the visual band.
The basic characteristics of the GRS 1915+105
binary system is the systemic velocity which is
γ = −3 ± 10 km/s, the orbital period of the
system is Torb = 33.5 ± 1.5 days [7]. Spectro-
scopic observations in the near-infrared H and K
bands identified absorption features from the at-
mosphere of the companion (mass-donating star)
in the GRS 1915+105 binary. The detection of
12CO and 13CO band heads plus a few metallic
absorption lines suggested a K−M spectral type
and luminosity class III (giant) [2]. Hard X-ray
studies in 20 − 100keV band have shown erratic
intensity variations on time scales of days and
months [8]-[10]. In Ref. [11] the technique of dif-
ferentiating and rescaling was applied to the GRS
1915+105 X-ray data. As a result the existence
of a fundamental time-scale for the system in the
range of 12-17 days was found. In Ref. [12] it
was concluded, that microquasar GRS1915+105,
as any other black hole system, may be chaotic
in nature. One of proofs of the similar behav-
ior of black hole systems is chaotic variability of
the X-ray emission [13]. For the estimation of a
degree of randomness or regularity of the X-ray
emission of the microquasar GRS 1915+105 the
correlation dimension of the system [12] is often
used.

In this work we present a new method of re-
search of randomness, regularity, robustness and
non-Markovian effects in the X-ray emission in-
tensity of the microquasar GRS 1915+105 on the
basis of the theory of discrete non-Markovian
stochastic processes [14]-[16]. The effects of
non-Markovity in real complex systems, natu-
ral [14, 15], live [14], [16]-[19], biological [20]-
[22] and physical [21, 23] are of special interest
for the correlation analysis. This method allows
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to define the set of characteristics and parame-
ters, which contain detailed information about
non-Markovian effects and degrees of randomness
of the X-ray emission of the researched system.
Initially we have calculated the given character-
istics and parameters for model systems by the
method of molecular dynamics: for a low density
gas with greater randomness and the stochastic
behavior in particle motion; for a high density
gas; for a liquid near the triple point; for a solid
that corresponds to a greater regularity in move-
ment of particles. On the basis of the received
results we have executed qualitative and quanti-
tative estimation of non-Markovian effects and of
stochastic and regular regimes in the initial sig-
nal with a constant and variable time step for the
X-ray emission intensity of the microquasar GRS
1915+105.

2. The theoretical framework of
the statistical theory of discrete non-
Markovian stochastic processes

In this section we present the basic con-
cepts and definitions of the theory of discrete non-
Markovian stochastic processes [14]-[16], used
here for the analysis of a time series with a
constant and variable time step. The theory is
constructed on the discrete finite-difference pre-
sentation of the Zwanzig-Mori kinetic equations
[24, 25] well-known in statistical physics. The
theory of the discrete non-Markovian stochas-
tic processes is widely applied to the analysis of
real systems of physical, biological, live and so-
cial nature [14]-[19],[23]. The dynamic, kinetic
and relaxation parameters and characteristics of
this theory, contain detailed information about
individual properties and qualities of the studied
complex system.

2.1. The basic concepts and definitions
of the statistical theory of discrete non-
Markovian stochastic processes for the analysis
of time series with a constant time step

As a rule, the time registration of any char-
acteristics or parameters of a complex system is
carried out at discrete time intervals of equal
length. It allows to show the essential features
of fluctuations and irregularities and also the fea-
tures of various dynamic regimes in the initial
time series. Some key definitions and concepts of
the statistical theory of discrete non-Markovian
stochastic processes for the analysis of the time
series with a constant time step [14]-[16] are given
below.

Let us present the time dynamics of the X-
ray emission intensity of the microquasar GRS
1915+105 as a discrete time series xj of some
variable X:

X = {x(T ), x(T + τ), x(T + 2τ), . . . , (1)
x(T + kτ), . . . , x(T + (N − 1)τ)}.

Here T is the initial moment of the time the regis-
tration of the X-ray emission intensity , (N − 1)τ
is the total time of registration of the signal, τ
is a discretization time step. In the researched
time series the discretization time ∆t = τ = 1
day. The mean value of the variable 〈X〉, fluctu-
ation δxj , and dispersion σ2 can be presented as
follows:

〈X〉 =
1
N

N−1∑

j=0

x(T + jτ), (2)

δxj = xj − 〈X〉, σ2 =
1
N

N−1∑

j=0

δx2
j .

For the description of the dynamic proper-
ties of the studied complex system (the dynamics
of correlations) it is convenient to use the normal-
ized time correlation function (TCF):

a(t) =
1

(N −m)σ2

N−1−m∑

j=0

δx(T + jτ) (3)

×δx(T + (j + m)τ),
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where t = mτ . Here δxj , δxj+m are fluctuations
of the variable X at j, j + m step, correspond-
ingly, σ2 is an absolute dispersion of the variable
X. TCF in Eq. (3) satisfies the requirements of
normalization and attenuation of correlations:

lim
t→0

a(t) = 1, lim
t→∞ a(t) = 0. (4)

It is necessary to note, that for a certain class of
complex systems the requirement of correlations
attenuation is not always possible.

By the use of the Zwanzig-Mori projection
operators technique [24, 25] it is possible to re-
ceive an interconnected chain of finite-difference
equations of a non-Markovian type [14]-[16] for
the initial TCF a(t) and the memory function
Mi(t) (i = 1, 2, ..., n):

∆a(t)
∆t

= −τΛ1

m−1∑

j=0

M1(jτ)a(t− jτ)

+λ1a(t),

∆M1(t)
∆t

= −τΛ2

m−1∑

j=0

M2(jτ)M1(t− jτ)

+λ2M1(t),
. . . ,

∆Mn−1(t)
∆t

= −τΛn

m−1∑

j=0

Mn(jτ)Mn−1(t− jτ)

+λnMn−1(t),(5)

where Λi are relaxation parameters, and parame-
ters λi form the eigenvalue spectrum of Liouville’s
quasioperator L̂:

λn = i
< Wn−1L̂Wn−1 >

< |Wn−1|2 >
, (6)

Λn = i
< Wn−1L̂Wn >

< |Wn−1|2 >
. (7)

Orthogonal dynamic variables Wn are received
with the help of the Gram-Schmidt orthogonal-
ization procedure:

〈WnWm〉 = δn,m〈|Wn|2〉,

where δn,m is Kronecker’s symbol. To compare
the relaxation time scales for the initial TCF a(t)
and the ith order memory functions Mi(t) we use
the non-Markovity statistical parameter ε. Ini-
tially the given parameter was used for the anal-
ysis of the irreversible phenomena in a condensed
matter [26]-[29]. According to [14]-[16] we intro-
duce the relaxation times of the initial TCF and
the nth order memory functions:

τa = 4t
N−1∑

j=0

a(tj),

τM1 = 4t

N−1∑

j=0

M1(tj),

. . . ,

τMn = 4t
N−1∑

j=0

Mn(tj). (8)

Then the spectrum of the non-Markovity param-
eter is defined as a set of dimensionless quantities
[26]:

{εi} = {ε1, ε2, ..., εn−1},
ε1 = τa/τM1 , ε2 = τM1/τM2 , . . . ,

εn = τMn−1/τMn . (9)

Thus, the value εn characterizes the comparison
of relaxation times of the memory functions Mn−1

and Mn. The non-Markovity parameter allows to
divide all relaxation processes into Markov, quasi-
Markov and non-Markov processes. The spec-
trum of the non-Markovity parameter defines the
stochastic peculiarities of TCF.

In work [14] the concept of the non-
Markovity generalized parameter for frequency -
dependent case was introduced:

εi(ν) =
{

µi−1(ν)
µi(ν)

} 1
2

. (10)

where µi(ν) is a power spectrum of the ith order
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memory function:

µ0(ν) = |4t
N−1∑

j=0

a(tj)cos2πνtj |2,
. . . ,

µi(ν) = |4t
N−1∑

j=0

Mi(tj)cos2πνtj |2.

The above-mentioned equations (3)-(5)
present the case of Zwanzig-Mori’s statistical the-
ory [24, 25] for the discrete statistical complex
systems. The statistical theory of discrete non-
Markovian stochastic processes allows to reveal
Markov and non-Markov effects, the effects of sta-
tistical memory, effects of a dynamic alternation
of stochastic and regular regimes in the initial
time series for the X-ray emission intensity of the
microquasar GRS 1915+105.

2.2. A new approach to the analysis of
discrete time series with a variable time step

In many real complex systems the registra-
tion of the initial time signal by different reasons
is carried out at time intervals of different length.
To such systems we can refer the objects of an
astrophysical and seismological nature, some bio-
logical and social systems, economic and ecologi-
cal objects [30–32].

In the given work we offer a new approach
to the description of discrete non-Markovian
stochastic processes with a time step of variable
length. Such presentation of the initial time sig-
nal allows to find the dynamic development of
the system, connected with a not real time scale
but with its consistent presentation. The basic
idea of this method consists in fixing individual
events as a sequence of dynamic values. It allows
to consider the dynamics of the system as a se-
quence of individual events. As an example, here
we present the analysis of the time registration
with a variable time step of the X-ray emission
intensity of the microquasar GRS 1915+105.

2.2.1. The basic concepts and definitions of the
theory of discrete non-Markovian stochastic processes

with a variable time step

Let us consider the chaotic dynamics of the
X-ray emission intensity as a sequence of events
which are “non-uniform” on a time scale:

E = {ξ1, ξ2, ξ3, . . . , ξk, . . . , ξN}, (11)

where the intervals of time ∆tij = ti − tj , j =
i + 1, j = i − 1, are unequal. Here ξi presents
the event at the moment ti which follows after
the event ξi−1, i = 1, ..., N is the number of the
event.

The mean value 〈E〉, fluctuation δξi, abso-
lute dispersion σ2 for the set of the random vari-
able E are defined as follows:

〈E〉 =
1
N

N∑

i=1

ξi, δξi = ξi − 〈E〉,

σ2 =
1
N

N∑

i=1

δξ2
i =

1
N

N∑

i=1

{ξi − 〈E〉}2. (12)

According to [30]-[32] we shall define the correla-
tion dependence in a sequence of events (11) as
follows:

a(n) =
1

(N −m)σ2

N−m∑

i=1

δξiδξi+m. (13)

The function introduced in the similar way a(t)
presents the event (not time!) correlation func-
tion (ECF). The general requirements suggest,
that ECF should have the properties of normal-
ization and attenuation of correlations:

lim
n→1

a(n) = 1, lim
n→∞ a(n) = 0. (14)

For the description of a discrete sequence of
events we shall use Liouville’s finite-difference
equation of movement:

∆ξi(n)
∆n

= iL̂(n, 1)ξi(n), (15)

where ξi(n + 1) = U(n + 1, n)ξi(n), U(n + 1, n) is
an evolution operator.
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Thus, the left hand side of the Eq. (15) can
be submitted as follows:

∆ξi

∆n
= U(n + 1, n)ξi(n)− ξi(n) =

{U(n + 1, n)− 1}ξi(n). (16)

Let us present the set of values of the dynamic
variable δξi as a k-component vector of the sys-
tem’s state:
a) the vector of the initial state:

A1
k = {δξ1, δξ2, δξ3, ..., δξk}, (17a)

b) the vector of the final state:

Am
m+k = {δξm, δξm+1, δξm+2, ..., δξm+k}, (17b)

where 1 ≤ k ≤ N .
Using the standard expression for the scalar

product of vectors and relations (13), (17a) and
(17b), we receive the “event” correlation function
(ECF) for a stationary sequence of events (11) in
the following way:

a(n) =
〈A1

k(1)Am
k+m(n)〉

〈|A1
k(1)|2〉 . (18)

2.2.2. Kinetic equations for discrete non-Markov
processes with variable time step

Let us write down the equation of motion
(15) for the vector state:

∆Am
m+k(n)
∆n

= iL̂(n, 1)Am
m+k(n). (19)

By the use of the projection operator technique
we can split Euclidean vector’s space of state
A(k) into two mutually-orthogonal subspaces:

A(k) = A
′
(k) + A

′′
(k),

A
′
(k) = ΠA(k), A

′′
(k) = PA(k). (20)

Here projector operators Π and P have the fol-
lowing properties:

Π =
|A1

k(1)〉〈A1
k(1)|

〈|A1
k(1)|2〉 ,

P = 1−Π, Π = Π2,

P 2 = P, ΠP = PΠ = 0. (21)

It allows to split Liouville’s equation (15) into
two appropriate equations in two orthogonal sub-
spaces:

∆A
′
(n)

∆n
= iL̂11A

′
(n) + iL̂12A

′′
(n), (22a)

∆A
′′
(n)

∆n
= iL̂21A

′
(n) + iL̂22A

′′
(n). (22b)

Here L̂ij = ΠiL̂Πj presents the matrix elements
of Liouville’s quasioperator L̂ = L̂11+L̂12+L̂21+
L̂22. Solving the Eq. (22b) and substituting into
the Eq. (22a), we shall receive:

∆A
′
(n + m)
∆n

= iL̂11A
′
(n + m) +

+iL̂12{1 + i∆nL̂22}mA
′′
(n)−

−L̂12

m∑

j=1

{1 + i∆nL̂22}j∆nL̂21A
′
(n + [m− j]).(23)

Acting on the Eq. (23) by the operator of
〈A(1)|/〈|A(1)|2〉 and taking into account an
idempotentity property of projection operators,
we can receive the following finite-difference equa-
tion for the initial event correlation function:

∆a(n)
∆n

= iλ1a(n)−∆nΛ1

m∑

j=1

M1(j)a(n− j).

(24)
Assuming that ∆n = 1, it is possible to formally
solve this equation:

a(n + 1) = {iλ1 + 1}a(n)−Λ1

m∑

j=1

M1(j)a(n− j).

Here λ1 is an eigenvalue Liouville’s quasi-
operator. Relaxation parameter Λ1 and memory
function M1(j) are defined as follows:

λ1 =
〈A1

k(1)L̂A1
k(1)〉

〈|A1
k(1)|2〉 ,

Λ1 =
〈A1

k(1)L̂12L̂21A1
k(1)〉

〈|A1
k(1)|2〉 ,
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M1(j) =
〈A1

k(1)L̂12{1 + i∆nL̂22}jL̂21A1
k(1)〉

〈A1
k(1)L̂12L̂21A1

k(1)〉
.

Equation (24) contains function M1(j), for which
it is possible to repeat the procedure submitted
above and receive appropriate finite-difference
equations of a non-Markovian type for memory
functions of senior orders n > 1. To simplify
the given procedure and generalize the received
results one can use Gram-Schmidt orthogonaliza-
tion procedure [33]:

〈WsWp〉 = δs,p〈|Ws|2〉.
This operation allows to receive a new vector
of state Ws, contained in the memory function
Ms(j):

W0 = A1
k, W1 = {iL̂− λ1}W0,

W2 = {iL̂− λ2}W1 − Λ1W0, . . . (25)

For new orthogonal dynamic variables Ws we re-
ceive an interconnected chain of finite-difference
equations of a non-Markovian type for the sth
order normalized correlation functions:

∆M1(n)
∆n

= −∆nΛ2

m∑

j=1

M2(j)M1(n− j)

+iλ2M1(n),
. . . ,

∆Ms(n)
∆n

= −∆nΛs+1

m∑

j=1

Ms+1(j)Ms(n− j)

+iλs+1Ms(n)
(26)

where

M1(n) =
〈W1(1)W1(n)〉
〈|W1(1)|2〉 ,

. . . ,

Ms(n) =
〈Ws(1)Ws(n)〉
〈|Ws(1)|2〉 ,

λs+1 =
〈Ws[iL̂Ws]〉
〈|Ws|2〉 ,

. . . ,

Λs+1 =
〈Ws[iL̂Ws+1]〉

〈|Ws|2〉 . (27)

The frequency - dependence of statistical
spectrum of the non-Markovity parameter for the
case of time series with a variable time step will
be defined as follows:

εi(ν) =
{

µi−1(ν)
µi(ν)

} 1
2

, (28)

where µi(ν) is a power spectrum for the ith order
correlation function:

µ1(ν) =

{
∆n

N∑

n=1

M1(n) cos(2πnν)

}2

,

. . . ,

µi(ν) =

{
∆n

N∑

n=1

Mi(n) cos(2πnν)

}2

. (29)

3. The experimental data and the
details of computer simulations

We analyze here two types of the experimen-
tal data of the X-ray emission intensity of the
microquasar GRS 1915+105 [34]. The first set
of the data presents a one-day averaged time se-
ries of the X-ray emission intensity in the period
from February, 1, 1996 to September, 1, 2004 (a
step discretization τ = 1 day). For the analysis of
the given time series we use the statistical theory
of discrete non-Markov processes with a constant
time step (see Sect. 2.1).

For the analysis of the non-equidistant time
series (the 2nd type of data) we use the statis-
tical theory of discrete non-Markovian stochas-
tic processes with a variable time step (see Sect.
2.2). As experimental data [34] we use the time
series of the X-ray emission intensity of the micro-
quasar GRS 1915+105 with a variable time step
for the period from February, 1, 1996 to Septem-
ber, 1, 2004. To study the stochastic properties
of the X-ray emission we have carried out an ad-
ditional study of four model systems using the
method of molecular dynamics. We have stud-
ied a model system (a gas, a liquid, and a solid)
consisting of 2048 particles of argon molecules.
The particles interacted by Lennard-Jones poten-
tial V (r) = 4ε{(σ/r)12−(σ/r)6} with parameters
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ε/kB = 120K and σ = 3.405 Å [35]. Here ε is
a well depth, σ is a interatomic distance. The
simulation was carried out at constant tempera-
ture T ∗ = 0.6 and at various densities n∗ = 0.1,
n∗ = 0.5, n∗ = 1.0 and n∗ = 1.5. We made use of
the “velocity Verlet” algorithm to integrate the
equations of motion [36] with a time step 10−14

sec.

4. Randomness, regularity and
non-Markov effects applied to the dy-
namic analysis of simple model systems
and the X-ray emission intensity of the
microquasar GRS 1915+105

In this section we present a new method of
quantitative estimation of randomness, regular-
ity and non-Markov effects of a time series. Pre-
liminary the calculation of the degree of manifes-
tation of non-Markov effects and randomness or
regularities in the dynamic movement of a parti-
cle in the given cell will be carried out on simple
model systems: a low density gas, a dense gas, a
liquid near triple point, a solid. The level of ran-
domness and non-Markov effects is established for
each model system and is carried out by means of
a set of various characteristics. The set of data of
characteristics and quantitative parameters con-
tains reliable information about the degree of ran-
domness or regularity and non-Markov effects in
the researched model system. Then on the basis
of the calculation of these characteristics we shall
proceed to the analysis of a real process: the event
variability of the X-ray emission intensity of the
microquasar GRS 1915+105.

4.1. Randomness and non-Markov ef-
fects in simple model systems

The study of the dynamic features of behav-
ior of real complex systems of a different nature
in cardiology, neurophysiology, epidemiology, bio-
physics, seismology shows the existence of close
connection between the first point of the non-
Markovity parameter and a quantitative measure

of randomness or regularity of the measured sig-
nal. To establish this connection we present the
results of the study of several simple physical
models. The purpose of the similar study con-
sists in detecting typical features of behavior of
the non-Markovity parameter for model systems
with a different degree of randomness or regu-
larity. The given models were constructed by
the method of molecular dynamics. As an exam-
ple we have considered four Lennard-Jones model
systems: a low density gas (T ∗ = 0.6, n∗ = 0.1
in reduced units with parameters, where σ =
3.405 Å is an interatomic distance, ε/kB = 120K
is the well depth; T = T ∗ε/kB, n = n∗/σ3); a
dense gas (T ∗ = 0.6, n∗ = 0.5); a liquid near
the triple point (T ∗ = 0.6, n∗ = 1.0) and a solid
(T ∗ = 0.6, n∗ = 1.5).
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FIG. 1. The time dependence of the y–component of
particle velocity: a) for a low density gas (T ∗ = 0.6,
n∗ = 0.1, in reduced units); b) for a dense gas
(T ∗ = 0.6, n∗ = 0.5); c) for a liquid near the triple
point (T ∗ = 0.6, n∗ = 1.0); d) for a solid (T ∗ = 0.6,
n∗ = 1.5). The weakest correlations correspond to the
y–component of the particle velocity dynamics for a
low density gas. This dynamics characterizes the most
chaotic behavior of the particle motion in the studied
models. With the increase of density of the model sys-
tem the correlation in the behavior of particles become
more intensive. A model of a solid corresponds to the
greatest probability of interaction between particles
and the strongest velocity fluctuations.

The time dependencies of the y-component
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velocity for one particle in the studied cell is sub-
mitted in Fig. 1. On the basis of the comparative
analysis we can reveal a clear distinction between
the behavior of particles in each model. For the
case of a low density gas (see Fig. 1) a weak cor-
relation between the particle velocity and time is
observed. It is connected with great (in compar-
ison with the size of particles) distances between
particles and the collisionless regime of their be-
havior. Within a long-time limit weak correla-
tions caused by interaction of two (three) parti-
cles are detected. In the given model the most
chaotic behavior of a particle in all the studied
systems can be observed. Thus, the y-component
of a particle velocity of a dense gas (see Fig. 1b)
differs in strong correlations with time. The in-
terval of fluctuation scattering is relatively fixed.
The model shows “moderate chaotization” in the
behavior of particles. The following model cor-
responds to a liquid near the triple point (see
Fig. 1c) is characterized by the state of “mod-
erate regularity” in the motion of particles. In
comparison with the previous models the corre-
lation between the motion of molecules amplifies
noticeably. The amplification of correlations is
connected to the increase of the density of the
system, accordingly, to greater intensity of inter-
action of particles. The amplitude of fluctuations
is found within a certain interval of values. The
obvious regularity in the motion of real molecules
corresponds to the model of a solid state (see Fig.
1d). The diagram shows appreciable symmetry
of fluctuations regarding the value characterizing
the condition of equilibrium in the given model.
A high degree of regularity is defined by a high
degree of correlation of the states of particles.

The phase portraits on plane projections
of the two first orthogonal dynamic variables
(W0,W1) are submitted in Fig. 2. Here vari-
ous degrees of randomness and regularity in the
movement of the particles in the system is ob-
served. In all the phase clouds various symme-
try is revealed. In case of a low density gas the
individual points of the phase portrait generate
precise closed structures with a complex chaotic
form. In the next models the phase points con-
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FIG. 2. The phase portraits on a plane projection of
the two first orthogonal dynamic variables (W0,W1)
for the considered model systems: a) for a low den-
sity gas; b) for a dense gas; c) for a liquid near the
triple point; d) for a solid. The structure of phase
clouds indicates a level of randomness or regularity
of the studied objects. Higher symmetry and regular
concentration of phase points concerning the center of
coordinates are characteristic for objects with a high
degree of regularity. Decreasing of concentration of
the phase points near center of coordinates is con-
nected with the increase of the level of randomness in
the system behavior.

centrate near to the center of the coordinate sys-
tem. The density of the phase cloud grows with
the growth of regularity of the model. Concen-
trated orbits, located around the central nucleus,
dissipate. The phase portraits of the solid model
are characterized by the greatest concentration of
the phase points near the origin of coordinates.
It is necessary to note that with the transition of
the system from a) to c) the fluctuation scale of
variable W2 increases. The degree of changes of
the orthogonal dynamic variables noticeably dif-
fers owing to the difference between the degree of
correlations of particles.

In Fig. 3 the power spectrum of the ini-
tial time correlation function µ0(ν) for four model
systems is submitted. The fractal parameter α of
the power spectrum µ0(ν) ∼ να (where α < 0 )
was calculated on all frequency scale for all model
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FIG. 3. The power spectrum of the initial time cor-
relation function µ0(ν) for four model systems. The
parameter α was calculated for each power spectrum.
By estimating values α for each model system it is
possible to reveal its connection with a level of ran-
domness or regularity in the behavior of the system.

systems. For a low density gas this parameter
amounts to α = −1.82; for a gas α = −1.75.
For a liquid it is equal to α = −1.63; for a solid
α = −1.33. Thus, between the fractal parame-
ter of the power spectrum µ0(ν) and the level of
manifestation of a randomness and stochastic be-
havior (the parameter α grows with the increase
of a regularity degree) there is appreciable inter-
relation.

In Fig. 4 the frequency dependence of the
first point of the non-Markovity parameter (fur-
ther simply the non-Markovity parameter), cal-
culated by Eq. (10) is submitted.

While analyzing the majority of natural
[14, 15] and physical [23] systems earlier we found
the following feature in the behavior of the first
point of the non-Markovity parameter. The value
ε1(0) ∼ 101 ÷ 102 corresponds to the dynamic
states of the systems with the greatest level of
randomness and stochastic behavior. For the sim-
ilar states pronounced Markov effects (manifes-
tation of instantaneous or short-range statistical
memory effects) are characteristic. With the in-
crease of regularity and robustness in the system
the numerical value of the first point of the non-
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FIG. 4. The frequency dependence of the first point of
the non-Markovity parameter ε1(ν) for the considered
model systems. The analysis of various physical and
natural systems specifies a special value of the param-
eter ε1(0) in the estimation of level of randomness or
regularity. The parameter ε1(0) make it possible to
judge about the level of randomness or regularity in
the system. The maximal values of parameter ε1(0)
(∼ 101 ÷ 102) are characteristic for chaotic and fully
randomized processes. Decreasing of the parameter
ε1(0) up to values ∼ 100 reflects the increase of level
of regularity. It is possible to come to the similar con-
clusions by estimating the values of this parameter for
the submitted models.

Markovity parameter on zero frequency decreases
up to a unit ε1(0) ∼ 100. Non-Markov processes
with amplifying effects of long-range statistical
memory correspond to such states.

The analysis of the model systems lead to
the similar results. The parameter ε1(0) for the
model of a low density gas (see Fig. 4) consti-
tutes 29.76. This is a maximal value of the non-
Markovity parameter characterizing a low density
gas i.e. the model with the greatest level of ran-
domness and strong Markovian effects. The value
of this parameter ε1(0) for a dense gas equal to
17.77, for a liquid - 1.18, for a solid 1.14. With the
increase of the density of the system the numeri-
cal value of the non-Markovity parameter on zero
frequency decreases to a unit (with the increase
of the density of the system the non-Markovian
effects increase). This testifies to the possibility
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to use the non-Markovity parameter as an infor-
mational measure of manifestation of randomness
and regularity effects.

Thus, the submitted model systems allow
to define the set of qualitative and quantita-
tive characteristics for the analysis of a degree
of randomness and non-Markov effects in real
complex systems. These characteristics carry de-
tailed information about randomness or regular-
ity in the researched system. To these charac-
teristics we can refer: the time correlation in
the initial time series, the shape of the phase
clouds (W1 = f(W0)), the fractal parameter of
the power spectrum µ0(ν) and the first point of
the non-Markovity parameter on zero frequency
ε1(0). The most authentic and informative pa-
rameter of the level of randomness and the man-
ifestation of non-Markov effects is the statistical
non-Markovity parameter.

4.2. The analysis of the X-ray emission
intensity of the microquasar GRS 1915+105 for
the series with a constant time step

The time series of the X-ray emission inten-
sity of the microquasar GRS 1915+105 [34] dur-
ing the period from February, 1, to September, 1,
2004 (the time discretization is equal to one day)
is submitted in Fig. 5. Here we find the presence
of quasiperiodic structures which are connected
to a relative regularity of the signal within cer-
tain time intervals. It the end of the time series
the quasiperiodic structures get most noisy there-
fore their form is destroyed.

The phase clouds on the plane projections
for various combinations of dynamical orthogonal
variables Wi, Wj (where i, j = 0..3) of the X-
ray intensity of the microquasar GRS 1915+105
are shown in Fig. 6. It is possible to judge the
character of the X-ray emission intensity by the
shape of the phase clouds. The phase clouds are
of an asymmetric type and consist of a centralized
nucleus with a high concentration of phase points
and several points surrounding the nucleus.

The power spectrum of the initial TCF
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FIG. 5. The time dependence of the X-ray emission
intensity of the microquasar GRS 1915+105 with con-
stant time step (step discretization τ = 1 day). It
is possible to discover quasiperiodic structures in the
time dependence. The given structures bring relative
regularity in the X-ray emission intensity.
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FIG. 6. The phase portraits on the plane projec-
tions of the four first dynamic orthogonal variables of
the X-ray emission intensity of the microquasar GRS
1915+105 (for time series presented in Fig. 5). The
phase clouds consist of the centralized nucleus with
a high concentration of phase points and individual
points scattered on the perimeter.

µ0(ν) (Fig. 7a) and three memory functions of
the junior order µi(ν) (where i = 1, 2, 3) (Figs.
7b, c, d) for the intensity of the X-ray emission
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FIG. 7. The power spectrum of the initial TCF µ0(ν)
(a) and three memory functions of the junior order
(b, c, d) for the X-ray emission intensity of the micro-
quasar GRS 1915+105 (for time series presented in
Fig. 5). The fractal parameter of the power spec-
trum µ0(ν) is equal to α = −1.41. This value is
an intermediate value between the similar parameters
for the models of a liquid (α = −1.63) and a solid
(α = −1.33).

are depicted in Fig. 7. All the figures are sub-
mitted on a double logarithmic scale. The fractal
parameter of the power spectrum µ0(ν) is equal
to α = −1.41. This value corresponds to the in-
termediate quantity between the similar param-
eters for the model of a liquid α = −1.63 and
a solid α = −1.33. In the region of frequencies
ν=5.7× 10−2÷ 7.2× 10−2f.u.(1f.u. = 1/τ where
τ is a discretization time step) a series of dynamic
peaks is detected in the power spectra. This fre-
quency range corresponds to a time interval of
τ = 13.8 ÷ 17.4 days. The maximal peak corre-
sponds to frequency ν = 6×10−2f.u., of τ = 16.6
days.

The frequency dependence of the first three
points of the non-Markovity parameter εi, where
i = 1, 2, 3 for the intensity of the X-ray emission
of the microquasar GRS 1915+105 is presented
in Fig. 8. Of special value is the first point of
the non-Markovity parameter on zero frequency
ε1(0) = 4.94. This value occupies an intermediate
position between the appropriate values for a gas
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FIG. 8. The frequency dependence of the first three
points of the non-Markovity parameter εi(ν) (i =
1, 2, 3) for the X-ray emission intensity of the micro-
quasar GRS 1915+105 (for time series presented in
Fig. 5). The parameter ε1(0) plays a special role in
the quantification of chaotic and regular processes due
to maximal information about the effects of Markovity
and non-Markovity, short-range and long-range mem-
ory, randomness and regularity effects. For the X-
ray emission intensity of the microquasar we have
ε1(0) = 4.94.

and a liquid. For all the frequency dependencies
in the region of frequencies ν=0.057 ÷ 0.072f.u.
a series of peaks is detected.

In Table 1 some kinetic (λ1, λ2, λ3) and re-
laxation parameters (Λ1, Λ2, Λ3) for the X-ray in-
tensity of GRS 1915+105 with a constant time
step are submitted. Let us note, that the kinetic
parameter |λ1| means relaxation rate of the stud-
ied system. Small values of kinetic and relaxation
parameters signify the manifestation of stochas-
tic effects, randomness and stochastic behavior in
the registered time signals of the X-ray emission
intensity of the microquasar GRS 1915+105.

Table 1. Some kinetic and relaxation parameters
(absolute values) for the X-ray intensity of GRS
1915+105 (constant time step)

λ1 [τ−1] λ2 [τ−1] λ3 [τ−1] Λ1 [τ−2]Λ2 [τ−2]Λ3 [τ−2]

0.22 1.20 1.04 0.10 0.10 0.03
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4.3. The analysis of the X-ray emission
intensity of the microquasar GRS 1915+105 for
a time series with a variable step

The initial record of the X-ray emission in-
tensity of the microquasar GRS 1915+105 as a
sequence of events is submitted in Fig. 9. The
given series essentially differs from the time series
with a constant time step (the registration was
carried out in the same period) by a visibly big
set of the experimental data and consequently is
more informative. It allows to define quantitative
and qualitative parameters and properties of the
studied system with a higher degree of accuracy
and reliability.
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FIG. 9. The discrete sequence of events in the X-ray
emission intensity of the microquasar GRS 1915+105
(time series with variable time step, mean time dis-
cretization is equal to 96 min). Each point in the
given sequence represents a single event of emission.

The power spectra of the initial ECF (Fig.
10) and three memory functions of junior orders
(Figs. 10b-d) are shown in Fig. 10. All the fig-
ures are submitted on a double logarithmic scale.
On the whole frequency region of the power spec-
trum µ0(ν) strong fractality with the exponent
α = −1.53 (see Fig. 10a) is observed. Let us
note that the fractal parameter for the series with
a constant time step corresponds to α = −1.41.
Hence the initial time signal registered with a

variable time step is characterized by greater ran-
domness and stochastic behavior in comparison
with a signal with constant time step. Memory
functions µi(ν), where i = 1, 2, 3 (see Figs. 10b-
d) manifest the similar fractal behavior in a wide
frequency interval.
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FIG. 10. The power spectrum of the initial correla-
tion function (a) and memory functions of the junior
orders (b-d) of the X-ray emission intensity of the mi-
croquasar GRS 1915+105 for a non-equidistant time
record. The power spectrum of the initial ECF for the
event series is characterized by greater fractality than
the power spectrum of TCF for the case of a constant
time step. In the power spectra of the memory func-
tion is observed the peak on frequency ν = 0.2f.u.
It reflects also the comparative analysis of the fractal
parameter for both cases.

In Fig. 11 the frequency dependencies of
first three points of the non-Markovity parameter
εi(ν) (where i = 1, 2, 3) are submitted. The first
point of the non-Markovity parameter ε1(ν) in
the event presentation (see Fig. 11a) allows to
reveal additional features in relaxation processes
of the X-ray emission intensity of the microquasar
GRS 1915+105. The value of the parameter on
zero frequency has increased more than twice and
is equal to ε1(0) = 11.65. The similar behavior
of the non-Markovity parameter (for the series
with a variable time step) is connected with the
amplification of quasi-Markovian and stochastic
effects in the X-ray emission processes. In Fig. 11
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markovization effects are observed in frequency
behavior ε1(ν) as a peak on frequency ν = 0.238
f.u (where 1f.u = 1/∆n, ∆n =1 event). The
values of the two subsequent points of the non-
Markovity parameter (see Fig. 11b, c) are close
to a unit and are of identical kind for both time
series.
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FIG. 11. The frequency dependence of the first three
points of the non-Markovity parameter of the X-ray
emission intensity of the microquasar GRS 1915+105
for an event correlation function (for series of events
presented in Fig. 9). The first point of the non-
Markovity parameter ε1(ν) (a) is characterized by the
following features: the value on zero frequency is equal
to ε1(0) = 11.65; the peak on frequency ν = 0.238 f.u.
connected with the sharp amplification of Markovian
(stochastic) effects is observed.

In Table 2 some kinetic (λ1, λ2, λ3) and re-
laxation parameters (Λ1, Λ2,Λ3) for the X-ray in-
tensity of GRS 1915+105 with a variable time
step are submitted. The parameter |λ1| it is equal
to 0.15. Smaller rate of a relaxation for the time
series with variable time step is connected to more
obvious and more pronounced stochastic behav-
ior. It may be, that the system needs more time
for return to a stable state of equilibrium.

Table 2. Some kinetic and relaxation parameters
(absolute values) for the X-ray intensity of GRS
1915+105 (variable time step)

λ1 [τ−1] λ2 [τ−1] λ3 [τ−1] Λ1 [τ−2]Λ2 [τ−2]Λ3 [τ−2]

0.15 1.16 1.03 0.05 0.12 0.02

Thus, the approach to the description of sta-
tistical discrete processes in the event presenta-
tion submitted in this work allows to received

more detailed and clear picture of the stochastic
processes occurring in complex nature systems.

5. Discussion and Conclusion

Energetic and spectral properties, quasi-
periodic oscillations (QPO) and the diverse tem-
poral variability of GRS 1915+105 are the focus
of numerous studies in last years.

In the paper [37] the problem of the limits
concerning the physical information that can be
extracted from the analysis of one or more time
series typical of astrophysical objects has been
considered. The work [38] has clearly established
that radio emission from GRS 1915+105 is inti-
mately related to the presence of hard (power-law
dominated) intervals in the X-ray light curves.
This in turn physically implies a clear relation
between a radiatively inefficient flow close to the
black hole, and a synchrotron-emitting overflow
or jet. This suggest that MHD effects could be re-
sponsible for the production and/or confinement
of the jets found in system. For the first time
in Ref. [39] were observed concurrently in GRS
1915+105 all of the following properties: a strong
steady optically thick radio emission correspond-
ing to a powerful compact jet resolved with the
VLBA, bright near-IR emission, a strong QPO at
2.5Hz in the X-rays and a power law dominated
spectrum without any cutoff in the 3 − 400keV
range.

J. Rodriguez et al. in the work [40] have
presented the results of simulations INTEGRAL
and RXTE observations of the microquasar GRS
1915+105. They have focused on the analysis of
the unique highly variable observation and have
shown that they might have observed a new class
of variability. Then they have studied the ener-
getic dependence of a low frequency QPO from
steady observations.

A scenario for the variability of the mi-
croquasar GRS 1915+105 starts from previous
works, leading to the tentative identification of
the accretion-ejection instability as the source
of the low frequency QPO and other accreting
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sources [41]. A model for the ∼ 30 minute cycles
often exhibited by GRS 1915+105 is determined
by the advection of poloidal magnetic flux to the
inner region of the disk, and its destruction by re-
connection (leading to relativistic ejections) with
the magnetic flux trapped in the vicinity of the
central source. This could be extrapolated fur-
ther to understand the long-term variability of
this and other microquasars.

In the paper [42] authors discuss the pos-
sible origin of the following behavior: the QPO
spectra are well modelled with a cut-off power
law except on one occasion where a single power
law gives a satisfactory fit (with no cut-off at
least up to ∼ 40keV ). The cut-off energy evolves
significantly from one observations to the other,
from a value of ∼ 21.8keV to ∼ 30keV in the
other observations where it is detected. It was
suggested in the work [42] that the compact jet
detected in the radio contributes to the hard X-
ray (≥ 20keV ) mostly through synchrotron emis-
sion, whereas the X-ray emitted below 20keV
would originate through inverse Compton scat-
tering. The dependence of the QPO amplitude on
the energy can be understood if the modulation
of the X-ray flux is contained in the Comtponized
photons and not in the synchrotron ones.

The variability pattern is characterized in
Ref. [43] by a pulsing behavior, consisting of
a main pulse and a shorter, softer, and smaller
amplitude precursor pulse, on a timescale of 5
minutes in the JEM-X 3− 35keV light curve. It
was revealed, that the rising phase is shorter and
harder than the declining phase, which is oppo-
site to what has been observed in other otherwise
similar variability classes in this source. The fit
show the source to be in a soft state character-
ized by a strong disc component below ∼ 6keV
and Comptonization by both thermal and non-
thermal electrons at higher energies.

The source, which was observed 3 times in
the plateau state, before and after a major radio
and X-ray flare, showed strong steady optically
thick radio emission corresponding to powerful
compact jet resolved in the radio emission cor-
responding to powerful compact jet resolved in

the radio images, bright near-infrared emission, a
strong QPO at 2.5Hz in the X-rays and a pow-
erful law dominated spectrum without cut-off in
the 3− 300keV range [44].

Relativistic jets are now in Ref. [45] be-
lieved to be a fairly ubiquitous property of ac-
creting compact objects, and are intimately cou-
pled with the accretion history. Associated with
rapid changes in the accretion states of the bi-
nary systems, ejections of relativistic plasma can
be observed at radio frequencies on timescale of
weeks before becoming undetectable. However,
recent observations point to long-term effects of
these ejecta on the interstellar medium with the
formation of large scale relativistic jets around
binary systems.

In Ref. [46] authors by Rossi X-ray Tim-
ing Explorer have found that as the radio emis-
sion becomes brighter and optically thick, the
frequency of a ubiquitous 0.5 − 10Hz QPO de-
creases, the Fourier phase lags between hard
(11.5 − 60keV ) and soft (2 − 4.3keV ) in the fre-
quency range of 0.01 − 10Hz change sign from
negative to positive, the coherence between hard
and soft photons at low frequencies decreases, and
the relativistic amount of low-frequency power in
hard photons compared to soft photons decreases.

Energetic dependence of a low frequency
QPO in GRS 1915+105 have been analyzed in the
work [47]. The results presented could find an ex-
planation in the context of the Accretion-Ejection
Instability, which could appear as a rotating spi-
ral or hot point located in the disk, between its
innermost edge and the co-rotation radius.

In the present work the dynamic features in
the behavior of a particle in the given cell in con-
densed matter and the X-ray emission intensity
of the microquasar GRS 1915+105 were consid-
ered jointly on the basis of the statistical theory
of non-Markov processes. For this purpose we
used two various applications of the submitted
theory as it allows to estimate chaotic and reg-
ular, random and stochastic, Markov and non-
Markov processes defining the dynamics of the
studied system. By taking into account the ef-
fects of discreteness, long-range and short-range
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memory, statistical relaxation now we are able to
define a set of valuable parameters and character-
istics, which contain detailed information about
the properties of the studied systems connected
with randomness.

On the basis of the comparative analysis
of the initial time series, phase portraits, power
spectra of the initial TCF and the first point
of the non-Markovity parameter we have found
some typical features of the behavior of regu-
lar and chaotic, Markov and non-Markov compo-
nents of stochastic processes in studied systems.
The systems with high level of chaotization (a
low density gas, a dense gas) are characterized
by weak correlation between the initial signals,
the presence of complex chaotic closed structures
in the phase portraits, the high value of the frac-
tal parameter (according to its absolute value) of
the power spectrum of TCF and the big value of
the first point of the non-Markovity parameter on
zero frequency. In the similar systems the effects
of short-range or instantaneous statistical mem-
ory that correspond to Markovian processes ap-
pear. In regular stochastic processes strong cor-
relations in the initial time signals, clear symmet-
ric structures of phase clouds are observed. The
last one consists of centralized nucleus of high
concentration. Here low values of the fractal pa-
rameter (according to its absolute value) of the
power spectrum of the initial TCF, small values
of the first point of the non-Markovity parame-
ter on zero frequency are observed. In the sim-
ilar systems the effects of long-range statistical
memory can be seen, and relaxation time scales
of TCF and memory functions are comparable.
The processes describing the given systems are
non-Markov ones.

The use of the above submitted technique al-
lows to estimate non-Markov effects, robustness
and regularity, stochastic behavior and random-
ness of the X-ray emission intensity of the mi-
croquasar GRS 1915+105 when the initial sig-
nal with constant time step is registered. Here
the scale of time fluctuations, long-range effects
of memory, discreteness of various processes and
states, effects of dynamic alternation in the in-

tensity of the X-ray emission play an important
role. In the dynamics of the initial time signal
of the X-ray emission intensity the fast change
of various regimes, sharp and unexpected alter-
nation of various types of fluctuations and corre-
lations were observed. Taking into account dis-
creteness of the experimental data, statistical ef-
fects of long-range memory and the constructive
role of fluctuations and correlations we have re-
ceived a detailed information about the proper-
ties and parameters which characterize statistical
properties of the fluctuating X-ray emission of mi-
croquasar GRS 1915+105.

Thus, in this work, a new approach to
the description of discrete non-Markov stochas-
tic processes with a variable time step in the
event representation is presented. This approach
is based on the consecutive use of the idea sug-
gesting the existence of the event correlation func-
tions. The similar correlation functions are new
physical quantities determining probabilistic in-
terrelation between a sequence of events. When
analyzing the time signal (the X-ray emission in-
tensity of the microquasar GRS 1915+105) with
a variable time step the following characteristics
were determined: the power spectra of the ini-
tial correlation function and memory functions of
the junior orders, first three points of the non-
Markovity parameter, the fractal parameter of
the power spectrum of ECF and the value of
the first point of the non-Markovity parameter
on zero frequency. These dependencies and pa-
rameters allow to receive additional information
about the properties and characteristics of the
studied system: the quasi-Markov character of
relaxation processes in the intensity of the X-
ray emission, amplification of Markov effects on
certain frequencies, the fractal character of the
power spectra of ECF and memory functions.

Finally, this paper only takes the first step
in introducing the concept of event correlation
analysis of time series and defining it in terms
of quantities that can be calculated from an ex-
perimental data. We believe, the method devel-
oped can form a basis to start formulating further
meaningful questions regarding the notions and
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presentations for real complex systems.
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